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Clustering of traffic data based on correlation analysis is an important element of several
network management objectives including traffic shaping and quality of service control.
Existing correlation-based clustering algorithms are affected by poor results when applied
to highly variable time series characterizing most network traffic data. This paper proposes
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their correlation. Experimental evaluations on several synthetic and real datasets show
the accuracy and robustness of the proposed solution that improves existing clustering
methods based on statistical correlations.
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1. Introduction

Clustering is a widely adopted approach for augmenting
the level of knowledge on rough data. The goals of
clustering applied to computer and network datasets can
be different, going from Web sites characterization [1],
classification of users navigation patterns [4], network traf-
fic classification and management [2]. For example, many
network management goals such as flow prioritization,
traffic shaping and policing, and diagnostic monitoring as
well as many network engineering problems, such as
workload characterization and modeling, capacity plan-
ning, and route provisioning may benefit from traffic clus-
tering [2].

In this paper, we are interested in correlation-based
clustering algorithms applied to highly variable time ser-
ies. This set of algorithms (e.g., Pearson product moment
[7], Spearman and Kendall ranks [8,9]) consider that time
series are similar if they exhibit some degree of statistical
inter-dependency, and differ from other popular ap-
proaches using some geometrical distance (e.g., Euclidean
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distance [6], cosine distance [5]) as their similarity measure.
The reason of focusing on correlation similarity measures
is distance functions are not always adequate in capturing
dependencies among the data. In fact, strong dependencies
may exist between time series even if their data samples
are far apart from each other as measured by distance
functions [3]. In the next section, we will support this
statement through a network related example.

The choice and the performance of the similarity mea-
sure impact the quality of any clustering algorithm. The
better the accuracy and robustness of the measure in find-
ing similarity, the better the quality of the clustering mod-
el. Existing correlation indexes are accurate and robust in
disclosing similarity except when time series exhibit high
variability. This is the case of most traffic data that are
highly variable in terms of number of connections, request
inter-arrivals, flow sizes (e.g., [13,16,14]). In these scenar-
ios, popular correlation indexes, such as the Pearson coef-
ficient [7], the Spearman rank [8], the Kendall rank [9],
and the Local Correlation index [10], show poor results
because they are unable to capture correlations even when
they exist.

We propose a new similarity measure that is able to
disclose correlation even when time series are character-
ized by high variability. The accuracy and robustness of
the proposed correlation index is achieved through an
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original approach that separates trend from perturbation
patterns, and evaluates correlation by computing the sim-
ilarity of trend patterns. On this basis, clustering models
can group time series presenting similarity also when
characterized by high variability, such as network traffic
[16], workloads [15], and data center resource metrics
[11]. Such data may have strong correlations that are
masked by perturbations. When some correlations exist,
the similarity measure we propose is able to identify them
and clustering algorithms can group time series accord-
ingly. The improvements with respect to the state of the
art are shown on synthetic and real datasets characterized
by high variability.

The remainder of this paper is organized as follows.
Section 2 defines the problem of correlation clustering
for highly variable datasets. Section 3 presents the pro-
posed algorithm. Section 4 compares the performance of
different correlation indexes applied to synthetic time ser-
ies that represent a fully controlled scenario for evaluation.
Section 5 evaluates the proposed algorithm on real scenar-
ios. Section 6 concludes the paper with some final remarks.

2. Problem definition

We define the clustering process based on similarity by
considering a dataset X = {Xy,...,Xy}. For example, it con-
tains all time series of a monitored network, where each
time series X;j=[X;1,...,Xj,] iS a vector containing a
time-ordered discrete sequence of traffic data sampled
once. We are interested in partitioning the N time series
into K clusters C = {Cy,...,Ck} (K< N), such that:

1.#g,i=1,....K;
2. U:(:1Ci:X2
3.aN0CG =g, i,j=1,...,Kand i #j.

The clustering algorithm requires the choice of a simi-
larity measure determining groups of time series so that
the similarity between time series within a cluster is larger
than the similarity between time series belonging to differ-
ent clusters. As a similarity measure, we adopt the correla-
tion index p between two time series X; and Xx; € X, where
the absolute value of p ranges between 0 and 1. When
p =0, there is no correlation between the two time series,
while p =1 indicates a complete correlation between Xx;
and x;. The literature offers several guidelines for the best
interpretation of the value of the correlation measure
[17,7], but all criteria depend on the context and purposes
of the analysis. In this paper, we do not refer to a specific
traffic scenario, hence we can adopt the most general inter-
pretation indicating a strong correlation when p > 0.5, and a
weak correlation for p < 0.5 (e.g., [17]). Different choices for
the threshold do not impact the main conclusions of this
paper.

