
Selective and early threat detection in large
networked systems

Michele Colajanni, Mirco Marchetti, Michele Messori
Department of Information Engineering

University of Modena and Reggio Emilia
Modena, Italy

{michele.colajanni, mirco.marchetti, michele.messori}@unimore.it

Abstract—The complexity of modern networked information
systems, as well as all the defense-in-depth best practices,
require distributed intrusion detection architectures relying on
the cooperation of multiple components. Similar solutions cause
a multiplication of alerts, thus increasing the time needed for alert
management and hiding the few critical alerts as needles in a
hay stack. We propose an innovative distributed architecture for
intrusion detection that is able to provide system administrators
with selective and early security warnings. This architecture
is suitable to large networks composed of several departments
because it leverages hierarchical and peer-to-peer cooperation
schemes among distributed NIDSes. Moreover, it embeds a
distributed alert ranking system that makes it possible to evaluate
the real level of risk represented by a security alert generated
by a NIDS, and it allows independent network departments to
exchange early warnings about critical threats. These features
allow a system administrator to focus on the few alerts that
represent a real threat for the controlled infrastructure and to
be informed about the most dangerous intrusion(s) before his
department is attacked.

Keywords-Alert ranking; early warning; intrusion detection
systems; distributed IDS;

I. INTRODUCTION

The vast majority of attacks targeting networked systems are
carried out by self-replicating malware and automatic tools for
vulnerability discovery and exploitation. These tools randomly
scan the Internet address space looking for reachable targets,
and attack them by trying to exploit known vulnerabilities
affecting common operating systems and applications. As
a consequence, NIDSes detect many attacks which cannot
be effective because the targeted service is unavailable or
because the exploited vulnerability does not affect any host
of the controlled network. From the system administrator’s
perspective, these alarms are considered as false positives,
but a NIDS alone is unable to assess whether they represent
a real threat for the protected machines. It is the network
administrator responsibility to examine each of the incidents
reported by the NIDS, as well as to devise and deploy
the proper countermeasures. Hence, administrators are forced
to waste precious time for a manual analysis of irrelevant
security alerts. The number of false alerts produced by a
NIDS can easily overwhelm the number of alerts related
to real network attacks by several orders of magnitude [1],
thus making the NIDS useless in practice, although fully
functional. Moreover, several attacker tools exist that are able

to trigger alert storms [2], [3]. They generate a large number of
irrelevant alerts among which the few relevant alerts related
to real security threats are hidden, thus hindering the alert
management and attack recovery activities.

We should also consider that large network-based informa-
tion systems cannot be effectively monitored by one central-
ized NIDS. Complete coverage of a realistic network envi-
ronment can only be achieved by implementing a distributed
architecture for intrusion detection, comprising multiple co-
operative NIDSes deployed throughout the protected network.
However, the multiplication of NIDSes implies an increase in
the number of alerts that are generated within the protected
network, and that have to be manually validated and analyzed
by the system administrator.

In this paper we address these issues by proposing a novel
architecture that is suitable for monitoring large organizations’
networks, composed by several interconnected departments,
each comprising a multitude of smaller network segments. The
proposed architecture relies on distributed NIDSes deployed
in several network departments. It is characterized by the
integration of three novel features, that are:

• a hybrid communication scheme that integrates hierarchi-
cal cooperation at the intra-department level and peer-to-
peer cooperation at the inter-department level.

• a novel distributed alert ranking scheme, that is able to
assess whether a NIDS alert related to a detected intrusion
attempt represents a real threat for the attacked machine.

• a selective alert sharing service that propagates early
warnings related to the most dangerous security threats
towards departments that have not been attacked yet.

The hybrid cooperation scheme of the proposed architecture,
based on both hierarchical and peer-to-peer cooperation strate-
gies, facilitates its deployment in complex network environ-
ments. With respect to purely hierarchical architectures [4]–
[11] it guarantees higher scalability and fault tolerance, thanks
to the absence of a single point of failure. Moreover, it allows
the deployment of the proposed architecture in large network
environments, in which it is impossible to identify a single
central authority. On the other hand, unlike purely peer-to-
peer architectures [12]–[20], the proposed cooperation strategy
does not require the exchange of sensitive information among
networks, and allows a network administrator to carefully



design the path followed by alerts detected in his network. To
the best of our knowledge, this is the first proposal of a hybrid
architecture for monitoring complex networks belonging to a
large organization.

