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Abstract—This paper describes a concept for vehicle safe-mode,
that may help reduce the potential damage of an identified cyber-
attack. Unlike other defense mechanisms, that try to block the
attack or simply notify of its existence, our mechanism responds
to the detected breach, by limiting the vehicle’s functionality to
relatively safe operations, and optionally activating additional
security counter-measures. This is done by adopting the already
existing mechanism of Limp-mode, that was originally designed
to limit the potential damage of either a mechanical or an
electrical malfunction and let the vehicle “limp back home” in
relative safety. We further introduce two modes of safe-mode
operation: In Transparent-mode, when a cyber-attack is detected
the vehicle enters its pre-configured Limp-mode; In Extended-
mode we suggest to use custom messages that offer additional
flexibility to both the reaction and the recovery plans. While
Extended-mode requires modifications to the participating ECUs,
Transparent-mode may be applicable to existing vehicles since
it does not require any changes in the vehicle’s systems—in
other words, it may even be deployed as an external component
connected through the OBD-II port. We suggest an architectural
design for the given modes, and include guidelines for a safe-
mode manager, its clients, possible reactions, and recovery plans.
We note that our system can rely upon any deployed anomaly-
detection system to identify the potential attack.

I. INTRODUCTION

A. Motivation

Modern vehicles are susceptible to cyber-attacks: this is
since they are controlled by multiple dedicated computers
(electronic control units - ECUs) that are typically connected
not only to each other (e.g., over a CAN bus) but also to the
outside world—often by wireless protocols (WiFi, Bluetooth,
Cellular, etc.). These conditions, and the introduction of new
technologies (that allow remote access to the vehicle internal
systems) make vehicles vulnerable to potential new attack
vectors of increasing number. Researchers have already shown
that these attacks can be both feasible and severe (e.g., attacks
on Jeep [1] and Tesla [2]).

Several defense mechanisms have been offered to identify
attacks or block them - but probably none are perfect. This
motivates us to look for a solution to limit the potential damage
of an attack that already passed the vehicle’s first line of
defense. The vehicle’s Limp-mode, that is designed to limit
the damage of a mechanical malfunction, seems to be a good
candidate for this purpose.

B. Related Work

Research into vehicle cyber-security has been growing since
the first publication of Koscher et al. [3] in 2010. Using
sniffing, fuzzing and reverse engineering of ECU’s code, the
authors succeeded in controlling a wide range of vehicle
functions, such as disabling the brakes, stopping the engine,
etc. Checkoway et al. [4] showed that a remote attack, without
physical access to the vehicle, is also possible (via Bluetooth,
cellular radio, etc.). Valasek and Miller [5] demonstrated actual
attacks on Ford Escape and Toyota Prius cars via the CAN bus
network. They affected the speedometer, navigation system,
steering, braking and more. In 2015 it was reported [1], [6]
that they remotely disabled a Jeep’s brakes during driving,
and caused Chrysler to recall 1.4M vehicles. Foster and
Koscher [7] have also reported of the potential vulnerabilities
in relatively new commercial OBD-II dongles (such as those
used by insurance companies to track one’s driving) which
support cellular communication and may be even exploited
via SMS. In 2016, a team of researchers from Keen Security
Lab demonstrated a successful attack on the Tesla electrical
vehicle [2], taking control over the vehicle through a bug in the
Infotainment unit’s browser, forcing the company to release an
over-the-air software update.

Several ideas were offered to secure vehicles against cyber-
attacks, including both active and passive solutions. One
approach is to try and secure the internal communication of
the vehicle - typically a CAN bus, by adding authentication
to the messages (e.g., by using a cryptographic Message
Authentication Code (MAC)). Several ideas were suggested,
ranging from adding part of a MAC tag to the actual message’s
data field, to splitting the MAC into several pieces and layers
as offered by Glas and Lewis [8]. Van Herrewege et al.
[9] suggested to use a new light-weight protocol to better
fit the CAN bus limitations. Their CANAuth protocol, also
relied on the CAN+ protocol of Ziermann et al. [10], which
allowed them to split the authentication bits in between the
sampling points of the bus. These solutions however require
having a pre-shared key, which has its own key management
challenges. A similar approach was adopted by the AUTOSAR
standard, as defined by the Secure Onboard Communication
(SecOC) mechanism [11], to add some authentication and
replay prevention to the vehicle’s internal networks.



Another, more aggressive, approach was offered by Mat-
sumoto et al. [12] to try and destroy non-legitimate spoofed
messages, by using a modified hardware to send active-
error flags against identified spoofed messages. A centralized
approach to combine the two previous ideas (using MAC
for authentication and the active-error flags) was suggested
by Kurachi et al. [13] to reduce the need to use modified
hardware and share a key between all ECUs. In this approach
a centralized modified ECU was used to both authenticate and
destroy non legitimate messages. The later work of Kurachi
et al. [14] demonstrated an actual implementation of a central
gateway to include the above mechanism.