This paper proposes a new similarity measure that is
able to determine correlation clustering even in datasets
exhibiting a high degree of variability, where existing cor-
relation indexes (e.g., [7,10,8,9]) are not accurate. High var-
iability is a typical phenomenon in network-related time
series [16] in which most observations take values around

the time series trend (trend pattern) and some observations
depart from it with appreciable frequency, even by assum-
ing extremely large values with non-negligible probability
(perturbation pattern). Trend patterns represent the ten-
dency of a time series that may be related to the other time
series, while perturbation patterns consist of random
observations hiding trends. In this paper, we use the stan-
dard deviation as the measure of time series variability be-
cause a high standard deviation is the most typical
trademark of highly variable network measurements
[16]. For our purposes, this feature causes trend patterns
that are hard to identify because masked by perturbations.

Fig. 1 illustrates some examples of highly variable time
series derived from network monitors measuring the num-
ber of active connections, active clients and transferred by-
tes during a day period. In each time series, we can see the
presence of different trend patterns during working hours
and during the night. These patterns are masked by pertur-
bation patterns. However, there is an evident dependency
between the number of active connections and the amount
of transferred bytes. In fact, when the number of active
connections increases (decreases), the amount of trans-
ferred bytes increases (decreases) as well. Despite the var-
iability, we want that a good similarity measure can detect
this dependency so to group the two time series in the
same cluster. This goal cannot be achieved through dis-
tance-based similarity measures because the distance be-
tween the sample values of the two time series is not
always close, hence the two time series cannot be clus-
tered together through a traditional distance-based clus-
tering model. For this reason, we prefer to consider
correlation as the similarity measure, and we propose a
correlation-based clustering model that is able to disclose
dependency even in highly variable scenarios where dis-
tance-based clustering models do not work.

The ability of a correlation index in detecting similarity
among correlated time series is measured in terms of accu-
racy. The ability in guaranteeing a stable correlation index
when conditions do not change is measured in terms of
robustness. In the case of highly variable time series, the
most popular correlation indexes are affected by two main
problems:

1. low accuracy, since they are unable to detect similari-
ties even among correlated time series;

2. low robustness, since they do not guarantee a stable
evaluation of the correlation index, even when the rela-
tionships between the time series do not change.

Let us give an example of the above problems by refer-
ring to the time series shown in Fig. 1 that reports the
number of active connections and transferred bytes moni-
tored during a 12-h period in Fig. 2(a). We evaluate the
correlation index between the two time series through
the Pearson correlation index [7], and we report the results
in Fig. 2(b). (The Pearson index is used as an example, but
other existing models do not change the conclusions.) De-
spite the relationship between the two time series, the
Pearson model is affected by both issues reported earlier:
its results are characterized by low accuracy because the
Pearson correlation index remains lower than 0.5 during
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Fig. 1. Examples of network-related time series.
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(a) Network related metrics

(b) Pearson correlation index

Fig. 2. Correlation index results on highly variable data.

the entire interval of observation; its results are character-
ized by low robustness because the correlation index pre-
sents oscillations even when the correlation between the
times series does not change.

A typical approach addressing issues related to high
variable time series is to refer to some filtering algorithms
(e.g., [18]). In fact, filtering data and then applying some
correlation model does not address the above issues, but
adds further hard-to-solve problems that are related to
the choice of the “right” filter and to the setting of its
parameters. Discussing the largely investigated problems
related to filters is out of the scope of this paper. We ob-
serve the two main conclusions: it is impossible to choose
the best filter and its parameters without a preliminary
extensive study about data statistical properties
[18,11,12]. A similar study is even more complex when
data are characterized by high variability. Moreover, the
concept of best filter requires an anticipated definition of
the context and goals of filtering, that in general is tough
or impossible. Basically, we have two alternatives that
are equally useless for clustering purposes: to apply a weak
or a strong filter. A weak filter removes small variability,

hence underlying relationships among time series remain
undetectable by existing correlation models; a strong filter
may remove important information about trend patterns
and thus it prevents the possibility of finding existing
correlations.

As an example, let us reconsider the time series repre-
sented in Fig. 2(a). We choose a popular filter such as the
Exponential Weighted Moving Average (EWMA) [18] as a
basis, and we apply different parameters in order to obtain
a weak and a strong filter. The resultant time series are
shown in Figs. 3(a) and 4(a), respectively. In Fig. 3(b), we
report the results of the Pearson index computed on the
weakly filtered data. As expected, the results are improved
with respect to the not filtered case, but the conclusion
remains unchanged: the correlation index has low accu-
racy since it remains lower than 0.5 for most of the obser-
vation interval; it has low robustness since its marked
oscillations cause a continuous shift from considering the
time series correlated to uncorrelated, then correlated
again, and so on.

By increasing the filter strength, most perturbations are
discarded. The problem is that a strong filter cancels also
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Fig. 4. Strong filtering applied before correlation analysis.

information about trend patterns characterizing the time
series. The result is that the Pearson correlation index be-
comes even less accurate and less robust, as we see in
Fig. 4(b).

