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Abstract—This paper evaluates the effectiveness of
information-theoretic anomaly detection algorithms applied to
networks included in modern vehicles. In particular, we focus
on providing an experimental evaluation of anomaly detectors
based on entropy. Attacks to in-vehicle networks were simulated
by injecting different classes of forged CAN messages in traces
captured from a modern licensed vehicle. Experimental results
show that if entropy-based anomaly detection is applied to
all CAN messages it is only possible to detect attacks that
comprise a high volume of forged CAN messages. On the other
hand, attacks characterized by the injection of few forged CAN
messages attacks can be detected only by applying several
independent instances of the entropy based anomaly detector,
one for each class of CAN messages.

I. INTRODUCTION

Almost all activities in modern vehicles are controlled by
software, including many safety-relevant functionalities such
as steering, braking, traction and cruise controls. Common
city cars are equipped with about 80 Electronic Control Units
(ECUs) that continuously exchange messages through a Con-
troller Area Network (CAN). This technology has been first
deployed on licensed vehicles in 1989, and was designed to
satisfy all functional requirements of the automotive industry,
without taking information security into account.

Several studies already highlighted severe security issues of
the CAN bus, that offers no protection against attackers willing
to sniff, spoof and forge arbitrary CAN messages [1], [2].
Moreover, the protection of in-vehicle networks is becoming
increasingly important as more and more manufacturers are
producing always connected cars, equipped with infotainment
and telematics systems that leverage SIM cards and mobile
technologies to constantly send and receive data through
Internet connections. Always connected cars pave the way
for remote exploitation [3] as already demonstrated in [4],
where attackers have been able to take over safety-relevant
functionalities of an unmodified licensed vehicle from the
Internet, without requiring physical access to the CAN bus.

Several works already proposed the application of anomaly
detection algorithms to analyze CAN messages [5], [6], [7],
[8], [9], [10], [11] looking for evidences of attacks and other
illicit activities, but often with very limited evaluation over
real in-vehicle network traffic. To address this issue, this paper
proposes an experimental evaluation of the effectiveness of
an anomaly detection algorithm based on the computation of
entropy [12] and applied to the CAN messages exchanged
through in-vehicle network.

In particular, the proposed anomaly detection algorithm
is trained over CAN traffic traces captured from a modern
licensed vehicle during several hours of driving over public
motorways, subject to real traffic conditions. Attacks are then
simulated by injecting different kind of forged CAN messages
at variable rates in these traffic traces, thus mimicking attackers
that are trying to compromise safety-relevant functions of the
vehicle while driving at high speed. Finally, we evaluate the
effectiveness of the entropy-based algorithm by verifying its
ability to identify anomalies in the CAN traces that include
forged messages. To the best of our knowledge, this is the first
paper that provides an extensive evaluation of the effectiveness
of entropy-based anomaly detection algorithms applied to real
CAN traffic gathered from an unmodified licensed vehicle in
real driving conditions.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work and outlines the main novelties
of this paper. Section III introduces the concept of entropy in
information theory and describes the entropy-based anomaly
detection algorithm. Section IV provides a detailed description
of the experimental evaluation and discusses all experimental
results. Finally, Section V concludes the paper and outlines
future works.

II. RELATED WORK

This paper relates directly to two research fields: anomaly
detection and information security for automotive environ-
ment.

A. Anomaly detection

The field of anomaly detection has been explored widely
by the related work [13]. Among all algorithms proposed
in the literature, this paper assesses the effectiveness of an
information theoretic anomaly detector [14], based on the
computation of entropy [12].

The application of entropy-based anomaly detectors to
identify several kind of attacks and anomalies in computer
networks has already been proposed in several papers. In
particular [9] shows the effectiveness of entropy-based ap-
proaches for identifying network traffic anomalies caused by
the propagation of Internet worms. Other works [15] apply the
same family of detectors to mobile cellular traffic.

While previous work provided extensive experimental eval-
uation of entropy-based anomaly detectors to computer net-
works, we highlight that in-vehicle networks are characterized



by completely different workloads, and CAN messages have
different features with respect to IP packets (as an example,
CAN messages do not include source and destination ad-
dresses). Hence this paper provides a novel contribution by
evaluating entropy-based anomaly detection over real CAN
messages flowing through the CAN bus of a modern unmod-
ified vehicle.

B. Information security for automotive

A more recent and less established research area addresses
information security issues applied to electronic control units
(ECUs), infotainment and telematics systems that are common
in modern vehicles.

Several papers presented different kind of attacks that can
be performed by sniffing and injecting messages over the CAN
bus [1], [16], [2], as well as by mangling messages used by
the Tire Pressure Monitoring System [17] and passive keyless
entry systems [18]. Of particular interest are papers describing
attacks carried out remotely by exploiting the permanent
Internet connection of always connected cars [3], [4].