Another evolution of [12] was the work of Ujiie et al.
[15] which replaced the usage of the MAC with other, non
cryptographic, message analysis algorithms. They also imple-
mented and tested their model in a real vehicle, taking into
consideration important technical details, such as the error
counters behavior, etc.

A different solution - the Parrot system [16], [17], was
offered by Dagan and Wool to try and mitigate spoofing
attacks. In this solution the defender launches a counter-attack
of specially crafted defense messages, in order to intercept the
attacker’s next message, cause a set of collisions, and drive
the attacker’s ECU into a bus-off state (where it is temporally
disconnected from the bus). This solution relies on some fine
details of the CAN protocol [18] and can be implemented both
in software and hardware.

Another approach is to try and identify un-authorized access
to the internal network of the vehicle, by using Anomaly or
Intrusion Detection Systems (IDS). Markovitz and Wool [19],
[20] demonstrated the ability to classify the traffic over the
CAN bus, where Marchetti et al. offered some anomaly detec-
tion mechanisms, based on an information theoretic algorithm
[21] and on inspection of sequences of IDs [22]. Hamada et
al. [23] offered to implement an IDS system that relies on the
traffic density of some periodic messages.

A similar, although active approach, was offered to try
and block un-authorized packets from entering the vehicle
internal network, by using a secure gateway to separate the
exposed vulnerable ECUs (such as the Infotainment system)
from the rest of the network. Wolf et al. [24] suggested using
a firewall to protect the sensitive portions of the vehicle’s
network, where Berg et al. of Semcon [25] suggested and
implemented a prototype for a layered-architecture gateway,
to protect the CAN bus from the Infotainment’s IP domain of
modern vehicles.

A different approach was to try and notify the driver on
potential attacks [26], using different methods according to
the notification severity. Note that the recently released UN-
ECE Resolution on the Construction of Vehicles [27] Annex 6
(4.3.3) in fact requires driver notification in case a cyber-attack
is detected.

There are several commercial companies attempting to cover
various aspects in vehicle cyber-security [28], [29], [30], [31],
[32] —some are still young and provide minimal details about
their specific offerings.

Some leading manufacturers, such as NXP [33] and Bosch
[34] offer a variety of products to secure the vehicles, ranging
from Hardware Secure Modules (HSMs) to full fledged secure
gateways. The existence of these products fits the wide-
spreading holistic (in-depth / layered) approach for vehicle
cyber-security, as described by Van Roermund et al. [35].

C. Contribution

This paper describes a concept for vehicle safe-mode, that
may help reduce the potential damage of an identified cyber-
attack. Unlike other defense mechanisms, that try to block
the attack or simply notify of its existence, our mechanism
responds to the detected breach, by limiting the vehicle’s func-
tionality to relatively safe operations, and optionally activating
additional security counter-measures. This is done by adopting
the already existing mechanism of Limp-mode, that was orig-
inally designed to limit the potential damage of a mechanical
malfunction and let the vehicle “limp back home” in relative
safety. We further introduce two modes of safe-mode operation
to raise the flexibility and the number of potential integration
plans that may fit the manufacturer’s needs. In Transparent-
mode, when a cyber-attack is detected the vehicle enters its
pre-configured Limp-mode; In Extended-mode we suggest to
use custom messages that offer additional flexibility to both
the reaction and the recovery plans. While Extended-mode
requires modifications to the participating ECUs, Transparent-
mode may be applicable to existing vehicles since it does not
require any changes in the vehicle’s systems—in other words,
it may even be deployed as an external component connected
through the OBD-II port. We also suggest an architectural
design for the given modes, and include guidelines for a safe-
mode manager, its clients, possible reactions and recovery
plans.

Organization: In the next section we describe some prelim-
inaries. In Section III we introduce the safe-mode concept and
a suggested architecture. Section IV describes various possible
reactions, recovery plans and some potential related problems.
We conclude with Section V.

II. PRELIMINARIES
A. Limp-mode

Limp-mode (also known as Fail Condition) was originally
designed as a safeguard to limit the potential damage of
either a mechanical or an electrical malfunction, and let
the vehicle ”limp back home” for treatment, without risking
further damage and without forcing the vehicle to a complete
stop. In modern vehicles, Limp-mode is activated automatically
after an ECU detects a malfunction in one or more vehicle
subsystems.

It is possible to distinguish between two different types of
Limp-modes: a local limp-mode that is limited to the operation
of a single ECU; and a global limp-mode affecting the global
state of the vehicle.

Local limp-mode is a feature often supported by micro-
controllers used to implement ECUs. It is usually provided as
a physical pin that, when activated by applying the proper



voltage, makes it possible to override the normal behavior
of the micro-controller and drive the output pins directly to
pre-configured settings (see as an example the technical doc-
umentation of the DRV8305-Q1 automotive micro-controller
[36]). Local limp-mode can be easily deactivated by restoring
the normal voltage to the Limp-mode pin, thus restoring the
normal operation of the micro-controller.

