
1

Scalable, Confidential and Survivable
Software Updates

Federico Magnanini∗, Luca Ferretti†, Michele Colajanni‡

Abstract—Software update systems must guarantee high availability, integrity and security even in presence of cyber attacks. We
propose the first survivable software update framework for the secure distribution of confidential updates that is based on a distributed
infrastructure with no single points of failure. Previous works guarantee either survivability or confidentiality of software updates but do
not ensure both properties. Our proposal is based on an original application of a multi-authority attribute-based encryption scheme in
the context of decentralized access control management that avoids single-point-of-vulnerability. We describe the original framework,
propose the protocols to implement it, and demonstrate its feasibility through a security and performance evaluation.

Index Terms—Software updates, survivability, transparency, proprietary software

F

1 INTRODUCTION

The ability of deploying efficient and secure software up-
dates is one of the most critical aspects of any modern
information system. Although update systems have always
existed, they do not ensure high security against advanced
attacks [1], [2], [3]. Numerous efforts have identified that
essential security properties of software updates are authen-
ticity, freshness and transparency [4], [5], [6], [7], [8], and that
software update systems must guarantee availability and
provide fast, resilient and scalable dissemination of software
updates to ensure prompt application of security patches [9],
[10], [11].

We focus on proprietary software update systems, that
impose additional design constraints that do not charac-
terize open source software update systems. In particular,
proprietary software update systems must guarantee also
access control to prevent unauthorized clients from installing
unauthorized updates, and confidentiality of software up-
dates to protect from reverse engineering. Moreover, we
aim at a highly secure system that provides two essential
properties, that are recoverability, that allows administrators
to rapidly recover the system to a safe state after a security
incident, and survivability, that guarantees security even if
the software update system is partially compromised [6], [7],
[12], [13], [14]. Survivability implies avoiding the presence of
single points of failure or vulnerability within the system,
making it more difficult for an attacker to compromise
software updates in any part of the software development
or distribution process.

Previous proposals only satisfied subsets of the men-
tioned security requirements without presenting a unified
solution for the distribution of proprietary software up-
dates [7], [8], [11]. Some proposals focus on open source
software, thereby not considering access control and con-

• ∗ Department of Engineering “Enzo Ferrari”, University of Modena and
Reggio Emilia, Italy, federico.magnanini@unimore.it
† Department of Physics, Computer Science and Mathematics, University
of Modena and Reggio Emilia, Italy, luca.ferretti@unimore.it
‡ Department of Computer Science and Engineering, University of
Bologna, Italy, michele.colajanni@unibo.it

fidentiality requirements [7], [8]. Other work focuses on
confidentiality and access control but does not consider
survivability and recoverability requirements [11].

To bridge this gap in the literature, we propose a novel
comprehensive framework that is able to provide the secu-
rity guarantees that modern software update systems for
proprietary software should have. In particular, we design
the first survivable framework for the secure distribution
of confidential updates for proprietary software that sat-
isfies availability, scalability, resiliency, survivability and
recoverability requirements, while guaranteeing authentic-
ity, confidentiality, freshness, timeliness and transparency
of software updates to clients. The framework enforces
fine-grained access control policies over untrusted distri-
bution infrastructures, to comply with distinguished busi-
ness driven practices. To this aim, our proposal includes
two novel contributions of independent interest. First, we
extend existing Multi-Authority Attribute-Based Encryption
schemes through a novel technique that allows surviv-
able generation of decryption keys so that compromising
a threshold of key-generating actors does not allow at-
tackers to violate update confidentiality. Second, we de-
sign a novel protocol that allows distributed authentication
and encryption of software updates without single points
failure. We demonstrate the practicality of the proposed
framework through a performance evaluation of our novel
Multi-Authority Attribute-Based Encryption extension and
distributed authentication and encryption protocol.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 describes the
system and threat model. Section 4 outlines the overall
design. Section 5 describes the details of each operation.
Section 6 discusses the security of the proposed system.
Section 7 evaluates performance and costs. Section 8 reports
conclusions and future work.

2 RELATED WORK

This paper proposes the first survivable software update
framework that integrates all five attributes that should
characterize software updates (authenticity, availability,
freshness, transparency and confidentiality) and ensures all

2

five guarantees of a software update framework (to be fast,
scalable, resilient, survivable and recoverable) that does not
use a trusted third party for software distribution. In the
following we highlight our original contributions over pre-
vious proposals, which involve the attributes of survivability,
confidentiality and authenticity.