All these results evidence that high variability repre-
sents a limit of existing correlation indexes even when
they are integrated with filtering techniques. These limits
of existing correlation indexes affect the quality of the re-
sults of clustering models based on similarity when ap-
plied to highly variable datasets. In these contexts, the
risk is that time series characterized by strong correlation
may be clustered in different groups, and uncorrelated
time series may be assigned to the same cluster. These rea-
sons motivate the need of a new similarity measure that is
able to disclose correlations in an accurate and robust way
in highly variable contexts. The model proposed in the fol-
lowing section has several benefits: it does not require any
assumption about statistical properties, any pre-analysis of
time series characteristics, and any integration with pre-
filtering techniques. Moreover, it is able to adapt its
parameters to data characteristics, to capture linear and
non-linear dependences, and to cluster time series basing
on their statistical correlation in an accurate and robust
way.

3. Clustering of highly variable datasets

In this section, we present a novel correlation index,
named CoHiVa (Correlation for Highly Variable data), that

may be used as the similarity measure of different cluster-
ing algorithm(s) applied to highly variable time series.
CoHiVa may be viewed as an improvement of the LoCo
score [10] that evaluates correlation through the analysis
of pattern similarity. CoHiVa extends this idea to the corre-
lation analysis in highly variable domains. Unlike the Pear-
son model [7] that works well only if time series are linked
by a linear relationship, CoHiVa does not assume any data
dependency and it is able to capture linear and non-linear
dependencies. Moreover, CoHiVa does not assume any data
distribution, as required by the Spearman and Kendall
ranks [8,9].

The described clustering algorithm adopts CoHiVa to
modify the complete-linkage clustering model [19], but
other clustering algorithms using similarity measures can
be considered as well. The proposed algorithm denotes N
singleton clusters {Ci,...,Cn}, each corresponding to a
monitored time series (C;=X;,i=1,...,N). It then com-
putes the N x N similarity matrix D containing the CoHiVa
correlation indexes p(X,, X4) between all pairs of time ser-
ies X, X4 in X through the following procedure.

Let us consider one time series Xp, = [Xp1,...,Xp,] Of the
pair. The first goal is to identify the main patterns in x,,
where the patterns correspond to trends (i.e., periodic
and seasonal components) and perturbations. To this end,
we apply the Singular Value Decomposition (SVD) [10] to
the auto-covariance matrix of the time series. Among the
spectral decomposition techniques, SVD is considered as
the baseline technique for separating existing patterns
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without any assumption about the statistical characteris-
tics of data [20,21].

In practice, we estimate the full auto-covariance matrix
of the time series Xy, that is defined as:

D(xp) = Xp @ Xp, 1)

where ®(x,) is the auto-covariance matrix of X,
Then, we compute the SVD of the auto-covariance ma-
trix @(xp) as follows:

D(xy) = U(XIJ)Z(XP)V(XP)Tv (2)

where U(x,),X(x,) and V(x,) € R™".

The columns v; of V(x;,) = [vy,...,v,] are the right singu-
lar vectors of ®(x,). Similarly, the columns w; of U(xp) -
=[uy,...,u,] are the left singular vectors of ®(x,). Finally,
X(xp) = diag[sy,...,Sn] is a diagonal matrix with positive
values s;, called the singular values of ®(x,).

The singular vectors corresponding to small singular
values are composed by errors that usually contaminate
the measured variables [24]. The contribution of these er-
rors must be discarded by eliminating the singular vectors
corresponding to the smallest singular values [25]. By
retaining just the principal vectors corresponding to the
highest k singular values (k <n) we can reconstruct a k-
dimensional approximation of the correlation matrix:

®B(x,) = U Z(%)V(x,)", €)

where Ux,) = [y, ...
X(xp) = diag[sy, . .., Skl

Literature on SVD gives little importance to the problem
of dynamically selecting the appropriate number of princi-
pal vectors that capture the patterns (e.g., [10,20]). A com-
mon approach is to choose a fixed number of principal
vectors independently of data characteristics, but this
choice is unsuitable to time varying contexts where the
statistical properties of data may change frequently. On
the other hand, our algorithm chooses a variable number
of principal vectors that takes into account the statistical
characteristics of the considered data. To this purpose,
we select the principal vectors accounting for 90% of the
variation in the analyzed time series as in [23]. In this
way, the number of selected principal vectors varies from
time series to time series according to data characteristics.
The variable number of principal vectors used to capture
the main patterns of the time series is denoted by k.

In order to find correlations also in the case of high var-
iability, we analyze the main patterns of X, and retain just
trend patterns because they represent the tendency of a
time series that may be related to the other time series.
The problem is that in contexts characterized by high var-
iability it is expected that the extraction of main patterns
includes also some perturbation patterns among the k
principal vectors [26]. As these last patterns prevent the
identification of trends and their possible correlations,
our algorithm discards them. The idea is to build a new
matrix based on a subspace of k < k principal vectors that
capture just trend patterns. To remove perturbation pat-
terns from U(x,) in (3), our algorithm computes the Hurst
exponent H of the k principal vectors by means of the re-
scaled range analysis of Hurst [27]. The Hurst exponent

,ﬁk}, ‘_/(Xp) = [{’17 e ,\"k] and

measures whether the data have pure random variability
or some underlying trends [28]. For each principal vector
u; € U(x,) of length n, we first define its cumulative deviate
series:

Ze=Y (—m), (4)

where t=1,2,...,n, i is the jth element of the ith principal
vector, and m is the mean of u,.