With respect to other approaches for NIDS alert fusion and
ranking (described in Section II), the proposed scheme is able
to leverage multiple external data sources, to rank alerts at
run-time, and to share the computational load among several
distributed components. Moreover, the proposed architecture
is able to automatically generate and distribute early warnings
about malicious activities that could jeopardize the integrity
of critical systems throughout the monitored network. If an
attack is detected within a department, it is likely that other
network departments belonging to the same organization will
be attacked as well. Even though the detected attack poses no
real threat to any of the machines in the attacked department,
critical and vulnerable machines may be deployed in other
networks. If this situation is detected, the proposed architecture
is able to issue early and selective warnings to the adminis-
trators of these critical and vulnerable systems, allowing them
to deploy proactive security countermeasures rather than to
recover compromised systems.

Related work on NIDS alert management and distributed
architectures for intrusion detection is discussed in Section II.
An overview of the proposed architecture is presented in
Section III. Detailed descriptions of the alert ranking system
and of the cooperation strategies among dsitributed NIDSes
are in Section IV and Section V, respectively. A prototype
implementation of the proposed architecture is described in
Section VI. Some concluding remarks are reported in Sec-
tion VII.

II. RELATED WORK

This section presents related works in the context of NIDS
alert management and distributed architectures for intrusion
detection.

The process of automatically ranking alerts on the basis
of threat level has been defined alert verification in [21] and
[22]. According to the taxonomy proposed in these papers,
our proposal can be classified as a passive alert verification
scheme, meaning that alert verification does not require active
interaction with the system(s) targeted by an attack. This
characteristic is desirable, and allows our system to rank
alerts at run-time, without imposing load on the monitored
systems and without relying on results generated by a possibly
compromised machine. In [21] and [22], authors propose an
alert verification scheme based on one vulnerability database.
The dependency on a single information source is identified as
a drawback in [23], because of possible incompleteness, lack
of timely updates, and lack of trust in the single information
provider. The main strength and original contribution of our
alert ranking approach is the ability to leverage multiple,
heterogeneous and unstructured information sources. This crit-
ical task is carried out by parsing these information sources
through techniques borrowed from data mining.

The typical approach for the design of distributed intrusion
detection architecture is based on a centralized scheme [4]–
[11]. All these architectures consist of several sensors getting
events produced by different sources, and of a centralized
aggregator analyzing the security alerts.

With the increase in size and complexity of the monitored
environment, the computational capacity of one centralized
alert aggregator becomes a bottelneck. Hierarchical processing
schemes [12]–[20] aim to improve scalability by building a
hierarchy of intermediate aggregators, each processing a subset
of alerts and relaying their partial results to the aggregators
at the higher tier. While a hierarchical architecture can scale
much better than a centralized architecture, both systems suffer
of a single point of failure.

Several distributed NIDS architectures based on a peer-to-
peer scheme have been proposed to address this issue [24]–
[32]. High scalability and, in some cases, good load balancing
are other benefits but the lack of a centralized alert aggregation
poses new challenges. Since there is not an entity with a com-
plete view on the environment, it is necessary to devise new
intrusion detection algorithms based on partial knowledge, and
to define alert routing techniques that enable distributed alert
aggregators to receive all the needed information. Moreover,
cooperation by the exchange of IDS alerts may reveal sensitive
information to cooperative nodes, such as the structure of the
internal network, or the fact that some machines have been
compromised.

The hybrid architecture proposed in this paper is designed
to be deployed within one organization, and the peer-to-peer
layer is used to distribute early warnings for network intrusions
to which critical systems of the protected organization are
vulnerable. Moreover, our architecture performs distributed
alert ranking, thanks to the integration of a novel alert ranking
system.

To the best of our knowledge the only other distributed
architecture that combines peer-to-peer and hierarchical coop-
eration approaches is represented by DOMINO [33]. However,
unlike our proposal the DOMINO architecture does not repre-
sent a complete solution for NIDS alert management, and only
focuses on the generation of IP blacklists. Moreover, it requires
Internet-wide sensors deployment, thus not being applicable to
the network infrastructure of one organization.

III. ARCHITECTURE OVERVIEW

The architecture proposed in this paper suits the network
infrastructure of large organizations. These networks are di-
vided into several independent and possibly geographically
distributed departments. Moreover, each department is com-
posed by multiple smaller and interconnected networks.

Complete coverage of a similar IT infrastructure can be
achieved by deploying a distributed intrusion detection archi-
tecture, comprising several distributed NIDSes. Architectures
relying on one centralized alert correlator are not suitable,
since it would represent a bottleneck and a single point
of failure. Moreover, a centralized correlator represents an
issue from an organizational viewpoint: while it is realistic



Fig. 1. High-level view of the proposed architecture

to assume that each department has an administrator, that is
responsible for all the networks belonging to his department,
a centralized authority responsible for all the heterogeneous
and loosely coupled department’s networks may not exist.
Sometimes security warnings gathered within each department
may be considered as classified, thus preventing a department
administrator to directly access to security warnings related to
other departments. As a result, useful security information are
often withheld.