Confidentiality of software update binaries at rest and
in motion is important to protect software updates from
automatic exploit generation [15]. To guarantee confiden-
tiality of software updates on untrusted distribution infras-
tructures, related works adopt different types of encryp-
tion schemes. The proposal of [10] makes black-box use
of symmetric encryption to encrypt updates with a single
symmetric key to allow scalability in the number of clients.
The symmetric key is then broadcast to clients to allow
decryption. The proposal does not protect the confiden-
tiality of the key during broadcast and therefore is not
suitable for proprietary software. The authors in [11] adopt
the Ciphertext-Policy Attribute-based Encryption (CP-ABE)
scheme proposed in [16] to protect the symmetric key by
producing a single ciphertext for all clients. However, in
both proposals the key generation procedure of the adopted
encryption schemes is not designed to be distributed. This
choice represents a single point of failure for the security
of the system which, if compromised, would allow the
attacker to issue new keys and violate the confidentiality
of past and possibly future updates. For this reason, the
approaches proposed in [10] and [11] do not guarantee full
survivability. We enhance the survivability of the framework
by decentralizing the decryption key generation process by
extending the Multi-Authority Ciphertext-Policy Attribute-
Based Encryption (MA-CP-ABE) scheme of [17]. In particu-
lar, with an appropriate choice of encryption policies we can
tolerate the compromise of a threshold of key-generating
actors while guaranteeing the confidentiality of previous
and future updates. As a result, our proposal is the first
survivable software update system which can guarantee
confidentiality of software updates. Furthermore, our orig-
inal extension is fully recoverable as, once a compromise is
detected, administrators can easily restore the system to a
safe state, thereby ensuring service continuity.

Software updates frameworks should allow distribution
through untrusted infrastructures, hence it is mandatory
to guarantee end-to-end software authenticity [4]. The au-
thors of [7] guarantee end-to-end authenticity of software
updates through a public and permissioned blockchain that
stores authenticated update metadata. However, their pro-
posal cannot guarantee authenticity of confidential software
updates because it is designed for open-source software.
To guarantee authenticity of confidential software updates,
we improve over [7] in multiple ways. First, we design
a novel distributed protocol that authenticates encrypted
software updates without single points of failure and that
allows clients to verify that any update has been approved
by a number of authorized actors by means of multi-
signatures. Second, we extend the architecture of their pro-
posed blockchain to account for additional roles required to
authenticate confidential updates. Moreover, our proposal
extends their proposed blockchain to include the due au-
thenticated, survivable and non-equivocable mechanisms
and procedures that indicate the software update location

to clients. These mechanisms and procedures offer to system
administrators the flexibility of choosing and changing the
update location and the distribution infrastructure operator
as needed. These possibilities are not provided by the au-
thors in [7] that implicitly assume a way of authenticating
the update location and do not provide mechanisms to
authenticate a location change.

Finally, we integrate our original contributions by ex-
tending the architecture and ideas of [7], which allow our
proposal to inherit the attributes of availability, freshness,
timeliness and transparency. Moreover, our proposal guar-
antees fast, scalabile and resilient dissemination of software
updates by adapting the strategy introduced in [11] of pro-
ducing a single ABE ciphertext per update, to our protocols
based on Multy-Authority ABE.

3 SYSTEM AND THREAT MODEL

3.1 System model

The typical scenario for proprietary software update sys-
tems involves three entities: software house, (software) distri-
bution infrastructures and clients.

The software house includes a set of roles that share the
same interests. Within the software house, we denote as
developers a set of employees that can access source code,
compile it, produce software binaries, and are responsible
for approving new software versions that are identified
by increasing alphanumerical strings. Depending on the
characteristics of the software house, this role can be ac-
complished by actual developers or by other specialized
personnel, such as that dedicated to DevOps practices. The
software house approves updates that must be delivered to
clients. Each update consists of binaries and related source
code.

The software house relies on distribution infrastructures,
which could be managed by third parties such as Content
Delivery Networks (CDN) or community-managed mirror
servers. The software house also defines access control poli-
cies over software updates which are enforced by a trusted
distribution infrastructure.

Finally, clients represent the devices that store and exe-
cute the version of the installed software binaries produced
and maintained by the software house. Clients periodically
query the distribution infrastructure to check whether a new
update is available and, if so, they can download it from the
distribution infrastructure.

In the following we describe our proposal’s system
model. We extend the reference software house by adding
three roles: admins, authentication server and Attribute-based
Encryption (ABE) servers. We consider a software house
with nd developers, na admins, nr ABE servers and one
authentication sever. Each developer d ∈ [nd] has a signing
key pair dkd = 〈skd, pkd〉 and has access to the software
source code (src). Admins are responsible for managing
security-critical cryptographic material for authenticating
roles and enforcing access control policies. Each admin
a ∈ [na] has a signing key pair aka = 〈ska, pka〉 and has
access to the access control policies (P) that must be used
for encrypting software update binaries through MA-CP-
ABE. Authentication and ABE servers are responsible for

3

managing cryptographic material. ABE servers are authori-
ties responsible for issuing ABE keys to authenticated clients
for decrypting software updates. Each ABE server r ∈ [nr]
has an ABE authority key pair rkr = 〈skr, pkr〉 and the
set Aδ(r) of attributes to compute the decryption keys for
clients. The authentication server maintains the database of
registered clients and the corresponding authentication in-
formation, and assigns attributes to clients after a successful
authentication.