To compute the rescaled range %, we calculate the
range:
R(n) = max(Zy,Z,,...,Zy) —min(Zy,2,,...,Zy), (5)
and the standard deviation:
sty = /1S @ 2 6
(m) =/ > @ —m)P. (6)

The Hurst exponent H is defined in terms of the asymp-
totic behavior of the rescaled range as a function of the
time span of a time series as follows [27]:

R(m] _
E{m} =Cn" asn— oo, (7)
where E|®®| s the expected value of the rescaled range, n

. S(n) . . . . .
is the number of observations in a time series, and C is a

constant.

If the estimated Hurst exponent H; of a principal vector
u; € U(xp) is close to 0.5, then we can conclude that u; con-
tains perturbations. On the other hand, if the Hurst expo-
nent remains far from 0.5, then we can assume that u; is
a trend principal vector.

Our model builds up a new f](xp) matrix containing

only the k trend principal vectors @, I = 1,.. ., k as follows:
Va, € U(zy), i=1,...,k

N . 0 0

w=w ifH;<05-- or H;>05+-, (8)

2

where ¢ is a two-sided 95% confidence interval computed
on the number of samples [28].

This separation between perturbation and trend pat-
terns allows us to remove perturbation patterns in the
time series and to focus only on trends. By focusing on
the k trend principal vectors, we are able to construct a
new approximation of the d(x,) matrix that we name

trend approximation. Given ﬁ(xp)z[ﬁl,...,ﬁ,}], the
corresponding singular values and the right singular
vectors form the matrices X(x,) = diag[s;,...,5;] and

V(x,) = [V1,...,V;], respectively. Through these matrices,
the trend approximation of the correlation matrix using
only trend patterns is given by:

®(x,) = U(x) E(x,)V (x,)". 9)

The matrix ®(x,) approximates the trend behavior of
®(x,) by removing error information and perturbation pat-
terns that affect the identification of the trends of the time
series.

After the extraction of the main trends from the time
series Xp,, we evaluate whether it is correlated or not with
the other time series X, of the pair by computing how close
their trends are. When the trend approximation matrices
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ﬁ(xp) and fl(xq) are similar, the time series X, and x, follow
similar (linear or non-linear) trends, and we can guess that
the two time series are correlated. In geometric terms, if
two time series are correlated, then the trend principal
vectors of one time series should lie within the subspace
spanned by the trend principal vectors of the other time
series. For this reason, we compute the CoHiVa correlation
index between X, and X, by projecting the trend principal
vectors of the time series X, into the trend principal vectors
of xg, as following:

1 ~ ~

P(Xp,Xq) = = (HU(XP)TU(XQ)H

k(xp) + k(xq)
+11U(x) " Ux,)]1), (10)

where I%(x,,) and IAc(xq) are the amounts of trend principal
vectors of @(x,) and ®(x,), respectively, while ﬁ(xp) and
ﬁ(xq) are the trend principal vectors matrices collecting
them.

Through this procedure, our algorithm finds out the
CoHiVa correlation indexes p(Xp, X;) between all pairs of
time series in X and uses them to fill the N x N similarity
matrix D. These correlation values represent the measures
of similarity between all the clusters.

We then proceed through the following steps:

1. Find the most correlated pair of clusters in the similar-
ity matrix:

Xr,Xs) = Mmax
pXs,Xs) 1<p.q<Np7q

P(Xp,Xg). (11)

2. Combine cluster C, and cluster C; to form a new cluster,
denoted as C.).

3. Update the similarity matrix D by deleting the rows and
columns corresponding to clusters C, and C; and by add-
ing a row and a column corresponding to the early cre-
ated cluster. The similarity between the new cluster
C(rs) and a generic old cluster C; is defined as:

P(Xi, X(rs)) = Max(p(Xi, Xr), P(Xi, Xs))- (12)

4. Repeat steps (1)-(3) until all objects are in a cluster.

This procedure results as an organized tree built up
according to the similarity matrix computed through CoH-
iVa. Cutting the tree at a given height gives a partition clus-
tering at a selected precision ¢. For example, if we
discriminate between weak and strong correlation through
the value of ¢ = 0.5, we cut the tree when the highest cor-
relation value found in the similarity matrix goes below ¢
=0.5. The time series forming a sub-tree after this cut are
considered part of the same cluster [22].