The proposed architecture combines hierarchical and peer-
to-peer NIDS cooperation schemes, together with distributed
alert ranking servers (see Section IV), to achieve high scalabil-
ity, resiliency to failures and the ability to adapt to complex
network environments. The alert ranking mechanism allows
department administrators to selectively focus on relevant
security alerts, and makes it possible to exchange selective
and early warnings without requiring tight coupling and strong
trust relationships among different departments.

A high-level representation of the proposed architecture is
given in Figure 1.

The network shown in this figure has 6 departments, and
each department consists of several interconnected subnet-
works. To provide complete network coverage, it is necessary
to deploy multiple NIDSes in each department. All the NIDSes
that belong to the same department are part of an intra-
department hierarchical architecture, whose structure reflects
the topology of the network of the monitored department.
The root of this hierarchy is a single logical component,
named Root Department Manager. All the alerts generated
within a department are collected, evaluated and relayed to
the root department manager, that provides a comprehensive
network security report to the the department administrator.
The intra-department hierarchical architecture is described in

Section V-A.
The proposed architecture provides an inter-department alert

sharing service by allowing root department managers be-
longing to different departments to communicate through a
decentralized and unstructured peer-to-peer overlay, as shown
by the dotted lines in Figure 1. The inter-department alert
sharing is described in Section V-B.

Both the intra-department hierarchical architecture and the
inter-department alert sharing service rely on the alert ranking
mechanism presented in Section IV.

IV. NIDS ALERT RANKING

This section describes the main functions of the NIDS alert
ranking system. The proposed strategy for alert ranking and
prioritization relies on the correlation of data coming from
three heterogeneous domains:

• vulnerability information gathered from external, open
and unstructured sources;

• software configuration of the machines deployed in the
protected network;

• network security alerts generated by NIDSes.
The aim is to integrate at runtime the existing knowledge

on vulnerabilities and local software configurations with the
intrusion alerts raised by the NIDSes. By knowing both
the software configuration of the machines connected to the
monitored network and the software that are vulnerable to
network attacks, the system can check whether a machine
contains one or more software packages that are vulnerable
to a specific attack. If a NIDS raises an alert related to an
intrusion attempt to which the targeted machine is vulnerable,
then the targeted machine has been compromised with high
probability. Hence, the related alert should be analyzed by the
network administrator as soon as possible, thus hastening the
incident response procedures.

On the other hand, if the alert reports an intrusion attempt to
which the targeted machine is not vulnerable, than the attack
has not been successful. Since the alert does not pose an
immediate threat to the integrity of the protected systems, its
priority can be lowered, and its analysis can be safely delayed.

The design of the alert ranking system is shown in Figure 2,
that evidences three main components: the vulnerable software
database, the Configuration Management DataBase (CMDB)
and the alert ranking server.

The vulnerable software database stores associations be-
tween known vulnerabilities and the list of vulnerable soft-
ware. Vulnerability information are provided by several het-
erogeneous and unstructured open sources, that can be freely
consulted on the Web1. We use a custom crawler to download
unstructured vulnerability information and parse them through
custom wrappers. Each wrapper is designed to parse all

1notable examples are: Open Source Vulnerability Database (http:
//osvdb.org/), Common vulnerabilities and exposures (http:/cve.mitre.org/),
National Vulnerability Database (http://nvd.nist.gov/nvd.cfm), Packet Storm
security advisories (http://www.packetstormsecurity.org/alladvisories/),
SecurityFocusTMvulnerabilities (http://www.securityfocus.com/
vulnerabilities/)



Fig. 2. Architecture of the alert ranking system

the vulnerability advisories produced by a specific external
source, and to extract the list of vulnerable software. Parsed
information is then materialized in the vulnerable software
database, ready to be used for alert ranking. While each
external source uses a different system to classify and label
the known vulnerability, the large majority of vulnerability
advisories are cross referenced. Hence it is possible to identify
the advisories published by different sources but related to the
same vulnerability. Depending on the number of vulnerabilities
known by each source, on the computational complexity of
the operations that the wrapper has to perform, and on the
speed of the Internet connection used to access to the source,
the complete parsing of all he vulnerabilities may require
several hours. However, once a complete scan of an open
source has been performed for the first time, it is easy to keep
the structured vulnerability information database constantly
updated by parsing only the advisories that has been recently
introduced or updated. It is also important to observe that these
operations can be performed off-line at regular time intervals,
without introducing any delay in the alert ranking process.

The Configuration Management Database (CMDB) is a
structured information source (typically, a relational database)
that contains authoritative and complete information on all
the devices, software and services belonging to the IT in-
frastructure. For the scope of this paper, we only require
that the CMDB includes updated information on the software
configuration of all the machines connected to the network that
we want to monitor. Moreover, as explained in more detail in

Section V-A, we do not require the deployment of a single,
centralized CMDB containing configuration information for all
the machines connected to the network of a large and complex
organization, or even to a single department. Configuration
information can be partitioned in several local databases,
managed directly by administrators that are only responsible
for small networks.