The distribution infrastructure maintains encrypted soft-
ware updates (encrypted binaries) associated with location
information that is used by other parties to retrieve updates.
Our proposal relies on untrusted distribution infrastruc-
tures by making use of Multi-Authority Ciphertext-Policy
Attribute-Based Encryption (MA-CP-ABE) [17], which guar-
antees confidentiality and enforces policy-based access con-
trol over software updates even on untrusted distribution
infrastructures. In this scheme an authority issues to clients
one or more private keys each encoding an attribute. The
encryption algorithm accepts a message and a policy ex-
pressed as a monotonic boolean formula over attributes,
and produces a ciphertext. A client is able to decrypt the
ciphertext if the attributes of his private keys satisfy the
boolean formula associated to the ciphertext. To this aim,
each registered client has a set SKcid of ABE keys for
decrypting software updates.

Finally, our system requires two additional roles that
are inherited from the scenario in [7]: validators and wit-
nesses. Validators audit and validate new software updates
through reproducible builds. Witnesses are nodes of a multi-
layer skipchain which is an authenticated append-only data
structure introduced by [7], that stores public cryptographic
material and software update metadata. Witnesses share
the same version of the multi-layer skipchain by using
a Byzantine-fault-tolerant state-machine-replication consen-
sus algorithm.

The proposed system considers nv validators and nw
witnesses. Each validator v ∈ [nv] has a signing key pair
vkv = 〈skv, pkv〉 and a signed copy of the source code for
update validation. Each witness w ∈ [nw] has a signing key
pair wkw = 〈skw, pkw〉 and maintains a copy of the multi-
layer skipchain.

3.2 Threat model

We consider an attacker that may be interested in vio-
lating confidentiality, authenticity, availability or integrity
of software updates. Violating confidentiality means that
the attacker can reverse engineer the update and look for
vulnerabilities in the previous or in the update version.
Compromising the authenticity and integrity of updates
may induce clients to download and install backdoored
software versions. Denying an update forces a client to keep
an outdated software version which may contain vulnera-
bilities that an attacker can exploit.

Our proposal protects software updates binaries and
clients against the mentioned attacks by using crypto-
graphic protocols, and assuming a computationally bound
attacker which is unable to break the security of the adopted
protocols or the security of their underlying cryptographic
primitives.

We inherit the following threshold assumptions from [7].
We assume that all actors communicate over authenticated
channels that can be eavesdropped by the adversary. Sur-
vivability is guaranteed through threshold variants of cryp-
tographic schemes.

We assume that no more than a threshold of td − 1 out
of nd developers is malicious. A developer is malicious if
he colludes with the attacker, if his signing key has been
compromised or if the attacker has compromised other parts
of the developers’ systems, such as by covertly installing a
compromised compiler.

We assume that no more than a threshold ta − 1 out of
na admins is malicious and that no more than tr−1 out of nr
ABE servers is malicious. We assume that the authentication
server is honest and that the attacker is unable to compro-
mise it. Furthermore, we assume that the authentication
mechanism adopted to authenticate clients is secure.

We assume that no more than tv − 1 validators and no
more than tw − 1 = bnw/3c witnesses are malicious. These
thresholds protect the correctness of the data inserted by
admins in the multi-layer skipchain and the security of its
consensus mechanism, that is executed by witnesses. More-
over, we assume that validators do not leak source code.
Indeed, since validators must receive the project source code
in plaintext form to validate it, developers must trust all val-
idators not to collude with the adversary. The validator role
represents a trade-off between source code confidentiality
and transparency of software updates. To the best of our
knowledge, enabling software transparency without relying
on third parties is still an open problem.

The distribution infrastructure may be untrusted that
is, attackers can replace, eavesdrop and modify software
updates during its distribution, but they cannot impede
availability for an unbounded amount of time.

A client with proper attributes can decrypt the update,
and an attacker that compromises or disguises as a client can
obtain access to the decrypted update and reverse engineer
it. To protect against malicious clients, it is possible to adopt
orthogonal solutions, such as patch obfuscation, to thwart
reverse engineering of the released binary. However, protec-
tions against similar threats are out the scope of this paper.
We assume that the client is honest and that an attacker
cannot break the update confidentiality by compromising
or impersonating a client.

4 FRAMEWORK DESIGN

4.1 Framework components and operations
We describe the proposed framework for secure software
updates by referring to Figure 1. This figure represents the
components of the system and its main operation flows. The
secure software distribution framework includes nine oper-
ations: (1) update authentication, (2) update validation, and
(3) publish are used by the software house members to make
a new update available for clients. The operations (5) check
for update and (6) download and decrypt update are used
by clients to detect and obtain new released updates, and
possibly detect attacks. The other operations are used for
additional security-related tasks: (4) client key refresh allows
clients to obtain new decryption keys; (7) key management,
(8) update policies and (9) change location allow admins to

4

Fig. 1. Architecture of the framework for secure software updates

rotate public keys, ABE attributes and update the location
of the encrypted binaries, respectively.