4. Performance evaluation

The quality of the proposed clustering algorithm
strongly depends on the performance of the similarity
measure. Hence, in this section we evaluate the perfor-
mance of the CoHiVa index in finding correlation, and we
compare it against the results of the following state-of-
the-art alternatives: the Pearson product moment (Pear-
son) [7], the Spearman rank (Spearman) [8], the Kendall

rank (Kendall) [9], and the Local Correlation (LoCo) index
[10]. In order to stress the importance of managing the
time series variability for disclosing correlation, we also re-
port the results that we would obtain by avoiding the trend
patterns selection step based on the Hurst rescaled range
analysis in our model (CoHiVa without Hurst analysis).
Moreover, we make our evaluation even more exhaustive
by comparing the performance of CoHiVa to that of a
state-of-the-art model that is integrated with a
pre-filtering technique (Pearson with filtering).

To evaluate the accuracy and robustness of the consid-
ered indexes we initially refer to synthetic time series that
allow us to have full control on their actual degree of cor-
relation. The considered data refer to three types of time
series: (1) correlated with linear dependence, (2) corre-
lated with non-linear dependence, and (3) not correlated.

The time series of each scenario take values in the range
[0,1]. In order to evaluate the ability of the correlation in-
dexes in capturing different types of dependency for differ-
ent levels of variability, we introduce perturbations from
N(0, o), where ¢ € {0.01,0.05,0.1,...,0.5} is the standard
deviation that quantifies the intensity of perturbations
added to data [29,30]. We remind that we consider a
strong correlation when p >0.5, and a weak correlation
for p < 0.5 [17] although this choice does not affect the
main conclusions of this paper. The performance of the
correlation index is evaluated in terms of accuracy and
robustness over 1000 independent generations of time ser-
ies for each scenario.

4.1. Accuracy

We define the accuracy of a correlation index as its abil-
ity in capturing correlation when data present some linear
or non-linear relationships, and in categorizing as not cor-
related time series having no dependence. For example, an
accurate index should obtain a correlation value close to 1
in the two correlated scenarios, and a value close to 0 in
the not correlated scenario. The first set of experiments
evaluates the accuracy of the correlation indexes when
the time series are characterized by different intensities
of perturbations in the three scenarios.

The performance of the considered correlation indexes
in the linear scenario is reported in Fig. 5(a). As expected,
we observe a decrease of the accuracy of each index for
increasing values of ¢, but the impact of perturbations dif-
fers substantially for different indexes. When the disper-
sion is very low (¢ <0.1), all indexes are able to capture
the strong correlation between data. When the dispersion
increases (¢ > 0.1), the Kendall rank is the first losing its
ability of detecting time series correlation. In higher vari-
able contexts (¢ >0.15), only the CoHiVa index captures
the strong data correlation, thanks to a value always higher
than 0.6. We can also appreciate the benefits achievable by
performing the Hurst rescaled range analysis for retaining
only trend patterns in the time series. If we skip this step,
CoHiVa without Hurst analysis still improves state-of-the-
art models performance but it cannot capture the strong
correlation between time series when the data variability
reaches critical levels (o > 0.45).
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Fig. 5. Accuracy of the correlation indexes.

The accuracy of the indexes deteriorates when we pass
to a scenario where the correlation between time series is
non-linear. A comparison between Fig. 5(a) and (b) gives a
first idea about the overall results. Only the CoHiVa index
is able to detect a strong correlation for any ¢ when the
relationship between data is non-linear, also thanks to
the Hurst-based trend pattern selection that guarantees
high correlation results for each perturbation level. On
the other hand, all existing indexes are affected by a low
accuracy for increasing values of ¢. (They estimate a weak
correlation even when time series are perturbed by very
low levels of dispersion, such as o =0.15.) It is also inter-
esting to observe that the Spearman rank, which is specif-
ically oriented to capture non-linear dependencies [8],
exhibits the best accuracy when the dispersion is very
low (that is, ¢ <0.05), but it loses its capacity as soon as
the time series are characterized by higher perturbations.

To address issues related to high variability, the state-
of-the-art models may increase their accuracy by working
on a filtered representation of the original time series. We
anticipated in Section 2 that this approach does not work
well, but for the sake of an exhaustive comparison we com-

pare the performance of CoHiVa against a Pearson model
combined with a pre-filtering technique. We have to spec-
ify that the choice of the best filtering model and of its
parameters is a serious issue by itself, and is out of the
scope of this paper.

We integrate the Pearson correlation model with an
EWMA filter that we have experimentally evaluated as giv-
ing good results. We do not claim that we are applying an
optimal filter with optimal parameter setting, even be-
cause the definition of optimum is improper in this
context.

Fig. 6 shows the results obtained by applying the Pear-
son model to data filtered through a weak and a strong fil-
ter. If we compare the results of Pearson without filtering
to the results of Pearson with filtering, we can appreciate
that the filter in fact improves accuracy: the correlation va-
lue is higher for every ¢ and for linear and non-linear sce-
narios. In the linear scenario shown in Fig. 6(a), the Pearson
model with filtering is able to detect a correlation index
higher than 0.5 for any ¢. On the other hand, if we consider
the non-linear scenario shown in Fig. 6(b), there is a drastic
decrease of the correlation index. Both weak and strong fil-
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Fig. 6. Accuracy of the correlation indexes using data filtering.

tering are useless because they estimate a p < 0.5 when
o> 0.2 and ¢ > 0.3, respectively.