The alert ranking server is the the central component of
the proposed alert ranking system, whose purpose is to fuse
information coming from the CMDB, the vulnerable software
database and the NIDS alert. The alert ranking process is
initiated when the alert ranking server receives an alert ranking
request, including two mandatory fields: the IP address of
the machine targeted by the attack, and an identifier of the
vulnerability that the attack tried to exploit. These information
can be easily extracted from the alerts produced by signature-
based NIDSes. As an example, all the alerts produced by
Snort [34] (a widely deployed open source NIDS) include
a signature-id that ties the alert to the related signature
definition. When applicable, the signature definition contains
a reference to vulnerability advisories of several open sources.
Hence it is possible to infer the vulnerability ID starting
from the signature ID included in an alert. This approach is
applicable to all the signature-based NIDSes.

After having received the request, the alert ranking server
performs a query to the CMDB using the IP address as a key in
order to retrieve the list of software deployed on the attacked
machine. A second query is executed against the vulnerable
software database using the identifier of the vulnerability as
a key, to retrieve the list of vulnerable software. The two
queries are independent, and can be executed concurrently.
When the two lists of software have been retrieved, they
are compared by the alert ranking server. If the software
configuration of the targeted machine includes at least one of
the vulnerable software packages, then the attacked machine
has been compromised with high probability, and the alert
is ranked as Critical by the alert ranking server. On the other
hand, if there is no match between the two lists of software, the
attack does not represent a real threat for the targeted machine,
and the alert is ranked as Not critical. It is also possible that the
alert ranking server is not able to compute a rank for an alert.
This may be caused by failures of systems and networks (e.g.,
a database that becomes unreachable) or by lack of data in the
CMDB or in the vulnerable software database. I this situation
the result of the alert ranking process is Inconclusive, meaning
that the alert ranking server has not been able to generate a
reliable result.

The distributed architecture proposed in this paper leverages
this alert ranking strategy by integrating an alert ranking server
into several distributed components, as described in Section V.

Alert ranking can be performed at run-time with respect to
the NIDS activities. Indeed, the computational cost related to
the comparison among the two software lists (which usually
contain only a few elements each) is very low, and comparable,
if not lower, to the computational complexity of the in-depth
packet analysis performed by a signature-based NIDS, in



NIDS 2

NIDS 3

NIDS n

Raw NIDS alerts

Ranked NIDS alerts

NIDS 1

NIDS 4 NIDS 5

Root Department

Manager

Root alert 

Database

Local Alert

Manager 3

Local alert 

Database
Local Alert

Manager 1

Local alert 

Database

Local Alert

Manager 2

Local alert 

Database

Fig. 3. Hierarchical architecture for intra-department network monitoring

which the payload of a packet has to be matched against
hundreds of rules.

V. COOPERATION AMONG DISTRIBUTED NIDSES

The hybrid architecture proposed in this paper combines
two cooperation schemes: a hierarchical architectures for en-
abling cooperation among NIDSes deployed within the same
department, and a peer-to-peer overlay to share early critical
alerts among different departments.

A. Intra-department hierarchical architecture

The main components of the hierarchical architecture, to-
gether with a representative example of their interconnections,
is presented in Figure 3.

The lowest layer of the hierarchical architecture is composed
by NIDSes that independently monitor different networks of
the same department. All the alerts generated by these NIDSes
are relayed to a local alert manager. The purpose of the local
alert manager is to collect all the received alerts, to apply
the alert ranking mechanism presented in Section IV and to
relay the ranked alerts to a local alert manager belonging
to the higher tier of the hierarchical architecture. In the
proposed design, a network is represented by its local alert
aggregator, and changes in its topology or in the software
configuration of its machines do not affect the higher levels
of the architecture. It is also worth noticing that it is not
necessary for the aggregation hierarchy to be shaped as an
n-ary tree, or to be balanced. The in-degree of each element
in the hierarchy, modeled as a directed graph, can be adapted
to the characteristics of each deployment scenario. Similarly,
the height of the sub-trees connecting the each NIDS to the
root department manager can also vary.

In order to perform alert ranking, each local alert manager
integrates an alert ranking server. This server has to access the
software vulnerability information database and to a CMDB
including the software configuration of all the machines that
are monitored by the NIDSes to which the local alert manager
is directly connected. As an example, the local alert manager
2 in Figure 3 has to be able to access a CMDB containing
the software configuration of all the machines monitored by
NIDS 3, NIDS 4 and NIDS 5, while the local alert manager
3 only needs software configuration information for the ma-
chines monitored by NIDS n. Hence there is no need of one
centralized CMDB containing the complete configuration of
all the machines belonging to the department network. By
relying on several local alert aggregator it is possible to share
the load related to alert ranking among multiple distributed
components. Each local alert aggregator has to rank only the
alerts that are generated by a NIDS, while alerts received by
lower-level local alert aggregators have already been ranked,
and have to be relayed to the upper tiers of the hierarchy.