Global limp-mode is activated when one of the central
ECUs connected to the in-vehicle network, usually the Body
Control Module (BCM), or the Engine Control Module (ECM)
detects possible fail conditions by analyzing the values of the
messages received from the CAN bus (e.g., see the Central
BCM produced by Infineon [37]). For instance, global limp-
mode may be activated if the coolant temperature rises above
safe values [38] or if the Powertrain control module detects
a failure (or near-failure) condition in the transmission [39].
Depending on the type and on the severity of the failure, the
central ECU triggers a set of operations that restrict the vehicle
to a limited set of failsafe states. As an example, when in Limp-
mode the vehicle speed might be electronically limited to a set
threshold, the transmission might be fixed in a second gear or,
if an issue related to the engine is detected, Limp-mode can
shut the engine off and gradually reduce the vehicle speed to
a complete stop. The exact counter-measures deployed when
in Limp-mode depend on the specific settings defined by the
car manufacturer.

Depending on the car maker and model, global limp-mode
may be implemented by activating the local limp-mode of
some peripheral ECUs, letting the main ECU directly control
them.

Deactivation of the global limp-mode also depends on the
nature and severity of the detected failure. For example, Limp-
mode that is activated due to the detection of transient failure
conditions, is usually reset automatically after restarting the
vehicle, or after a predefined amount of time. In some cases,
the car owner can perform a sequence of operations that resets
the Limp-mode for non-severe failures, such as switching the
car ignition on, and pressing and releasing the throttle pedal for
a given number of times [40]. On the other hand, more severe
failures may require a manual reset of the Limp-mode, which
is usually performed by operators of authorized car services
by physically connecting to the OBD-II port and executing
proprietary diagnostic protocols.

In the remainder of the paper we use the term Limp-mode
to refer to the global limp-mode.

B. The Adversary Model

We assume that an attacker is able to gain access to the
CAN bus of a modern vehicle and to inject forged CAN
messages. The amount and the nature of injected messages
may vary depending on the final goal of the attacker. We
identify two attack injection modes that model the attackers’
abilities: internal-injection and external-injection.

« Internal-injection: In this attack scenario the adversary

manages to gain full control over one or more ECUs.
Hence the attacker can directly control some functions

of the vehicle by altering the logic of the compromised
ECUs. The attacker can also exploit the compromised
ECUs to inject arbitrary messages over the CAN bus.
This attack mode is represented by Figure 1la.

« External-injection: In this scenario the adversary cannot
directly control any ECU. However, he can still inject
arbitrary CAN messages over the CAN bus either by
physical access (such as a direct connection to the OBD-
II diagnostic port) or remote access (e.g., by transmitting
malicious messages over a legitimate wireless channel).
This attack mode is shown in Figure 1b. We note that
most of the published attacks (recall Section I-B) fall
into one, or both of these injection modes.

O—0O

(a) Internal-injection

O—0O

(b) External-injection

Fig. 1: Adversary models: the attacker’s access points are
marked in red.

III. VEHICLE SAFE-MODE - SUGGESTED ARCHITECTURE
A. Overview

The concept of vehicle safe-mode proposed in this paper
is similar in principle to the Limp-mode mechanism (recall
Section II-A): The safe-mode mechanism is offered to let the
vehicle “limp back home” in case a cyber-breach is detected,
while reducing the potential damage of such an attack to the
vehicle, its driver, the passengers, and its surroundings.

The Vehicle safe-mode system operates as follows: When
a cyber-attack is detected, a safe-mode manager (SMMan-
ager, see Section III-C) puts the vehicle into a safe-mode
condition—in which several operations are limited or disabled,
by sending an alert triggering message (TMessage) to other
ECUs. The SMManager bases its decision on any existing
IDS-like systems, that flag suspicious cyber-related events.
This decision should typically include the recommended level
of alert and the chosen reaction that can be encoded into the
broadcast TMessages. See Figure 2 for a system overview.

For possible deployment, we further present two modes
of operation: In Transparent-mode (Section III-B1) the SM-
Manager only causes the neighboring ECUs to enter into
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Fig. 2: The system overview. Note that the SMManager can
be connected directly to the IDS system, or alternatively, get
its feedback over the bus.

their pre-configured Limp-mode state, in order to limit the
functionality of the vehicle and reduce the potential danger.
The main advantage of this mode is its immediate applicability
to virtually all modern vehicles, since the introduction of the
SMManager is transparent with respect to all other ECUs. in
particular, the system may be deployed by adding a single
OBD-connected entity to include the SMManager, with op-
tional IDS capabilities.