These operations are executed as follows. When a new
update is ready, admins and developers authenticate it
(1) and send the authenticated update to validators that
check the source-to-binary correspondence and return an
authenticated validity attestation (2). Admins append to
the multi-layer skipchain the authenticated metadata and
update attestations, and publish the authenticated binaries
(3) to the distribution infrastructure. A client, who has
already obtained a valid set of ABE keys (4), checks whether
new updates are available (5) by querying the multi-layer
skipchain. If available, the client downloads them from the
distribution infrastructure and decrypts them with his ABE
keys (6). In case the new update requires a policy change,
admins execute the update policies procedure (8) before
authenticating the update. If keys of any role need to be
rotated because of a security incident or because of key expi-
ration, admins execute the key management procedure (7).
If admins need to change the location of the latest update,
for example due to change in distribution infrastructure
provider, admins execute the change location procedure (9).

In the following two subsections, we outline the oper-
ations of the multi-layer skipchain and of the information
flow, respectively. Details of each operation are described in
Section 5.

4.2 Multi-layer skipchain

The witnesses maintain a multi-layer skipchain that guar-
antees freshness and non-equivocation of software update
metadata to clients and that allows admins survivable and
authenticated modification of the corresponding crypto-
graphic material. Our original design extends that proposed
in [7] and consists of eight layers shown in Figure 2. Layers
are stacked in the following order and are identified by
labels: admins (Lad), witnesses (Lw), validators (Lv), ABE
servers (Lr), attributes (Lat), update (Lu), location (Ll), time
(Lt). Each layer has specific constraints that newly appended
data must satisfy.

The first four layers (admins, witnesses, verifiers, ABE
servers) store public keys of admins, witnesses, verifiers,
and ABE servers, respectively. They allow admins to rotate
the public keys of these actors. We collectively refer to these
layers as keys metadata layers. A new set of public keys can
be added to any of the keys metadata layers only if it is
authenticated by at least a threshold of admins.

The attributes layer maintains the set of ABE attributes
that are adopted in the access control policy used to encrypt
the latest update with ABE. A new set of attributes can
be added to this layer only if the set is authenticated by
at least a threshold of admins. This layer allows admins
to change the set of valid attributes when needed, and
allows clients to receive the list of valid ABE attributes to
determine if they need to refresh their ABE keys (for details
about ABE key refresh, see Section 5.6). We note that admins
cannot change the set of ABE attributes of already released
encrypted binaries because the skipchain is append-only.
Any change would have no effect on existing ciphertexts
already published in the distribution infrastructure. A pol-
icy change, and consequently an attribute change, has effect
only on future updates.

The update layer maintains metadata about encrypted
binaries. New update metadata can be added to the update
layer only if they have been authenticated by a thresh-
old of admins, developers and validators. In particular,
validators are in charge of verifying the correspondence
between source code, encrypted binaries and metadata (see
Section 5.5).

The location layer maintains authenticated location in-
formation, such as a URL, about how to retrieve encrypted
update binaries from the distribution infrastructure. New
location information can be added to the location layer only
if it is authenticated by at least a minimum threshold of
admins. This layer allows admins to change the update
location when necessary.

The time layer maintains multi-signed, timestamped
hash pointers to the location layer, that are periodically
computed by witnesses. A new timestamp can be added
to the time layer only if it is authenticated by at least a

5

Fig. 2. The multi-layer skipchain for secure software updates

minimum threshold of witnesses and only if the timestamp
is greater than the previous timestamp, and not too far
into the future. Assuming that a client has a trusted and
reliable time source, this layer allows clients to detect freeze
attacks by comparing the most recent timestamp with the
client’s current timestamp, and verifying that the difference
between the two timestamps is within an upper bound
(freshness tolerance) that is determined by the admins in
the update metadata. We assume that a client can safely
bootstrap his copy of the multi-layer skipchain by securely
obtaining the admins public keys included in the genesis
skipblock of the admins layer.

4.3 Information flow
We describe the main operations supported by the system.
Details of each operation are reported in Section 5 and 6.

Setup. The goal of the setup operation is to authenticate
the public keys of all actors in the system. This opera-
tion is orchestrated by admins who act as trust anchor.
Each admin, witness, validator, ABE server and developer
generates a key pair and maintains the secret key confi-
dential. Then, admins act as certification authorities and
gather the public keys of witnesses, validators and ABE
servers. They collectively authenticate them through multi-
signatures and by assigning validity periods that produce
key metadata. Finally, admins store key metadata in the
appropriate skipchain layers.

