Department of Information Engineering University of Modena and Reggio Emilia, Italy

tas Studiorum

# Defeating NIDS evasion in Mobile IPv6 networks

Michele Colajanni, Luca dal Zotto, Mirco Marchetti and Michele Messori

Lucca, 22 June 2011 12th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks

### Mobile Victim and Fixed Attacker using Route Optimization



### Mobile Victim and Fixed Attacker using Route Optimization



### Mobile Victim and Fixed Attacker using Route Optimization



#### Mobile Victim and Fixed Attacker using Route Optimization



#### Mobile Victim and Fixed Attacker using Route Optimization



### ... how many examples?

- Three possible nodes positioning:
  - Mobile Victim and Fixed Attacker
  - Fixed Victim and Mobile Attacker
  - Mobile Victim and Mobile Attacker
- Two different communication channels
  - With Route Optimization
  - Without Route Optimization
- Possibly more than one migration per node
  - Home Network  $\rightarrow$  Foreign Network  $\rightarrow$  Home Network
  - Home Network  $\rightarrow$  Foreign Network 1  $\rightarrow$  Foreign Network 2  $\rightarrow \dots$   $\rightarrow$  Foreign Network N
- A lot of possible combinations...

### ... how many examples?

- Three possible nodes positioning:
  - Mobile Victim and Fixed Attacker
  - ✓ Fixed Victim and Mobile Attacker
  - Mobile Victim and Mobile Attacker
- Two different communication channels
  - ✓ With Route Optimization
  - ✓ Without Route Optimization
- Possibly more than one migration per node
  - $\checkmark$  Home Network  $\rightarrow$  Foreign Network  $\rightarrow$  Home Network
  - ★ Home Network → Foreign Network 1 → Foreign Network 2 → ... → Foreign Network N
- A lot of possible combinations...
  - $\checkmark \rightarrow$  we already manage
  - $\mathbf{x} \rightarrow$  we don't manage yet

# **NIDS Cooperation**

#### Modified version of Snort

- Added state.import and state.export methods
- Added a XML-RPC server

#### Developed the External Agent

- It detects Mobile Nodes roaming thanks to the Binding Updates
- It implements a XML-RPC client to contact the Local NIDS or remote External Agents
- It implements a XML-RPC server to replay to remote External Agents's requests
- It preprocesses state information before importing it into the local NIDS

### **Proposed Architecture**



## State exchange protocol

#### Migration from Home to Foreign Network



# **Prototype implementation**

- Viability demonstrated through prototype implementation
  - Modified Snort (version 2.8.6.1) to import/export state information
  - Designed a new software agent to coordinate state import, export and transmission
  - Designed new protocol for state management
- Experimental results:
  - It works! Thwarts mobility-based evasion in all the scenarios (NIDSs do not fail anymore)
  - Delays compatible with live traffic analysis
  - Traffic traces available for scrutiny (http://cris.unimore.it/cris/DefeatingMIPv6Evasion)

## Scalability of state migration activities

- State export time scales linearly with the number of concurrent TCP sessions
- State import time is constant



WoWMoM 2011 - Defeating NIDS evasion in Mobile IPv6 networks

## **State migration performance**

- Compatible with real-time traffic analysis and MIPv6 node mobility
  - One order of magnitude lower than migration

|                                 | Average [ms] | $\sigma$ [ms] | Peak [ms] |
|---------------------------------|--------------|---------------|-----------|
| State import                    | 12           | 1             | 13        |
| State export (worst case)       | 30           | 1             | 31        |
| <b>Complete state migration</b> | 409          | 176           | 765       |
| Network roaming                 | 8835         | 3495          | 13209     |

# **Conclusions & open issues**

#### Mobility-based NIDS evasion

- New NIDS evasion technique
- Effective against all state-of-the-art NIDS
- Exploits protocols for transparent node mobility
- Immediately applicable to existing mobile networks!
- Can only be solved through NIDS cooperation

(One NIDS alone cannot defeat it, independently on the reassembly algorithm)

- Our solution works
- Open research issues:
  - Interoperability among heterogeneous NIDSs
  - Securing state migration protocol