These papers motivated several research efforts focusing on
improving the security of modern vehicles. Some works in this
area propose new cryptographic libraries or hardware mod-
ules to support confidentiality and integrity through encryp-
tion [19], [20], [21]. While promising, these approaches are
unpractical since they would require expensive modifications
to all ECUs.

More related approaches propose the realization of anomaly
detectors to analyze CAN traffic and identify possible anoma-
lies related to attacker activities. Several different detectors
are proposed in [10] and [11], however their proposals are
not experimentally evaluated. Other popular approaches for
anomaly detection in in-vehicle networks are based on Support
Vector Machines (SVM) [5], [6], [7].

The previous work that relates more closely to this paper
is [8], that proposed the application of entropy-based anomaly
detection algorithms to in-vehicle networks. However, their
experimental evaluation is very limited, and spans over just
15 seconds of CAN traffic including only a single class of
CAN messages that are not safety-relevant.

To the best of our knowledge, this is the first paper that
proposes an entropy-based anomaly detection algorithm for in-
vehicle networks and that includes an extensive experimental
evaluation to assess its effectiveness. In particular, experiments
carried out in this paper include several hours of CAN traffic
captured from an unmodified licensed vehicle over several
hours of driving in a public motorway with real road and traffic
conditions.

III. ENTROPY-BASED ANOMALY DETECTION FOR CAN
TRAFFIC

Anomaly detection [13] can be defined as the process
of analysing a set of data aiming at identifying patterns
that differ significantly from the expected normal behavior.
These patterns are defined as anomalies, and often translate to

relevant and actionable information about security and safety
characteristics of a monitored environment.

Entropy-based anomaly detection algorithms characterize
the normal behavior of a set of data based on their level of
statistical entropy [12]. The entropy H of a dataset comprising
i different symbols is defined according to equation 1:

H =
∑
i

p (i) log2

[
1

p (i)

]
(1)

where p (i) represents the probability of occurrence of the
ith symbol. In information theory, entropy represents the
amount of information conveyed in the dataset, expressed in
bits. As an example, a dataset composed by only one symbol
has H = 0 independently of its length, meaning that it
conveys 0 bits of information. On the other hand, a dataset
containing n independent and identically distributed symbols
has H = log2(n). H also represents the expected amount
of information conveyed by each message belonging to the
dataset. The value ofH is also used to measure the randomness
of an information source.

The use of entropy as a mean to describe the normal
behavior of an information source relies on the following
underlying assumptions:

• the entropy of messages generated by the information
source exhibits stable statistical characteristics;

• relevant anomalies (that is: anomalies that should be
detected by the algorithm) introduce significant deviations
in the statistical characteristics of the entropy.

A. Statistical characterization of CAN entropy

As a preliminary analysis to verify the applicability of
entropy-based anomaly detection to the CAN bus, we evaluate
the level of entropy of messages exchanged over the CAN bus
of a licensed vehicle.

In this paper we analyzed data gathered from the main
CAN bus of a 2011 Ford Fiesta R©. The vehicle has been
instrumented with a custom CAN bus logger realized with
a Genuino UNO R© prototyping board, a CAN bus shield and a
data logger shield that writes CAN messages to a SD memory
card. The sniffer can be connected directly to a CAN bus
or to the OBD-II diagnostic port (mandatory in all european
licensed vehicles since 2001). When connected to the OBD-
II interface the CAN-bus logger reads all messages of the
main CAN bus of the vehicle (usually referred to as the
powertrain CAN bus, or high-speed CAN bus) that can be
accessed through pins 6 and 14 of the OBD-II connector. A
picture of the prototype CAN-bus logger is shown in Figure 1.

Thanks to our custom data logger we acquired a trace
containing all messages flowing on the CAN bus during a
4-hour long motorway trip. The whole trace contains about
48 million CAN messages (about 3.3k messages per second)
having 45 distinct IDs.

To characterize the entropy of this data set we analyzed
the first 30 minutes of the trace. We divided this trace into
non overlapping time windows of 1, 0.5 and 0.1 seconds, and



Fig. 1. Prototype CAN-bus logger based on Genuino UNO R© board.

used equation 1 to compute the entropy of the set of CAN
messages included in each time window. Hence we generated
three different time series representing the evolution of en-
tropy (y-axis) over time (x-axis) for the three different time
granularities. These three time series are shown in Figure 2.
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Fig. 2. Evolution of CAN entropy computed over time windows of 1, 0.5
and 0.1 seconds.

We can observe that the value of entropy is quite stable, and
independent of specific driving conditions (such as changes in
speed, sudden brakes, road turns, activation of turning lights).
As expected, entropy computed over larger time frames is
higher than entropy computed over shorter time frames, that
include fewer messages.