Alternatively, the Extended-mode (Section III-B2) requires
adding a novel software component, called safe-mode client
(SMClient, Section III-D) to chosen ECUs. The purpose of
the SMClient is to process and react to the custom TMessages
sent by the SMManager. Using this mode adds more flexibility
to the system, by making it possible to design and implement
customized reactions per individual ECU and state of alert.

Special care should be given to the recovery options (Sec-
tion IV-B) - that make it possible to exit from safe-mode and
to restore full vehicle functionalities. This is required to make
sure that the attacker will not have an easy way to take the
vehicle out of safe-mode, while simultaneously ensuring that
the driver will not have a too-difficult time to return to normal
operation.

B. Operation modes

1) Transparent-mode: In this mode of operation, the SM-
Manager’s goal is to put the relevant ECUs into Limp-mode
in order to reduce the potential damage of an identified attack,
by triggering the pre-existing Limp-mode mechanism of each
relevant ECU. Doing so may be effective in reducing the
potential damage to the vehicle and its passengers under the
assumption that entering Limp-mode would typically limit the
vehicle’s operation in a way that may also help to maintain
its safety (e.g., by putting the car on a rigorous speed limit,
keeping it in a low gear).

For this purpose, the SMManager can maintain a list of all
relevant CAN bus messages (or any other protocol in use)
that typically cause each ECU to enter Limp-mode. This list
can be maintained by a simple updatable table of the relevant
TMessages per ECU (see Table I). Note that this table can
include several different lines per ECU, in case there are

TABLE I: a sketch of pre-existing TMessages that can trigger
Limp-mode

ECU | Msg ID Data

ECM 014 “Dangerous high engine temperature”
ECM 014 “Major engine malfunction”
ABS 004 “Dangerous low oil pressure”
TPM 020 “Dangerous low air pressure”

multiple TMessages per ECU (in this case the SMManager
can decide, per ECU, whether to send all or only some of the
available TMessages).

The properties of this mode potentially make the Safe-
mode protection applicable to any existing vehicle, e.g., by
connecting an after-market device (to include the SMManager
and some anomaly-detection component) to its OBD-II port.
A more sophisticated after-market device (e.g., one using a
smart-phone) can include more sophisticated notification and
recovery options to the vehicle’s driver (Sections IV-A3, IV-B).

The drawback of this mode is that safe-mode reactions are
bound to be the same reactions that the car maker already
planned for the Limp-mode. Hence counter-measures that
are designed specifically against cyber-breaches cannot be
implemented.

Special care should be taken under this mode to make
sure that no collision will occur between the SMManager’s
TMessages and genuine messages of the original responsible
ECU (see Section IV-C).

2) Extended-mode: In this mode of operation, the SMMan-
ager is able to put chosen ECUs into a customized safe-mode,
rather than into their pre-configured Limp-mode. This mode
offers more flexibility to the designer, at the cost of adding at
least some software update—the SMClient—to participating
ECUs.

This mode of operation gives us the freedom to chose any
reaction, per ECU, to reduce the potential damage of a cyber-
breach to the overall safety of the vehicle and passengers. This
freedom also provides us more possibilities to react differently
according to the type and severity of the identified attack, as
further described by the SMManager’s chosen alert-levels and
triggered reaction (Sections III-E and IV-A).

In addition, this mode of operation can make the vehicle’s
safe-mode more robust against potential manipulations of an
adaptive attacker, since it allows defending the mechanism
itself (e.g., by adding some authentication to the triggering
TMessages, etc.). This mode can be also used to actually fight
some of the attacks e.g., by requiring the addition of some
authentication to all of the critical CAN bus messages (Section
IV-A2) when under a spoofing attack (saving this overhead
during quiet times).

Another potential advantage of this mode, is the extra
flexibility that is given to choose the driver notification and
recovery options; custom messages can notify the driver
(e.g., through the Infotainment or Cluster units) about the
identified attack and the state of alert (Section IV-A3); Proper
notification can also let the driver decide whether the chosen



TMessage ID Alert Level | Reaction Level | [Counter] [MAC]

11 3 5 8 48

Fig. 3: Possible structure of an Extended-mode TMessage. The
numbers represent the field length in bits. Note that the ID
field is a regular CAN-ID-field, while the other fields fit into
the CAN 8 byte data-field; Both the counter and the MAC
fields are optional; Transparent-mode TMessages are regular
(Limp-mode triggering) CAN messages.

reaction is sufficient, or alternatively the safe-mode state can
be manually overridden (Section I'V-B).

In this mode the SMManager can maintain a table of all
relevant triggering safe-mode TMessages, per ECU/Alert-level,
to include the type of reaction, as further defined in Section
IV-A1l. We note that a similar table can be used for both modes
of operation, even though the Transparent-mode should be able
to use a simpler one.