Update policies. When the software house defines a new
access control policy or modifies an existing policy or when
admins rotate the ABE servers keys, admins compute a
new set of attributes and assign each attribute to an ABE
server. Admins communicate the new set of attributes to
the authentication server and append the new set to the
attributes skipchain layer.

Update authentication. When a new software update
is ready to be released, the source code must be approved
by validators. To this aim, developers and admins must
issue to them the source code together with cryptographic
material that assesses the compilation and encryption pro-
cedures used to produce the encrypted binaries distributed
to clients. The overall procedure includes five phases. A

threshold of admins authenticates the access control policy
(A), the freshness tolerance value that must be enforced
on the released software, and the set of developers that
are authorized to sign the update source code. Then, the
same admins communicate the authenticated access control
policy, the freshness tolerance and the developers public
keys to each authenticated developer. After these opera-
tions, a threshold of developers compiles the source code
through reproducible builds procedures, and all of them
obtain the same binary data. To obtain the same encrypted
binaries, the same developers collaboratively generate a
shared secret cryptographic key and encrypt the resulting
software binaries through a deterministic symmetric en-
cryption procedure. The developers also compute a digest
of the encrypted binaries and ABE-encrypted key. Finally,
the involved developers use a multi-signature scheme to
authenticate the source code and the generated public cryp-
tographic material.

Update validation. Admins send the authenticated
source code, the encryption key and authentication material
to validators for validation. Validators compile the source
code through reproducible build procedures and encrypt it
through deterministic encryption using the received encryp-
tion key. Then, they verify the correctness of the resulting
encrypted binaries against the received authentication ma-
terial. If verification is valid, the validators apply a multi-
signature to the received authentication material by interact-
ing with admins according to the required validation phase
of the consensus protocol used by witnesses. Finally, admins
send the location information, the authentication material
and the validators multi-signature to witnesses to update
the multi-layer skipchain.

Publish. Any admin can publish the encrypted software
binaries to the distribution infrastructure at the location
inserted in the multi-layer skipchain. We observe that the
encrypted binaries could also be published before the com-
pletion of the validate update algorithm to ensure the avail-
ability of the update to clients as soon as the multi-layer
skipchain is updated.

Client key refresh. To decrypt the encrypted binaries, a
client must obtain valid ABE keys from ABE servers of the
software house. We describe the procedure by assuming,
without loss of generality, that clients are already regis-
tered in the authentication server’s clients database. Each
client authenticates himself at the authentication server. This
server determines the ABE attributes that qualify it and
sends them to a threshold of ABE servers. ABE servers
respond with ABE keys and the authentication server for-
wards them to the client. We highlight that the keys obtained
by a client are related to the access control policy used to
encrypt binaries, and can be reused for unlimited software
releases as long as admins do not operate key rotations that
invalidate the client decryption keys, or use new attributes
for encrypting new software releases that are mandatory to
decrypt binaries. Only in these cases, and only if the client
still complies to the software house policies, a client must
obtain new ABE keys by re-executing the client key refresh
procedure.

Check for updates. Clients periodically check for up-
dates by requesting to witnesses the last skipchain updates.
Clients must always be able to obtain a response from

6

witnesses, and the response must always include updated
timestamps of the time layer. A missing response or a re-
sponse with stale or old time information are considered as
violations of the system availability, possibly due to ongoing
attacks. Clients verify the authenticity and integrity of the
received skipblocks by using admins and witnesses public
keys, and verify the authenticity of skipblocks payloads by
using admins, validators and developers public keys. A
new software release is available if and only if there is a
new authentic skipblock in the update layer. In this case,
clients extract the most-updated location information and
can proceed to obtain encrypted binaries.

Download and decrypt. Clients use the obtained lo-
cation information to query the distribution infrastructure
for the encrypted binaries. We assume that the distribution
infrastructure is always available and responds to client
queries. Clients download the encrypted binaries, verify
their authenticity and decrypt them by using ABE decryp-
tion keys to obtain plaintext software binaries. At this point,
the clients can install the software update binaries.

Key management. Occasionally, admins may have to
rotate, revoke or issue new keys to substitute compromised
keys, replace or remove misbehaving actors or add new
actors to the system. Admins rotate, revoke and issue keys
by collectively authenticating a new set of public keys and
sending it to witnesses that update the appropriate keys
metadata layer.

Change location. Finally, admins may need to change
the location of an update. Admins can notify clients about
the location change by appending new location information
in the corresponding layer of the skipchain. Thanks to
the design of the skipchain layers, this operation does not
require any modification to the update metadata and can be
operated without the intervention of the validators.

5 FRAMEWORK DETAILS

We describe the details of the proposed framework. For lack
of space and simplicity, we assume that the parameters of
the adopted schemes are already defined, including elliptic
curves, symmetric ciphers and different types of hash func-
tions (standard hash functions and those required to pro-
duce elliptic curve points). Moreover, we omit technicalities
such as translations between monotonic boolean formulas,
used in this paper, and monotone span programs, on which
ABE schemes are based (see [18] for details).