Each local alert manager also stores the ranked alerts in a
local alert database that can be accessed by the administrator
of the corresponding network to monitor the activities carried
out within his domain. This chance eliminates the need to
ask for this information to the department administrator, or
to access department-wide security information that may be
classified.

The root department manager represents the root of the
hierarchical architecture used to monitor a whole department.
By design, a root department manager is only connected to
lower-layer local alert manager, and has no direct connec-
tions with any NIDS. Hence, all the alerts received by the
root department manager have already been ranked. Each
root department manager stores the received alerts in the
corresponding root alert database, and integrates a graphical
dashboard that provides the department network administrator
with a graphical representation of all the alerts that have been
generated within the department network. Since alerts are
sorted with respect to their rank, the network administrator
can easily focus on the critical alerts (i.e., alerts related to
attacks that targeted a vulnerable machines) while delaying
the analysis of alerts related to non critical attacks.

B. Inter-department alert sharing service

We identify two scenarios in which information sharing
among departments is beneficial for the whole organization:

• successful attacks targeting machines that provide ser-
vices to several departments;

• attacks that could compromise the integrity of critical
systems.

As an example of the first scenario, let us consider an
intrusion attempt targeting a host that provide Single Sign On
(SSO) services for several departments of the same organiza-
tion. While this machine is localized in a single department,
a successful attack could compromise the security of all the
departments that rely on the SSO to authenticate users. In
this situation, it is important to share the knowledge about



attacks targeting the machines providing the SSO service with
all the interested root department managers, so that all the
network administrators can be notified of possible ongoing
security breaches.

In the second scenario an attack is detected in a department,
to which a critical machine in another department (such as
a database containing critical information, or a Web server
hosting an e-commerce Web site) is vulnerable. Without
selective sharing of security threats, the network administrator
of the department that hosts the critical machines would not
receive any alert, since the attack has been detected in a
different department. However, the same alert is useful for the
administrator of the department hosting the critical machine,
since it represents an early warning of a dangerous attack. This
early warning may allow the network administrator to deploy
the proper countermeasures proactively, before the vulnerable
machine is targeted by the attack.

To allow peer departments to exchange relevant security
information while maintaining complete independence, all the
root department managers representing different departments
are interconnected through a inter-department peer-to-peer
network. This higher level network allows root department
managers to share alerts related to network intrusion that could
jeopardize the integrity of critical systems within a department,
as well as systems that provide critical services to several
departments (such as single sign on). Information sharing
at this level allows the proposed architecture to distribute
early warnings to administrators of different departments about
critical security threats before their department is directly
involved. This feature makes it possible to deploy proactive
countermeasures, thus increasing the security of the most
critical systems throughout the organization’s IT infrastructure.

As described in Section V-A, each root department man-
ager receives all the alerts generated within the monitored
department, that have already been ranked by the local alert
aggregators. However, these ranks are only relevant within
the department, since they have been computed against the
software configuration of the attacked machines. Hence they
do not indicate the level of threat that the alert may represent
for critical systems deployed throughout the organization. To
assess whether the alerts represent a threat for critical systems,
all the root department managers integrates an alert ranking
server, and have access to a CMDB that includes the software
configuration of a small subset of critical machines deployed
throughout the organization’s IT infrastructure, called Critical
CMDB (CCMDB). Each department administrator contributes
to the CCMDB on a voluntary basis, by adding the soft-
ware configurations of machines that are deployed within his
department and that he considers critical (and not adding
any classified information). When a root department manager
receives an alert, this alert is ranked against all the machines
included in the CCMDB. If the alert is ranked as critical,
meaning that at least one critical machine is vulnerable to a
detected attack, the root department manager broadcasts the
related NIDS alert to all the other root department managers.
Each root department manager can then validate the ranked

alert and add it to its root alert database, thus making it
available to the administrator through the alert visualization
interface.

VI. PROTOTYPE IMPLEMENTATION

The feasibility of the proposed architecture is demonstrated
through a prototype based on open source software and custom
integration modules. The NIDSes used to generate alerts are
unmodified instances of the well known Snort [34] open
source NIDS. The prototype has been validated experimentally
in controlled conditions as a whole and in its individual
components through the injection of network traffic containing
known attacks.