These results demonstrate that filters do not guarantee
accurate results, besides the further problems related to
the choice of the best filter and of its parameters in highly
variable contexts.

We finally report some results of the considered corre-
lation indexes applied to a scenario characterized by syn-
thetic time series characterized by no dependence. These
results complete the accuracy evaluation of the indexes,
because we expect that an accurate index can also detect
the absence of correlation. Despite the level of variability,
we see in Fig. 7 that all the indexes are accurate and detect
a weak correlation between time series having no depen-
dence. These results confirm that, even though CoHiVa as-
sumes high values when applied to correlated time series,
its values does not remain high when applied to time series
having no dependence. As well as existing correlation in-
dexes, our index is able to avoid to detect correlation when
applied to uncorrelated datasets.

4.2. Robustness

The accuracy of a correlation index must be combined
with information about its robustness, that assesses the
reliability of correlation results across different evalua-

tions. We quantify the robustness in terms of coefficient
of variation (CoV) for different evaluations. The coefficient
of variation is defined as the ratio of the standard deviation
to the mean of the correlation values over all the experi-
ments. A lower CoV denotes a better robustness of the cor-
relation index.

We evaluate the robustness of the results obtained in
Section 4.1. Table 1 reports the CoV of each considered cor-
relation index applied to time series in a linear scenario.
The columns refer to the increasing values of perturbations
intensity o, while the rows report the correlation indexes.
The CoV of all correlation indexes increases when ¢ in-
creases. Compared to existing solutions, the CoHiVa index
is able to keep the lowest CoV for any ¢ value. Thanks to a
CoV always lower than 0.15, the proposed correlation in-
dex guarantees high robustness in capturing linear correla-
tions also among highly variable data. Moreover, we see
that the robustness of our model benefits from performing
the rescaled range analysis of Hurst.

As expected, a non-linear context worsens the robust-
ness of all the indexes. This main conclusion is confirmed
by the CoV values reported in Table 2. These results dem-
onstrate that only the CoHiVa model is able to guarantee
a CoV lower than 0.2 for any perturbation intensity. On
the other hand, state-of-the-art models show poor results
even for medium-low values of ¢ (o< 0.2). With the
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Fig. 7. Analysis of accuracy in a not correlated scenario.
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Table 1
Coefficient of variation in the linear scenario.
o
0.01 0.1 0.2 03 0.4 0.5
Pearson 0.0232 0.0299 0.0914 0.1992 0.3437 0.4817
Spearman 0.0227 0.0304 0.0905 0.2036 0.3496 0.4874
Kendall 0.0371 0.0486 0.1098 0.2170 0.3606 0.4936
LoCo 0.0220 0.0284 0.0835 0.1653 0.2452 0.2735
Pearson with weak filtering 0.0001 0.0069 0.0324 0.0785 0.1206 0.1787
Pearson with strong filtering 0.0001 0.0123 0.0497 0.0917 0.1318 0.1736
CoHiVa without Hurst analysis 0.0127 0.0190 0.0342 0.0688 0.1301 0.2405
CoHiVa 0.0073 0.0086 0.0217 0.0498 0.0888 0.1343
Table 2
Coefficient of variation in the non-linear scenario.
o
0.01 0.1 0.2 0.3 0.4 0.5
Pearson 0.0274 0.1296 0.3704 0.5843 0.6838 0.7052
Spearman 0.0266 0.1457 0.3894 0.5919 0.6892 0.7104
Kendall 0.0391 0.1632 0.4014 0.5997 0.6960 0.7194
LoCo 0.0258 0.1136 0.2550 0.2923 0.3073 0.2924
Pearson with weak filtering 0.0070 0.0835 0.2026 0.2215 0.2224 0.2236
Pearson with strong filtering 0.0083 0.0944 0.2120 0.2468 0.2434 0.2473
CoHiVa without Hurst analysis 0.0407 0.0392 0.1748 0.2083 0.2205 0.2881
CoHiVa 0.0380 0.0172 0.1467 0.1614 0.1711 0.1926

exception of LoCo and Pearson model integrated with fil-
tering, all the other correlation indexes are quite unreliable
in highly variable contexts because they reach CoV values
around 0.7. These results confirm that they cannot be used
to capture non-linear relationships among highly variable
time series for clustering purposes.

Our analyses confirm that the most popular correlation
indexes are affected by scarce accuracy and robustness
when data exhibit high variabilities and/or non-linear
dependency. The main result is that the proposed CoHiVa
index is able to guarantee good performance for any con-
sidered scenario and represents a good choice as the simi-
larity measure to be used in clustering algorithms working
on highly variable datasets.

5. Experimental results

We evaluate the quality of the proposed clustering algo-
rithm by referring to two network-related datasets charac-
terized by high variability: Abilene network traffic, and
measurements collected at the border router of our
university.

o Abilene network.
The publicly available Abilene dataset contains aggre-
gate data based on measurements of origin-destination
(OD) flows on the Abilene network [31]. We consider
sampled data from every router over a 7-day period,
starting December 12, 2003.! At sampling period of
5 min, each link produces 2016 samples a week.