5.1 Adopted schemes and notations

We describe the operations frameworks of the adopted
Multi-Authority Ciphertext-Policy Attribute-Based En-
cryption scheme (MA-CP-ABE) [17], multi-signatures
scheme [19] and multi-layer skipchain (see Section 4.2).

MA-CP-ABE includes the following algorithms:
〈skr, pkr〉 ← AuthSetup(r): is a randomized algorithm

executed by each authority r ∈ R where R is the set
of authorities identifiers. The algorithm returns a key pair
〈skr, pkr〉.

sk ← KeyGen(cid, skr, er): is a randomized algorithm
that takes a client global unique identifier cid, authority’s r
secret key skr and an attribute er . The algorithm is executed

by the authority r responsible for attribute er and returns a
secret key sk for attribute er to the client identified by the
global unique identifier cid.

c ← EncryptABE(m,A, {pkr}): is a randomized algo-
rithm that takes a message m, an access-control policy A
expressed as a monotonic boolean formula over attributes,
and the set of public keys {pkr} of the authorities that
control at least an attribute in the policy. The algorithm,
which can be publicly executed, returns the ciphertext c.

m ← DecryptABE({sk}, c): is a deterministic algorithm
run by a client that takes the set of secret keys {sk} and a
ciphertext c. The algorithm returns plaintext m only if the
attributes associated with the client’s secret keys satisfy the
ciphertext policy.

Multi-signatures allow any subgroup L of a group of n
players {V1, . . . , Vn} to collectively sign a message m and
prove to a verifier that all members of L participated in
producing the message signature. We consider using the
scheme proposed in [19] based on BLS signatures [20], that
includes the following three algorithms.

〈ski, pki〉 ← KeyGen(1λ): is a randomized key genera-
tion algorithm run by each player Vi that returns key pair
〈ski, pki〉.
〈L, σ,m〉 ← MultiSign({ski}i∈L, m): is a possibly ran-

domized two-step interactive algorithm run by any subset
of players L ⊆ {V1, . . . , Vn}.

b ← Verify({pki}i∈L, σ,m): is a deterministic algorithm
run by the verifier and outputs b = 1 if and only if signa-
ture σ has been generated with MultiSign({ski}i∈L, m), 0
otherwise.

Multi-layer skipchain includes the following algo-
rithms:

σ ← Append(l, d): is an interactive algorithm executed
between a client and the nodes maintaining the multi-layer
skipchain. The algorithm, started by the client, takes a layer
identifier l and the data d the client wants to append to layer
l. If data d satisfies the constraints of layer l, then d is added
as payload of layer’s l new skipblock and nodes return to
the client a multi-signature σ of the pair 〈l, d〉 to confirm
that d has been appended to layer l.

(π, S) ← GetLatestSkipblocks(t): is an interactive algo-
rithm executed between the client and the nodes maintain-
ing the multi-layer skipchain. The algorithm, started by the
client, takes the latest timestamp t indicating the last time
the client updated the multi-layer skipchain, and returns the
set of skipblocks S the client lacks, and a proof π that the set
S is valid and fresh. In particular, the proof π contains the
latest timestamp t′ of the time layer, and the minimum set of
forward pointers and witnesses layer skipblocks required to
validate the set S.

0, 1 ← Validate(now, 〈π, S〉): is an algorithm executed
by the client that takes the client’s current time, denoted
as now, and the pair 〈π, S〉 obtained by the client with
GetLatestSkipblocks(·). The algorithm returns 1 if the proof
π for skipblocks S is valid and if the difference between now
and the proof timestamp t′ is within a certain threshold,
0 otherwise. We note that the threshold value may be an
application-defined value included in skipblocks payload.

7

5.2 Setup

We model the setup operation as:

Setup(1λ) (1)

where 1λ is the security parameter.
Key metadata attestations are attached to multi-

signatures to demonstrate the chain of trust between signers
and admins, and include metadata established by admins to
define authenticity threshold requirements. We define the
Key Metadata Attestation (KMA) as follows:

KMA = 〈〈{pk}, s, vb, ve〉 , ta, σKMA〉 (2)
σKMA ← MultiSign(SK, 〈〈{pk}, s, vb, ve〉 , ta〉),

SK ⊆ {ska} : |SK| ≥ ta
(3)

where s is the threshold on the minimum number of public
keys in {pk} used to verify multi-signatures, vb and ve
denote the begin and end of the attestation validity period
and ta is the threshold of signing admins required to update
the set {pk} in key rotation procedures. KMA is valid only
if σKMA is a valid multi-signature computed by at least ta
admins, and vb < ve.