A. Integration of external sources

Intrusion alerts issued by Snort are marked by a unique
identifier of the triggered signature (called Snort Identifier,
or SID). The SID can be used as research key to access
further information related to the signature. When applicable,
these information contain reference to online vulnerability
description repositories, which in turn contain the list of
vulnerable software. So the list of applications affected by
a specific vulnerability can be inferred through a custom
parser that is able to extract information from vulnerability
reports. By examining the set of Snort rules freely available
from Sourcefire, Inc. we noticed that there are several sources
for rules references. In particular we focus on the two open
sources that provide the most complete information related to
vulnerable software2: CVE and Bugtraq.

Integration of external information sources is carried out
by the external sources cralwer in Figure 2. In the current
prototype, this component is implemented as a set of Python
scripts, and implements three wrappers. The first wrapper is
designed to access to all the information related to the SID
of all Snort’s signatures, by executing HTTP requests to the
URL http://www.snort.org/search/sid/X, where X represents
the SID associated to a specific rule. The downloaded web
page is then parsed, looking for links of vulnerability advi-
sories provided by CVE and Bugtraq websites. If those links
are found, the related vulnerability advisories are downloaded
and sent to the CVE and Bugtraq wrappers respectively. These
wrappers parse the downloaded web page, and extract the
vulnerable software list. For each software, it is possible to
retrieve its producer, its name, and the vulnerable versions.
This information is normalized by converting all the letters to
lowercase, and by replacing white spaces with underscores.
Each wrapper sends the SID and the normalized software
list to the DB interface. This interface is a Python script
that queries the vulnerable software database by looking for
entries related to the SID received from a wrapper. If there
is no such SID in the database, then the new SID and the
list of vulnerable software, represented as a CSV string, is
inserted into the database. If the database already contains a
list of vulnerable software for that SID, and if the new list of

2other open information sources that are referenced by some rules are
arachNIDS, nessus, Microsoft, Application Security Inc. and McAfee Inc.



vulnerable software contains some new elements, the database
entry is updated by adding the new software names to the list.

B. Alert ranking server

The alert ranking server in Figure 2 is a stand-alone applica-
tion implemented in Python. It listens for requests including
two fields: the IP address of a machine and a SID. It then
queries the vulnerable software database by using the SID as
search key, and the CMDB using the IP address to identify
a single machine. If at least one of the two queries fails
(i.e. does not return a non-null list of software), a reply is
immediately generated, marking the alert as Inconclusive. If
both the queries are successful, the two lists are compared with
the goal of looking for at least one common element. The alert
ranking server assumes that the entries in the CMDB and in the
vulnerable software database have already been normalized,
and the comparison among strings is not case sensitives. If
a software exists in both lists, a reply is generated in which
the alert is ranked as Critical. On the other hand, the alert is
ranked as Not critical.

C. Local alert manager

Local alert managers are implemented through the Pre-
lude [35] hybrid IDS. Prelude can receive alerts generated
by Snort, store them in a local alert database, and relay the
received alerts to other instances of Prelude. These features
are used to implement the hierarchical architecture shown
in Figure 3. The local alert manager is implemented by
modifying the Prelude correlator module, that now can invoke
a local instance of the alert ranking server when a new alert
is received from a NIDS. The rank assigned to the alert is
then included in the IDMEF [36] messages used by Prelude
to store and relay Snort alerts.

D. Root department manager

Root department managers are implemented through Pre-
lude and integrate a local alert ranking server invoked by the
Prelude correlator module. They only receive alerts that have
already been ranked by a lower-level local alert aggregator, and
leverage the local alert ranking server to repeat the ranking
process against the CCMDB, that containing the software
configuration of the few machines that are considered critical
for the whole organization. Alerts ranked as critical by a
root department manager are transmitted to all the other
root department managers belonging to the same organization
through a custom communication module, that implements
the Pastry [37] DHT routing overlay. This component is
implemented in Java. It leverages the freepastry [38] libraries
to implement the DHT overlay and Scribe [39] to broadcast
IDMEF messages to the other root department managers con-
nected to the same DHT overlay. Root department managers
are also provided with a custom version of the Prewikka
graphical user interface, modified to sort NIDS alerts by their
rank and to clearly separate the alerts received from one of
the local alert managers to the alerts issued by other root
department managers.

E. System validation

To verify the effectiveness of the proposed solution, we
tested our prototype in a controlled network environment. Our
experimental testbed comprises 30 machines equipped with
one Intel Xeon 2.4 GHz CPU, 1 GByte RAM, a 32 bit and 33
MHz PCI bus and a Gbit Ethernet NICs. We emulate a network
configuration consisting of three departments, each composed
by four network segments. To test the ability to issue early
warnings, we simulated three heterogeneous network depart-
ments: one populated with Windows-based servers, one with
Linux-based servers, and the last one with a mixed Windows
and Linux environment. Three machines are configured as root
department managers. Each root department manager is the
head of a hierarchy of three local alert aggregators. Moreover,
four NIDEses are installed within each department. We deploy
the external sources crawler and the vulnerable software
database on the same machine. Another machine hosts three
CMDBs (one for each department) and one CCMDB. The
remaining 4 machines of our testbed are used to generate the
network traffic analyzed by the NIDSes. We use Tcpreplay
to replay the publicly available IDEVAL [40] traffic traces.
On top of this background traffic, we added network packets
crafted to match specific rules of the Snort signature database.
We carried out several experiments for different workload
scenarios. Our prototype has always been able to highlight the
most dangerous attacks by flagging the related alerts as critical.
The graphical user interfaces of the three root department
managers denoted critical alerts with red flags, inconclusive
alerts with yellow flags, and not critical alerts with green flags.