A typical custom TMessage should be based on the
underlying protocol (typically the CAN protocol). Unlike
the Transparent-mode TMessage, it can contain, apart from
its message ID, the vehicle’s Alert-level AL, the required
Reaction-level RL, and optionally a replay counter and a
truncated MAC of a chosen algorithm (e.g., HMAC). A
suggestion for such a CAN based message, with an 8-byte
data field, is depicted in Figure 3.

An SMClient (Section III-D) should be added, optionally
as a software patch, to any participating ECU to allow proper
identification, processing and reaction to the custom safe-mode
TMessages.

The SMManager can also be responsible for the neces-
sary key management and distribution, in case the safe-mode
system incorporates authentication codes in the TMessages.
Several solutions can be chosen to cover key management,
ranging from factory serialization to specialized solutions, as
offered by Mueller and Lothspeich [41].

Finally we would like to note that combinations of the two
presented modes may also apply, allowing vehicles to utilize
a mixture of SMClient-supportive and non-supportive ECUs.

C. Safe-mode Manager

The SMManager is responsible to process the IDS feedback,
calculate the vehicle alert-level (AL), decide on the relevant
reaction-level (RL), and finally put the vehicle into, and out
of, safe-mode, by sending the relevant TMessages.

The SMManager may also be responsible for any related
key-management aspects in case of using cryptography for
either the protection of the TMessages or the switch into
secure-communication when under attack.

Regardless of the selected configuration, the SMManager
should be able to receive the IDS alerts, either directly from
the bus, or from its hosting ECU (which can also comprise of
both the SMManager and the IDS).

We also note that the SMManager can be implemented in ei-
ther software or hardware—a hardware implementation should

increase the cyber-resistance of the suggested mechanism,
while possibly increasing its cost and making deployment
more challenging.

1) Topology: The SMManager can be implemented differ-
ently according to the topology of the internal networks and
the computational load of each ECU. In this section we pro-
pose two different topologies: as an Independent SMManager,
or as an Incorporated SMManager.

The Independent SMManager is the implementation of the
SMManager on a dedicated hardware module. This option al-
lows both possibilities for an internal and an external module.
The internal SMManager can be seen as a dedicated ECU,
responsible for collecting the different notifications across the
internal network in order to properly start the vehicle safe-
mode if necessary.

The external SMManager can be implemented as a dedi-
cated dongle connected through the OBD-II interface (Figure
4a). In order to work as an external module, the SMManager
must be able to observe the data packets flowing on the internal
network, and to broadcast the necessary TMesagges when
needed: in particular this means that the OBD-II interface must
allow message transmission into the network, and must be
connected to the relevant CAN bus segment(s). The external
module approach allows implementations of the safe-mode
logic in vehicles that were designed without it, thus extending
the proposal of this paper to past and present vehicular
systems.

The Incorporated SMManager is the implementation of
the SMManager on existing ECUs of the internal network, as
part of the vehicle specification (as shown in Figure 4b). This
option makes the SMManager part of the whole system by
design. An Incorporated SMManager allows three different
topologies for its implementation:

e Centralized SMM: the logic for the SMManager opera-
tions is part of the code of a centralized ECU (e.g., the
ECM or BCM)

e Distributed SMM: the logic for the SMManager opera-
tions is spread over multiple ECUs across the network,
each one with its specific set of operations needed for
monitoring and eventually triggering the vehicle safe-
mode.

e Hybrid SMM: a composition of the two previous topolo-
gies: Different instances of the same SMManager are re-
sponsible of monitoring and collecting different pieces of
information, which they filter and forward to the central-
ized SMManager—which ultimately decides whenever it
is necessary to start the vehicle safe-mode.

D. Safe-mode Client

In order to support the Extended-mode, an SMClient is
required. This client should be added, e.g., as a software
patch, to any participating ECU to allow proper identification,
processing and reaction to the custom SMManager TMessages.

In this mode, the client can maintain a list of update-able
reactions per TMessage encoded reaction-level (RL). These
reactions can be chosen by the manufacturer with the goal
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Fig. 4: Safe-mode Manager suggested topologies. The SM-
Managers are marked in green, while the SMClients are
marked in blue. Note that Figure (a) shows one example for
a system in Transparent-mode, while Figure (b) shows an
example for a system in Extended-mode.

of limiting the potential damage of the possible attacks to the
overall vehicle and passengers’ safety.

If the TMessages are authenticated, to prevent adversar-
ial manipulations, then the SMClient should also validate
the authentication tag embedded in the TMessage using the
algorithm in use, (e.g., the 48 bit truncated HMAC, recall
Figure 3) on the relevant section of the received TMessage.
If the authentication also involves an anti-replay counter, then
the SMClient must also validate that the counter value c is
acceptable (e.g., Vmaxr < ¢ < Vmax + k where Vmax
demotes the maximal value observed on previous TMessages
and k is a configured window-size).