To identify a suitable criteria for anomaly detection we
analyzed the distribution of entropy values. The resulting
histogram is shown in Figure 3, where the x-axis represent
entropy values discretized in bins and the y-axis represents
the number of time windows that fall within each bin.

Figure 3 refers to a subset of 100 seconds of CAN messages,
and entropy values are computed with a time window of
0.5 seconds. Similar distributions are achieved for all time
granularities and are not shown for space reasons. We can
observe that the distributions of entropy values are similar to
the normal distribution.
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Fig. 3. Distribution of the CAN entropy measured with a time window of
0.5 seconds.

B. Definition and tuning of the anomaly detection algorithm

Since entropy values appear to be rather stable over time
and distributed according to a normal distribution, we propose
an anomaly detection algorithm based on the assumption that
entropy values that are too distant from the average entropy
are unlikely, and should be considered as anomalies. For each
of the three time granularities considered in Section III-A,
we compute two descriptive parameters: the average entropy
value µe and its standard deviation σe. For each time window
t, the anomaly detection algorithm leverages equation 1 to
compute Ht, that is the entropy of all CAN messages included
in t. An anomaly is raised if Ht is not included in the
range [µe − kσe, µe + kσe, ], where k is a model parameter
that defines the sensitivity of the algorithm with respect to
deviations from µe.

To tune the proposed algorithm we applied it to the second
30 minutes of CAN traffic using an initial value of k = 1. We
then increased k by one until the proposed algorithm raised no
anomalies, meaning that we reached 0 false positives with this
training traffic trace. These experiments led to the discovery
that lowest value of k that generated 0 false positives was
k = 4 for all three time granularities.

C. Detecting anomalies partitioning by message ID

An alternative approach, already proposed in [8], is to focus
on messages having the same ID, rather than considering all
CAN traffic together. The main idea behind this approach is
that entropy characterization for messages with the same ID
might be more precise than a global characterization of the
CAN bus. Moreover this approach has the added benefit of
detecting ID-specific anomalies, rather than generic anomalies.
To pursue this approach, we adapt the algorithm proposed
in the previous section by considering 45 different windows
(one for each message ID). Moreover, since different IDs
appear on the bus with different periods, ranging from 0.01
to a few seconds, it is not possible to leverage windows
based on time. In this variant the size s of each window
is determined by a fixed amount of messages. The proposed
algorithm reads all messages from the CAN bus and adds



each message to the window identified by its ID. When a
window reaches s messages, the entropy Hid is computed.
An anomaly is raised if Hid is not included in the range[
µid
e − kidσid

e , µ
id
e + kidσid

e ,
]
, where kid is a model parameter

that defines the sensitivity of the algorithm for each id with
respect to deviations from the id average entropy µid

e .
To tune this alternative model it is necessary to compute µid

e

and σid
e for all 45 message IDs. Then we applied the algorithm

to the second 30 minutes of CAN traffic using an initial value
of kid = 1 for all IDs. We then increased each kid by one
until the algorithm raised no anomalies for that id. Figure 4
summarizes the results of the tuning phase for s = 50. The x-
axis represents possible values of k and the y-axis represents
the number of distinct message IDs having kid = k. As an
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Fig. 4. Number of distinct IDs having kid = k.

example, 11 different IDs have kid = 1, 5 have kid = 2, 4
have kid = 3, and so on. This figure shows that most IDs are
characterized by relatively low values of kid. In particular, 24
out of 45 IDs have kid ≤ 4.

IV. EXPERIMENTAL EVALUATION

This section provides an experimental evaluation of the ef-
fectiveness of entropy-based anomaly detection for the identi-
fication of active attacks realized by injecting forged messages
in the CAN bus of a common vehicle. Section IV-A describe
the attack scenarios, Sections IV-B shows the effectiveness
of entropy-based anomaly detection applied to all messages
flowing on the CAN bus and section IV-C evaluates the
performance of the same algorithm applied separately to each
message ID.

A. Attack scenarios

We consider two different attack scenarios, that mimic
activities that an attacker may perform to reverse engineer
an unknown CAN bus and to assess vulnerabilities of several
ECUs connected to the CAN bus. In both scenarios we assume
that the attacker can read and write arbitrary messages to the
CAN bus, either through physical access or by exploiting a
remote vulnerability [4], [1], [22].

The first scenario represents a replay attack, in which an
attacker that is able to sniff legitimate messages flowing on

the CAN bus tries to compromise its security by replaying
several instances of the same message [16], [2].

The second scenario assumes that the attacker is looking for
vulnerabilities by applying common fuzzing techniques [23],
[24]. Hence, the attacker injects forged messages having a
valid ID (that is, an ID that has been previously observed
through passive sniffing) and a random payload.