VII. CONCLUSION

This paper proposes a distributed architecture suitable for
monitoring the IT infrastructure of large organizations con-
sisting of multiple departments, each with multiple network
segments. The proposed architecture has three novel features.
It combines hierarchical and peer-to-peer communication
schemes, thus being suitable to large and complex networks
composed by several independent departments, without requir-
ing a centralized authority. It can selectively highlight the few
relevant security alert thanks to an innovative alert ranking
scheme that is distributed among several components of the
proposed architecture. Finally, it is able to issue early warnings
that allow a system administrator to be notified of security
threats before vulnerable and critical machines are attacked,
thus enabling the deployment of proactive countermeasures.
The feasibility of the proposed architecture is verified through
the implementation of a prototype based on open source
software.

Future works will include the integration of new external
information sources. Moreover, we plan to reduce the response
time of the alert ranking server by caching previously com-
puted ranks, and by pre-computing off-line the list of machines
that are vulnerable to the most common attacks.



REFERENCES

[1] S. Axelsson, “The base-rate fallacy and its implications for the difficulty
of intrusion detection,” in ACM Conference on Computer and Commu-
nications Security, 1999.

[2] D. Mutz, G. Vigna, and R. Kemmerer, “An experience developing an
IDS stimulator for the black-box testing of network intrusion detection
systems,” in Proceedings of the 2003 Annual Computer Security Appli-
cations Conference (ACSAC ’03), Las Vegas, Nevada, December 2003,
pp. 374–383.

[3] S. Patton, W. Yurcik, and D. Doss, “An achilles’ heel in signature-based
ids: Squealing false positives in snort,” in Proc. of the International
Symposium on Recent Advances in Intrusion Detection (RAID), 2001.

[4] S. Snapp, J. Brentano, G. Dias, T. Goan, T. Grance, L. Heberlein, C.-
L. Ho, K. Levitt, B. Mukherjee, D. Mansur, K. Pon, and S. Smaha,
“A system for distributed intrusion detection,” in Compcon Spring
’91. Digest of Papers from the IEEE Computer Society Thirty-sixth
International Conference, Feb 1991.

[5] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein,
C.-L. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M.
Teal, and D. Mansur, Internet besieged: countering cyberspace scofflaws.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., May
1988, ch. DIDS (distributed intrusion detection system)—motivation,
architecture, and an early prototype, pp. 211–227.

[6] R. A. Kemmerer, “Nstat: A model-based real-time network intrusion
detection system,” University of California at Santa Barbara, Santa
Barbara, CA, USA, Tech. Rep., 1998.

[7] T. Bass, “Multisensor data fusion for next generation distributed in-
trusion detection systems,” in Proc. of the 1999 DoD-IRIS National
Symposium on Sensor and Data Fusion (NSSDF), May 1999.

[8] ——, “Intrusion detection systems and multisensor data fusion,” Com-
munications of the ACM, vol. 43, no. 4, pp. 99–105, May 2000.

[9] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, “Collaborative intrusion
detection system (cids): A framework for accurate and efficient ids,” in
Proc. of the 19th Annual Computer Security Applications Conference,
December 2003.

[10] Y. Wang, H. Yang, X. Wang, and R. Zhang, “Distributed intrusion
detection system based on data fusion method,” in Proc. of the Fifth
World Congress on Intelligent Control and Automation (WCICA 2004),
June 2004.

[11] Y.-F. Zhang, Z.-Y. Xiong, and X.-Q. Wang, “Distributed intrusion
detection based on clustering,” in Proc. of 2005 International Conference
on Machine Learning and Cybernetics, Aug. 2005.

[12] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle, “Grids - a graph-
based intrusion detection system for large networks,” in Proc. of the 19th
National Information Systems Security Conference, October 1996.

[13] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in Proc. of the 4th International Symposium on Recent
Advances in Intrusion Detection RAID 2001, October 2001.

[14] Z. Zhang, J. Li, C. N. Manikopulos, J. Jorgenson, and J. Ucles, “A
hierarchical anomaly network intrusion detection system using neural
network classification,” in Proc. of 2001 WSES Conferemce on Neural
Networks and Applications (NNA ’01), Feb. 2001.