Upon receiving a relevant (optionally authenticated) TMes-
sage, the SMClient should put its hosting ECU in safe-
mode, by performing the relevant (per RL) pre-configured
actions according to its reaction table (e.g., ignore non critical
messages, limit the operation, etc., see Section IV-A2 for
further details).

The SMClient must also support the chosen recovery mecha-
nism (see Section IV-B) to allow proper recovery of its hosting
ECU at the right time and under the right conditions. The
recovery can be done either unilaterally (e.g., after a reset,
or after X seconds, etc.), or by a special recovery-triggering
message (with a unique TMessage 1D or RL), or according to
other pre-defined conditions. We note that special care should
be given to this procedure to keep this mechanism both robust
and applicable.

E. The vehicle Alert-level

Independently of the chosen implementation (Transparent
or Extended), the SMManager is responsible for evaluating
the vehicle’s Alert-level (AL). Different levels of alert reflect

different threat levels and imply the deployment of appropriate
reactions, as will be further discussed in Section IV-Al.

To evaluate the current AL, the SMManager relies upon
any anomaly detection system deployed within the vehicle.
In particular, intrusion detection systems (IDS) represents the
main source of information useful for AL evaluation. IDS for
in-vehicle networks of modern vehicles have already been
proposed in the literature [21], [22], [23]. All these systems
analyze different features of the messages broadcast over the
CAN bus and issue alerts whenever evidence of an attack
is found. The SMManager collects and analyzes all of the
security related alerts (or lack thereof) and modifies the current
AL accordingly.

For concreteness, as an example we suggest that the AL can
be comprised of five different levels to represent the severity
of the alert, denoted by ALI (low severity) to ALS (critical
severity).

IV. POSSIBLE REACTION, RECOVERY PLANS, AND
POTENTIAL PROBLEMS

A. Reaction

In this section we suggest several steps that can be taken
by the SMManager after the detection of a cyber-breach. The
reaction of the SMManager comprises of two main parts:

o Notification: optional feedback to the driver and the
vehicle surroundings about the identified attack and the
chosen reaction.

o Action: under-the-hood counter-measures to limit the
potential damage of the attack, narrow the possibilities
of the attacker, and even, under some cases, try to stop
the attack.

Both the notifications and actions can be triggered sequen-
tially or simultaneously, depending on the alert-level and on
the content of the Reaction-Matrix as further explained below.

1) Reaction-Matrix: The Reaction-Matrix is the structure
used by the SMManager to determine the reaction-level (RL)
that encodes the required protective steps and notifications.
The calculation of the RL depends on two metrics:

o the current Alert-level (AL, recall Section III-E)
o the current Vehicle-condition (VC).

The value of the current VC represents the current con-
ditions of the vehicle dynamics, including speed, yaw, roll,
pitch, lateral acceleration and outputs of the ABS and ESP
systems. Intuitively, it is important to consider the current
vehicle conditions to make sure that reactions decided by the
SMManager are appropriate, and do not cause more harm than
the attack itself.

As an example, if counter-measures were to be deployed
without considering the vehicle conditions, the SMManager
might decide to exclude the electronic stability protection or
other advanced driving assistance systems. While this decision
may be the most appropriate for a vehicle running at low speed
on a straight road, it may cause severe safety risks to a vehicle
in dangerous driving conditions (e.g., at high speed, or under
high lateral accelerations). To prevent similar situations, the
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Fig. 5: An example for a 5x5 Reaction-Matrix. Note that the
rows represent the current VC (speed/location), the columns
represent the chosen AL (1-5), and the colors of the internal
blocks represent the chosen RL (nothing to severe).

reaction-matrix makes it possible to react to the same AL
by deploying different counter-measures based on different
vehicle conditions.

The calculated RL is used to determine the most appropriate
reaction, aiming to bring the vehicle to a safe state that nullifies
or limits the safety consequences of the detected cyber-breach.

An example for a Reaction-Matrix is depicted in Figure 5 to
include the different RL to match every possible combination
of a given 5x5 AL/VC structure.

2) Actions: After activating safe-mode, the SMManager
triggers different actions in order to react to possible dangerous
situations, according to the reaction-matrix. These actions
could take place before, after or together with the notification
phase, and it is essential to define their timing sequence
according to every case (e.g., activating drastic actions, like
bringing the car to a complete stop before driver and external
notification, could have dangerous repercussions).

Actions differ according to the triggered reaction-level (RL),
and can have varying intensity according to the previously
raised AL. While lower RL could trigger very limited actions
in order to recover from a less dangerous situation, a higher
RL will trigger more invasive actions, aimed to react to more
dangerous situations.

The selected triggered actions can range from the already
existing Limp-mode operations (e.g., limit the vehicle speed)
to custom steps such as those presented below:

Ignore all non-critical messages: This action has a twofold
advantage: it allows ECUs to ignore attacks that leverage non-
critical messages; and further, it reduces the computational
power required by ECUs to operate the vehicle, thus leaving
more room for computations related to the safe-mode. We note
that each ECU can maintain a list of non-critical messages.