Each admin generates his multi-signature key pair:

〈ska, pka〉 ← KeyGen(1λ) (4)

Admins compute the admins KMA (AKMA), which includes
the admins public keys, as following:

AKMA =
〈〈
{pka}a∈[na], ta, vb, ve

〉
, ta, σAKMA

〉
(5)

We note that, in this particular case, AKMA has the further
constraint of requiring verification by using a subset of the
public keys included in the attestation itself, similarly to
self-signed root certificates in PKI systems. We highlight
that the signing operation denotes a distributed protocol for
computing the multi-signature among mutually untrusted
parties, in this case admins.

Witnesses generate their multi-signature signing keys:

〈skw, pkw〉 ← KeyGen(1λ) (6)

and send their public keys {pkw} to admins. Admins compute
the witnesses KMA (WKMA), which includes the witnesses
public keys, as following:

WKMA =
〈〈
{pkw}w∈[nw], tw, vb, ve

〉
, ta, σWKMA

〉
(7)

where tw = bnw/3c+ 1.
Validators generate their multi-signature signing keys:

〈skv, pkv〉 ← KeyGen(1λ) (8)

and send their public keys {pkv} to admins. Admins compute
the validators KMA (VKMA), which includes the validators
public keys, as following:

VKMA =
〈〈
{pkv}v∈[nv], tv, vb, ve

〉
, ta, σVKMA

〉
(9)

In the following we denote as r ∈ R the identifier of
an ABE server, where R is the set of identifiers of all ABE
servers. Each ABE server generates his key pair 〈skr, pkr〉:

〈skr, pkr〉 ← AuthSetup(r) ∀r ∈ R (10)

All ABE servers send their public keys {pkr} to admins. Ad-
mins compute the ABE servers KMA (RKMA), which includes
the ABE servers public keys, as following:

RKMA =
〈〈
{pkr}r∈R, tr, vb, ve

〉
, ta, σRKMA

〉
(11)

Any admin initializes the appropriate skipchain layer by
executing Append(·, ·), as described in Section 5.1, using all
metadata obtained so far (AKMA, WKMA, VKMA, RKMA).
The admin then verifies that the returned multi-signatures
are valid and that the set of signers is a subset of the
witnesses specified in WKMA.

Developers generate their multi-signature signing keys:

〈skd, pkd〉 ← KeyGen(1λ) (12)

and send their public keys {pkd} to admins. We note that
developers public keys are authenticated during the update
authentication procedure (see Section 5.4).

We highlight that admins, developers, witnesses and veri-
fiers also generate the due cryptographic keys to establish
authenticated and confidential point-to-point communica-
tion channels, and to generate the required cryptographic
material in following phases. For ease of exposition we do
not specify their generation and usage as we rely on well
known cryptographic primitives.

5.3 Update policies
We model the update policies procedure as
UpdatePolicy(P, v, tr,R), where P denotes the access
control policy, v denotes the minimum version number to
which the policy applies, tr denotes the security threshold
for ABE servers, and R is the set of ABE servers.

The procedure must be used before releasing the first
software update, before releasing a new software update
that requires a novel policy, or whenever ABE servers public
keys are rotated. It transforms access control information
defined by the software house based on a single-authority
paradigm to the multi-authority setting of the proposed
architecture. It is composed of two phases:

• attribute derivation transforms the access control at-
tributes and produces an authenticated attributes ma-
trix A that assigns multi-authority attributes to each
ABE server. The matrix A is also appended to the
attributes layer of the multi-layer skipchain to be
available for clients to detect whether a key refresh
is needed (Section 5.6);

• policy translation transforms the single-authority pol-
icy P into the multi-authority policy A, which is used
in the update authentication procedure (Section 5.4).

We observe that attribute derivation must be operated only in
case of policies modifications that use novel attributes or in
case of ABE servers key rotations. Moreover, we note that
introducing novel attributes and rotating ABE servers keys
does not require re-executing the setup procedure because
the ABE scheme adopted in our proposal does not fix the
set of ABE servers and attributes during its setup (see
Section 5.1 for details about the ABE scheme, and Section 5.9
for details about ABE servers key rotation). This is a very
important property because it enables recoverability as we
discuss in Section 6. We highlight that, to the best of our

8

knowledge, the proposed approach in attribute derivation
and policy translation procedures is the first practical solution
that enables a survivable generation of ABE keys.

Attribute derivation. Admins receive the set of the at-
tributes that are used by the software house to define the
access control policy P. In the following, we denote these
attributes as original attributes for disambiguation, and we
model them as binary strings of potentially variable length.
To guarantee survivability, all ABE attributes of each ABE
server must be associated to original attributes in a bijective
relation. To this aim, admins enumerate all of original at-
tributes in an ordered set that we denote as P (e.g., by sorting
them with lexicographic comparisons). We denote as pj ∈ P
the jth original attribute, where j ∈ [|P |].