To simulate the two attack scenarios we injected forged
messages in the last three hours of the traffic trace, that were
not previously used for building and training the entropy-based
anomaly detector. We generated attacks of different intensity
by varying the frequency with which the attacker inject forged
messages over the CAN bus. In particular, for each scenario we
generated 6 different attack traces in which attack messages
were injected every 1, 0.5, 0.1, 0.05, 0.01 and 0.005 seconds.

B. Anomaly detection applied to all messages

We analyzed all attack traces with three different instances
of the anomaly detection algorithm proposed in Section III-B,
one for each time granularity presented in Section III-A (1,
0.5 and 0.1 seconds).

For the first attack scenario, experimental results demon-
strated that all three models were unable to raise any alerts
for the attack traces containing forged messages every 1, 0.5,
0.1 and 0.05 seconds. In all these instances, the insertion of
identical messages lowers the entropy, but it remains within
the range [µe − 4σe, µe + 4σe, ]. For the attack traces that
contain one forged message every 0.01 and 0.005 seconds, all
three models detected anomalies, since the entropy fell below
the value of µe − 4σe. As an example, Figure 5 shows the
entropy computed over 100 seconds of the 0.01 attack trace
compared with the anomaly detection model trained with a
time granularity of 0.1 seconds. The y-axis represents the
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Fig. 5. Entropy of the 0.01 attack trace compared to anomaly thresholds.

value of entropy, while the x-axis represents time. The two
horizontal dashed lines show the higher and lower thresholds
identified by the anomaly detection model trained with a time
granularity of 0.1 seconds. Analogous charts related to models
trained with different time granularities are very similar and
they are not included for space reasons.



Similar experiments were conducted for the second attack
scenario. By inserting messages with a random payload, this
attack causes the level of entropy to increase. However, all
three anomaly detection models failed to detect anomalies for
the 1, 0.5, 0.1, 0.05 and 0.01 attack traces. Only the most
intense attack, in which the forged message was injected every
0.005 seconds, raised the entropy above the µe+4σe. Figure 6
shows the entropy of the 0.005 attack trace as measured by
the model trained with 0.1 seconds time granularity. As in the
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Fig. 6. Entropy of the 0.005 attack trace compared to anomaly thresholds.

previous case, analogous charts for different models are very
similar and they are not included for space reasons.

C. Anomaly detection applied to each ID

To evaluate the effectiveness of the anomaly detection
approach based on message IDs, we repeated both attack sce-
narios at all 6 injection rates 45 times. Each time we injected
attack messages with the same message ID, thus executing
all attack scenarios with all IDs. All these attack traces have
been analyzed with the anomaly detection algorithm proposed
in Section III-C. In these experiments we set a value of s = 50
messages. Detection results are summarized in Table I.

TABLE I
NUMBER OF DISTINCT IDS FOR WHICH AN ANOMALY WAS DETECTED FOR

THE TWO ATTACK SCENARIOS AND FOR DIFFERENT ATTACK RATES.

1.0 0.5 0.1 0.05 0.01 0.005

First scenario 40 40 41 42 42 42
Second scenario 40 40 40 40 40 40

Columns of Table I represent different attack rates, while the
two rows refer to the two attack scenarios. Each cell contains
the number of distinct IDs for which at least one anomaly
was generated. Experimental results show that detection per-
formance is almost independent of the attack rate, and that this
approach is able to detect low-rate attacks for the majority of
IDs. However, for the few IDs that have the highest values
of kid (see Figure 4) this approach is ineffective even for the
highest-rate attacks.

V. CONCLUSION

This paper proposes and evaluates an entropy-based algo-
rithm for detecting anomalies in CAN messages generated
by an unmodified licensed vehicle. In particular this paper
includes extensive experimental evaluation based on several
hours of CAN traffic captured during driving sessions on
public motorways, reflecting real road and traffic conditions.

Our experimental evaluation shows that anomaly detectors
based on entropy represent a viable approach for identifying
CAN bus anomalies caused by the activity of attackers that
injecting messages over the CAN bus. The main benefit of this
approach for anomaly detection is the complete independence
with respect to the content of CAN messages, hence it can be
applied immediately to the CAN bus of any vehicle without
the need of proprietary information that is necessary to inter-
pret the semantic of CAN messages. Moreover, experimental
results show that the detection performance of entropy-based
are independent of the time granularity used by the detection
model.

However, experimental results also shows some limitations
of entropy-based approaches. In particular, if the entropy-
based anomaly detection model is used to analyze all CAN
messages, independently of their ID, reliable detection can
be achieved only for high-rate attacks, in which the attacker
injects hundreds of forged CAN messages per seconds. Detec-
tion of low-volume attacks, in which the attacker injects only
1 packet per second, can be achieved by applying entropy-
based anomaly detection only to messages having the same
ID. However, this approach requires several anomaly detectors
(one for each ID) to be executed in parallel. Moreover,
this approach proves to be ineffective for a small subset of
IDs whose entropy exhibits large variations even in normal
conditions.
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