Shutdown particular ECUs: In case of identifying a
compromised ECU that puts the vehicle in danger. This action
could be triggered after the identification of a Denial-of-
Service attack on the internal network that leverages messages
produced by the victim ECU.

Reset particular ECUs: Similar to the above, only less

aggressive. This action can be used when dealing with a
relatively important ECU, or as an initial step in a graceful
shutdown. We note that both the reset and the shutdown
options should be chosen with great care, to make sure that
they won’t put the vehicle in a dangerous situation (e.g., in the
case that the selected ECUs are critical ones, the reset action
is a viable option only if the expected outcome of this action
is absolutely safe.)

Trigger the usage of authentication to some (CAN) mes-
sages: using cryptographic primitives (e.g., truncated HMAC)
in order to mitigate spoofing attacks of critical messages.
We note that using this option only when under attack (and
between chosen ECUs) reduces the related overhead (traf-
fic/computation wise) of a similar permanent solution.

Trigger the encryption of some (CAN) messages: using
cryptographic primitives in order to encrypt the data of se-
lected (CAN) messages when under attack. We note that both
this and the previous options can be implemented in software
or hardware, and that hybrid solutions may also be chosen
to maximize the strength of the chosen solution, utilize the
hosting ECU at best (e.g., by using the hardware capabilities
of existing HSMs to establish a secure-like channel, along-
side weaker ECUs with software only implementations of the
chosen algorithms to provide some basic authentication.)

Segment isolation - the submarine model: In a typical
segmentation of the vehicular networks - Powertrain, Body
and Infotainment, a bus gateway can isolate a compromised
segment of the network from the others. This solution allows
fast reaction after the detection of a potential intrusion on any
segment of the CAN bus, thus limiting the intrusion only to
the affected network and preventing its spreading to the other
segments. Further segmentation can be recommended to allow
better flexibility. We note that special care should be taken if
choosing this option to make sure that critical ECUs could
still communicate.

Secondary emergency CAN bus: Implementing a sec-
ondary limited CAN bus, connecting only the critical ECUs
on a different interface, could prevent some of the segment-
isolation potential problems. We note that this solution can
also be used to raise the accuracy of any existing IDS, by
adding some redundancy to the system; During the vehicle
normal operation, the secondary CAN bus could be used in a
redundant way, sending duplicated packets (already sent on the
primary CAN bus) of selected messages. Intrusion Detection
Systems’ could compare the two different networks in order
to detect any intrusion on the primary CAN bus.

3) Notification: Notifications can be both internal or ex-
ternal. Internal-notifications are used to notify the driver that
the SMManager is performing different actions in order to
react to the calculated AL. These notifications can be acoustic,
visual or even include haptic feedback on different parts of
the cockpit, like the steering wheel or the pedals. A more
articulated schema for vehicle internal-notifications can be
found in [26].

The necessity to externalize the notification is extremely
important and needs to be taken in consideration. External-



notifications are mostly used in order to notify other drivers,
vehicles, and nearby pedestrians of a potentially dangerous
situation. External-notifications can consist of visual feedback,
e.g., blinking turning indicators, brake lighting signals or even
dedicated custom “under-attack” lights. More sophisticated
external-notifications can be designed e.g., using vehicle-to-
vehicle (V2V) technology to make adjacent vehicles enter a
preventive “safe-mode”, or use vehicle-to-infrastructure (V2I)
communication channels to trigger roadside actions - to warn
and protect adjacent entities.

B. Recovery plans

The Recovery is the last phase of the vehicle safe-mode,
and can take place only after the reaction has terminated. The
recovery procedure is aimed to allow bringing the vehicle back
to normal operation at the proper time—after the attack is
considered to be over, or under safe-confinements (e.g., engine
off, in an authorized garage, etc.).

The SMManager is responsible to decide when and where
the recovery operation can begin (e.g., per ECU, AL, VC).
We further suggest several modes of recovery: Self, Driver-
initiated, Garage-authorized.

Self-recovery can allow the procedure to be started by the
SMManager itself, without even notifying the driver. A self-
started recovery procedure should be applied only if non-
critical parts of the network were involved in the attack, or
when the identified attack was not severe.

Driver-initiated recovery can be used when some interaction
with the driver is required (e.g., by physically approving the
initiation of the procedure). We note that this option can
contribute to the robustness of the mechanism, by reducing
the possibility of the attacker to initiate the recovery procedure
during the attack.

Authorized-Garage recovery can be required when recuper-
ating from a major attack (e.g., on critical ECUs), or when the
attack was not fully terminated. This option requires bringing
the vehicle to an authorized garage, and optionally the usage
of special manufacturer tools, for further inspection and safe
recovery.

We note that it may also be possible to initiate a
remote-recovery procedure as an intermediate step, and that
a combination of the above procedures may also be applicable.