[15] ——, “HIDE: a hierarchical network intrusion detection system using
statistical preprocessing and neural network classification,” in Proc. of
the 2001 IEEE Workshop on Information Assurance and Security, June
2001.

[16] Y. Chu, J. Li, and Y. Yang, “The architecture of the large-scale
distributed intrusion detection system,” in Proc. of the Sixth International
Conference on Parallel and Distributed Computing Applications and
Technologies (PDCAT ’05), December 2005.

[17] Q. Xue, J. Sun, and Z. Wei, “Tjids: an intrusion detection architecture for
distributed network,” in Proc. ot the 2003 IEEE Canadian Conference
on Electrical and Computer Engineering CCECE 2003, May 2003.

[18] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. H.
Spafford, and D. Zamboni, “An architecture for intrusion detection using
autonomous agents,” in Proc. of the 14th Annual Computer Security
Applications Conference (ACSAC 1998), December 1998.

[19] M. Colajanni, D. Gozzi, and M. Marchetti, “Collaborative architecture
for malware detection and analysis,” in Proc. of the IFIP 23rd Interna-
tional Information Security Conference (SEC ’08), September 2008.

[20] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch, “Adaptation
techniques for intrusion detection and intrusion response systems,” in
Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2000), October 2000.

[21] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “A comprehensive
approach to intrusion detection alert correlation,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 3, pp. 146–169, 2004.

[22] C. Kruegel and W. Robertson, “Alert verification: Determining the
success of intrusion attempts,” in Proc. of the First Workshop the
Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA 2004), 2004.

[23] c©Tenable Network Security, Inc. R. Gula, “Correlating IDS alerts
with vulnerability information,” 2002, available at http://www.nessus.
org/whitepapers/va-ids.pdf.

[24] G. White, E. Fisch, and U. Pooch, “Cooperating security managers: a
peer-based intrusion detection system,” Network, IEEE, vol. 10, no. 1,
pp. 20–23, Jan/Feb 1996.

[25] D. J. Ingram, H. S. Kremer, and N. C. Rowe, “Distributed intrusion
detection for computer systems using communicating agents,” in Proc.
of 2000 Command and Control Research and Technology Symposium,
June 2000.

[26] R. Janakiraman, M. Waldvogel, and Q. Zhang, “Indra: A peer-to-
peer approach to network intrusion detection and prevention,” in Proc.
of the 12th IEEE International Workshops on Enabling Technologies
(WETICE’03), June 2003.

[27] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo, “Towards collab-
orative security and p2p intrusion detection,” in Proceedings from the
Sixth Annual IEEE SMC Information Assurance Workshop (IAW ’05),
June 2005.

[28] M. Marchetti, M. Messori, and M. Colajanni, “Peer-to-peer architecture
for collaborative intrusion and malware detection on a large scale,”
in Proc. of the 12th Information Security Conference (ISC 2009),
September 2009.

[29] D. J. Malan and M. D. Smith, “Host-based detection of worms through
peer-to-peer cooperation,” in Proc. of the 3rd workshop on rapid
malcode (WORM’05), November 2005.

[30] V. Vlachos, S. Androutsellis-Theotokis, and D. Spinellis, “Security
applications of peer-to-peer networks,” Computer Networks: The In-
ternational Journal of Computer and Telecommunications Networking,
vol. 45, no. 2, pp. 195–205, 2004.

[31] Z. Li, Y. Chen, and A. Beach, “Towards scalable and robust distributed
intrusion alert fusion with good load balancing,” in Proc. of the
2006 SIGCOMM workshop on Large-scale attack defense (LSAD ’06),
September 2006.

[32] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni, “A trust-
aware, p2p-based overlay for intrusion detection,” Proc. of the 17th
International Conference on Database and Expert Systems Applications
(DEXA’06), September 2006.

[33] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection in
the domino overlay system,” in In Proc. of the 11th Annual Network
and Distributed System Security Symposium (NDSS’04), February 2004.

[34] “Snort home page.” [Online]. Available: www.snort.org
[35] Prelude IDS technologies, “Prelude ids homepage.” [Online]. Available:

http://www.prelude-ids.org/
[36] H. Debar, D. Curry, and F. B., “The Intrusion Detection Message

Exchange Format,” RFC 4765, March 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4765.txt

[37] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of the
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware ’01), November 2001.

[38] “Freepastry home page,” available at http://www.freepastry.org/
FreePastry/.

[39] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp.
1489–1499, Oct 2002.

[40] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “Analysis
and results of the 1999 darpa off-line intrusion detection evaluation,”
in Proc. of the Third International Workshop on Recent Advances in
Intrusion Detection, Toulouse, France, October 2000.