! Data available at: http://math.bu.edu/people/kolaczyk/datasets.html.

e University network.

The dataset is obtained from a monitor attached to a
border router of the university and contains flows char-
acterized by different metrics, such as total number of
packets (excluding ack packets), packet size statistics
(mean, minimum, maximum, quartiles), number of
bytes transferred in each direction, number of active
connections and number of active clients. These net-
work metrics are aggregated every 10 s. The presented
results refer to 1day characterized by 8640 samples
for each network metric.

The clustering algorithms applied to these two datasets
are used for two different purposes: for traffic clustering of
Abilene network data (Section 5.1), and for server cluster-
ing of university network data (Section 5.2).

5.1. Traffic clustering

The identification of the main statistical properties of
traffic flows and the clustering of flows based on such
properties are crucial to many network management tasks
and network engineering problems [2]. Due to the high
variability of OD traffic flows [16], clustering solutions
must be able to group data even in highly variable con-
texts. Our algorithm represents a good solution for traffic
clustering because it is able to identify correlation between
OD flow traffic patterns and to cluster together flows pre-
senting similar statistical properties.

We carried out a preliminary analysis of the Abilene
dataset with the goal of extracting the main statistical
properties shared by the OD traffic flows that we expect
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to be shared by the time series clustered together. This
analysis evidences the presence of the following six main
statistical properties:

1. Periodic pattern of 6 h: some OD flows have fluctuations
of request volume over a time period of 6 h, typically

S. Tosi et al./ Computer Networks 57 (2013) 3025-3038

related to hourly human behaviors. Some intra-daily
periodic patterns are shown in Fig. 8(a).

. Periodic pattern of 24 h: some OD flows present the typ-

ical increase of user requests during working hours and
a decrease during the night. Some examples of daily
patterns are reported in Fig. 8(b).
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Fig. 8. Characteristics of Abilene traffic flows.
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3. Repeated spikes every 45 min: some OD flows manifest
bursts of requests repeated every 45 min. Fig. 8(c)
shows this behavior during a time interval of 2 days.

4. Repeated spikes every 90 min: some OD flows exhibit
regular spikes every hour and a half as in Fig. 8(d).

5. Aperiodic trend: some OD flows are characterized by
increasing or decreasing trends even thought they do
not manifest any periodicity. Some flows with these
characteristics are presented in Fig. 8(e).

6. Stochastic pattern: some OD flows are characterized by
minor bursts and irregular behavior as those in Fig. 8(f).

This preliminary analysis gives us the ground truth. In
other words, we can expect that the most effective cluster-
ing algorithm is able to find out 6 clusters, each one includ-
ing all and only the OD flows sharing just one of the
identified statistical properties. Thanks to this term of
comparison, we can compute the recall and the precision
[32] of the other clustering algorithms.

The recall measures the ability of an algorithm to cluster
a flow presenting a statistical property together with other
flows having that statistical property (e.g., a flow with a
24-h periodic pattern is clustered together with the flows
having a daily period). To achieve a recall of 100%, the clus-

tering algorithm must insert each flow in the cluster repre-
senting the corresponding statistical property.

The precision gives information about the ability of the
clustering algorithm to limit the number of flows that
present a statistical property but are clustered together
with flows characterized by a different statistical property
(e.g., a flow with a 24-h periodic pattern is clustered to-
gether with 6-h periodic flows). A precision of 100% means
that the algorithm inserts into a cluster only the flows with
the corresponding statistical property.

We compare the results of the complete-linkage clus-
tering algorithm using CoHiVa against those obtained
through the Pearson product moment and the LoCo score,
that achieved the best trade-off between accuracy and
robustness on synthetic settings. Table 3 reports the recall
and precision values for the three considered algorithms.
This table evidences three main results.

e The ability of CoHiVa in disclosing the presence of all 6
clusters, since it obtains high recall and precision values
over all the clusters. The null values obtained by Pear-
son in both precision and recall over the cluster with
daily periodic flows mean that this index does not
reveal the presence of correlated flows having daily pat-

Table 3
Recall and precision.
Cluster CoHiVa (%) Pearson (%) LoCo (%)
Periodic pattern of 6 h Recall 100 100 100
Precision 89 56 89
Periodic pattern of 24 h Recall 91 0 81
Precision 83 0 78
Repeated spikes every 45 min Recall 75 100 0
Precision 60 40 0
Repeated spikes every 90 min Recall 100 100 0
Precision 100 100 0
Aperiodic trend Recall 100 100 0
Precision 100 67 0
Stochastic pattern Recall 81 49 67
Precision 91 100 83
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Fig. 9. F-measure.
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terns. LoCo is unable to identify spiky and aperiodic
flows because it is characterized by null recall and pre-
cision values over these three clusters. These results are
in accord to those achieved on synthetic settings in the
previous section: Pearson is unable to identify correla-
tion among highly variable data (e.g., flows with a 24-
h period), while LoCo fails in finding spiky and aperiodic
flows because it considers just the first principal com-
ponent not including information of those irregular
patterns.