The SMManager can use the following metrics in order to
choose which recovery-mode can be allowed and under which
conditions:

e IAL: the initial Alert-level,
computed before the reaction phase

e RL: the previously calculated Reaction-level,
computed before the reaction phase.

e aAL: the actual Alert-level,
computed after the reaction phase

e aVC: the actual Vehicle-condition,
computed after the reaction phase

C. Potential problems

The safe-mode mechanism may have some limitations and
side effects as presented below. We recommend to take them
into account when considering this solution.

False positives: The IDS or anomaly detection component is
a critical, yet external, part of the safe-mode system, since it is
responsible for providing the input to trigger the SMManager’s
safe-mode reaction. This means that any problem or limitation
of the IDS systems can affect the safe-mode mechanism. In
particular, IDS systems are susceptible to false alarms, which
means that a safe-mode state may be activated unnecessarily.

However, when we note the severity of potential false-
negatives (unlimited vehicle operation under malicious con-
trol), one could argue that false-positives may be acceptable.
This argument can be strengthened by the fact that safe-mode
only limits the vehicle operation, and does offer some built-in
recovery plans.

Either way, we can recommend taking the following two
steps: Use more than a single IDS-like system as a source
of input to the SMManager; and take the possibility of
false-positives into account when configuring the SMManager
triggering threshold and recovery plans.

Adversarial triggering: We note that an adaptive adversary
may try to trigger the safe-mode mechanism on his own, by
sending the relevant triggering TMessages when the system is
deployed in Transparent-mode, or in a non-secure Extended-
mode. However, this can be viewed as another flavor of false-
positive case, and should be handled as described above.

Transparent-mode, TMessage collisions: Special care
should be taken when using Transparent-mode to ensure that
no CAN bus collisions will occur between the SMManager
TMessages and genuine messages of the original responsible
ECU. Collisions may happen since the SMManager may
broadcast TMessages using the same ID, and but different con-
tent, than those broadcast by the ECU that is responsible for
the given message ID. For example, if one of the TMessages is
an over-heating alert message (recall Table I) with ID 014, and
the ECM uses the same message ID to broadcast the engine
temperature at a fixed frequency, even when conditions are
normal; since the two messages have exactly the same CAN
priority, it is possible that collisions may happen, (cf. [16]).
To eliminate such possibilities, we recommend to either use a
carefully chosen broadcast Tmessage schedule (e.g., broadcast
immediately after the genuine message) or to simply avoid
using the same ID. We note that in Incorporated-mode this
problem cannot exist since the TMessages will use dedicated
message IDs.

Transparent-mode, TMessage overriding: Another chal-
lenge in Transparent-mode is that of overriding. Under a
similar scenario, even without the danger of CAN bus col-
lisions. The ECU responsible for some message ID, which
is oblivious to the cyber-attack in progress, may override
the effect of a TMessage by its own genuine broadcast of a
message with the same ID. Using the same example as before,
the genuine ECM 014 message (normal temperature) can make
the neighboring dependent ECUs understand that all is fine,



or alternatively, make them go in-and-out of Limp-mode in a
loop. Recommendations that are similar to those mitigating the
TMessage collisions can be used to mitigate this challenge as
well. Furthermore, broadcasting more than a single TMessage,
at a fixed rate, may help ensure that the target ECU will
remain in Limp-mode (even if getting occasional countering
messages).

V. CONCLUSION AND FUTURE WORK

This paper describes a concept for vehicle safe-mode, that
may help reduce the potential damage of an identified cyber-
attack. Unlike other defense mechanisms, that try to block
the attack or simply notify of its existence, our mechanism
responds to the detected breach, by limiting the vehicle’s
functionality to relatively safe operations, and optionally ac-
tivating additional security counter-measures. This is done
by adopting the already existing mechanism of Limp-mode,
that was originally designed to limit the potential damage
of either a mechanical or an electrical malfunction and let
the vehicle “limp back home” in relative safety. We further
introduce two modes of safe-mode operation: In Transparent-
mode, when a cyber-attack is detected the vehicle enters its
pre-configured Limp-mode; In Extended-mode we suggest to
use custom messages that offer additional flexibility to both
the reaction and the recovery plans. While Extended-mode
requires modifications to the participating ECUs, Transparent-
mode may be applicable to existing vehicles since it does not
require any changes in the vehicle’s systems—in other words,
it may even be deployed as an external component connected
through the OBD-II port. We suggest an architectural design
for the given modes, and include guidelines for a safe-mode
manager, its clients, possible reactions, and recovery plans. We
note that our system can rely upon any deployed anomaly-
detection system to identify the potential attack. We also
identified potential challenges to our approach and suggested
possible mitigations. We conclude by saying that building a
prototype to implement and test the suggested mechanism,
could help us better understand, configure, and evaluate the
described mechanism.
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