The ability of CoHiVa in discriminating between corre-
lated and not correlated flows. This algorithm guaran-
tees high recall and precision values in the
identification of correlated flows belonging to the first
5 clusters and the best performance for the identifica-
tion of uncorrelated stochastic flows. On the other hand,
Pearson and LoCo insert in the same cluster many flows
that are correlated with other flows, as their lower
recall values over the stochastic cluster demonstrate.
The ability of CoHiVa in guaranteeing the best compro-
mise between the capacity of clustering together flows
having similar statistical properties and the capacity
of limiting the number of flows that are wrongly
classified.

This last result can be appreciated by introducing a fur-
ther performance measure. Since a trade-off between recall
and precision values exists, these two metrics can be com-
bined into one measure, namely the F-measure [32], that
gives a global estimation of the quality of the clustering
algorithm through the weighted harmonic mean of preci-
sion and recall, that is:

) precision * recall

F-measure =2——
precision + recall

(13)

The closest the F-measure to 1, the highest the quality
of the clustering algorithm.

The combined effect of recall and precision can be
appreciated in Fig. 9 showing that CoHiVa achieves the
best F-measure in all cluster identification. This is an
important result about the robustness of CoHiVa: indepen-
dently of the flow statistical properties, CoHiVa guarantees
the best compromise between the number of correctly and
wrongly clustered flows. Pearson and LoCo achieve some
good results but they show also unacceptable performance
in other cases. In particular, the null F-measure values of
Pearson and LoCo indexes in the identification of flows
with highly variable, spiky and aperiodic flows limit their
applicability as similarity measures for correlation-based
clustering algorithms.

5.2. Server clustering

As a further test case, we apply the clustering algo-
rithms to the identification of network-based servers hav-
ing similar statistical behavior. The idea is to group servers
performing similar tasks through the analysis of the net-
work traffic flows they generate. Even these scenarios are
characterized by highly variable measures gathered by a
network monitor connected to the border router of our

university. We select 21 destination servers by considering
the destination address and the port number of the traffic
flows. Table 4 reports the different classes of servers and
the number of monitored servers for each class. We expect
that a good clustering algorithm is able to group together
hosts supporting same server processes. In other words,
we expect that Web servers are grouped in the same clus-

Table 4
Server classes.

Web DNS FTP Samba Oracle MySql Microsoft Sql
# Servers 7 2 2 5 1 2 2
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ter, and that this cluster is separated from the cluster con-
taining FTP servers, as well as from that containing DNS
servers, and so on.

We apply a K-means clustering model [6] to the 21
datasets referring to the monitored network metrics of
each considered server. We set K =7 because we have se-
ven classes of servers. We consider clustering in a 2-
dimensional space based on the correlation among input/
output bytes and input/output packets of the monitored
traffic flows, supported by previous studies on correlation
of flow characteristics (e.g., [33]). By considering these
two pairs of metrics, for each dataset related to one of
the 21 servers we compute three similarity matrices con-
taining the pair-wise similarity measures computed
through CoHiVa, Pearson, and Loco. These measures allow
us to place each server in the spaces generated through the
indexes. In each space, the K-means model groups servers
so as to minimize the within-cluster distance [6].

Fig. 10 shows the results related to the CoHiVa index
(Fig. 10(a)), the Pearson product moment (Fig. 10(b)), and
the LoCo score (Fig. 10(c)).

For this dataset, CoHiVa is able to group all the Web
servers in a cluster, that is separated from the cluster con-
taining the two DNS servers, from that referring to the two
FTP servers, from the one for all the Samba servers, and so
on. We should note that the chosen metrics and similarity
measure do not allow us to discriminate between the Ora-
cle and MySql database servers, that consequently are
grouped together.

The results related to Pearson and LoCo are much
poorer: they cluster different types of servers in the same
cluster, and some servers are in singleton clusters despite
their expected correlation. These results are caused by
the high variability of some monitored metrics and to the
low mean value of others. As a consequence, Pearson and
LoCo correlation indexes see as uncorrelated time series
that actually present some dependency, while they see
high correlations between time series that are actually
independent.

The reported results show that CoHiVa represents an
effective solution for clustering data in highly variable con-
texts where state-of-the-art similarity measures are
affected by poor results.

6. Conclusion

We propose a novel similarity measure that can be
applied to correlation-based clustering algorithms specifi-
cally tailored to the analysis of time series characterized
by high variability. This paper is motivated by the observa-
tion that existing clustering algorithms are affected by
poor results when data are highly variable as in most data-
sets obtained by network and system measurements.
Experimental evaluations carried on synthetic and real
datasets demonstrate that our solution improves the state
of the art in clustering traffic flows and server behaviors.
These promising results open the possibility of using the
proposed model as a support for several applications
including traffic and network management, and capacity
planning of networks and systems.
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