Given the set P of all original attributes and the set R
of all ABE servers, a selected admin computes the set of
ABE attributes assigned to each ABE server as following. To
this aim, he generates the ABE attributes matrix A of size
|R| × |P |. Each original attribute pj is mapped to column
j. Moreover, we assume that a function δ(·) : R → [|R|]
exists to map each ABE server r ∈ R to a row of the matrix.
Each element αjδ(r) in the matrix A is computed as the
concatenation of the public key of the row’s ABE server with
the column’s original attribute:

er,j := pkr||pj , r ∈ R, j ∈ [|P |] (13)

A :=
(
αjδ(r) : αjδ(r) ← er,j

)
,∀r ∈ R, j ∈ [|P |] (14)

Uniqueness of public keys implies uniqueness of ABE at-
tributes. All ABE attributes that differ only for the public
key part are syntactically different and semantically equiv-
alent. The jth column of A, denoted as Aj , contains all
semantically equivalent representations of original attribute
pj assigned to different ABE servers. The δ(r)th row of A,
denoted as Aδ(r), contains all ABE attributes of ABE server r.

Admins compute the Authenticated Attributes Map (AAM)
as:

AAM := 〈〈A, v〉 , σAAM〉 (15)

where v is the update version and σAAM is admins multi-
signature on tuple 〈A, v〉. A designated admin writes AAM to
the attributes layer of the multi-layer skipchain, by executing
Append(Lat,AAM). Witnesses append AAM only if σAAM is
valid.

Finally, a designated admin sends the pair〈〈
Aδ(r), v

〉
, σr
〉

to ABE server r, ∀r ∈ R. Each ABE
server obtains the latest version of admins public keys
from the admins skipchain layer and accepts the pair〈〈
Aδ(r), v

〉
, σr
〉

only if σr is valid.
Policy translation. In this phase, admins translate access

control policy P into a semantically equivalent policy A
expressed over the ABE attributes computed in the previous
attribute derivation phase. Without loss of generality, we
describe the translation phase by representing access control
policies P and A as boolean formulas expressed over original
and ABE attributes, respectively. The boolean formula repre-
senting P must be translated so that satisfying a threshold tr
of semantically equivalent ABE attributes implies satisfying
the corresponding original attribute. We recall that tr − 1
is the maximum amount of malicious ABE servers. A des-
ignated admin translates the original access control policy

by substituting each original attribute pj with a boolean
expression that returns true only if at least a threshold tr of
ABE attributes that are semantically equivalent to the original
attribute are true. To this aim, the admin computes the set Sj
of all possible subsets Sj of Aj of cardinality equal to tr ,
that is:

Sj :=
{
Sj : Sj ⊆ Aj , |Sj | = tr

}
(16)

where nr is the total number of ABE servers and is greater
than tr . The resulting boolean formula A is computed by
substituting each attribute pj of the original boolean formula
P as following:

pj ←
∨

Sj∈Sj

 ∧
e∈Sj

e

 ,∀pj ∈ P (17)

Example. To clarify the update policies procedure we
propose an example, where we consider a scenario in which
a new software update for “premium” users who have paid
a subscription fee is about to be published. The software house
defines the access control policy P as the following formula:

“premium” ∧ “paid” (Ex. 1)

We assume that admins have configured three ABE servers
(R = {r1, r2, r3}), and that they want to ensure 1-out-
of-3 survivability, that is, tolerating the compromise of
one ABE server. Admins extract and enumerate attributes
of Formula (Ex. 1) obtaining “premium” and “paid” (P =
{“premium”, “paid”}). In the following we use the binary
operator ‖ to denote the concatenation of the binary repre-
sentation of the operands. The attribute matrix A is:

ABE
servers

Attributes

premium paid

r1 “pkr1‖premium” “pkr1‖paid”
r2 “pkr2‖premium” “pkr2‖paid”
r3 “pkr3‖premium” “pkr3‖paid”

TABLE 1
Example attribute matrix A

In Formula Ex. 2 we represent semantically equivalent
attributes of Table 1 with the original attribute name and
with the row index as subscript. Admins can finally translate
formula Ex. 1 with the following semantically equivalent
formula:

(“pkr1‖premium” ∧ “pkr2‖premium”) ∨
(“pkr2‖premium” ∧ “pkr3‖premium”) ∨
(“pkr1‖premium” ∧ “pkr3‖premium”)

∧
(“pkr1‖paid” ∧ “pkr2‖paid”) ∨
(“pkr2‖paid” ∧ “pkr3‖paid”) ∨
(“pkr1‖paid” ∧ “pkr3‖paid”)

(Ex. 2)

5.4 Update authentication

We model the update authentication procedure as
AuthenticateUpdate(src, {pkd}, v,A,∆t), where src is the
update source code, {pkd} is the set of developers public

9

keys authorized to authenticate src, v is the update version,
A is the multi-authority policy and ∆t is the freshness
tolerance value. The goal of this phase is to compute two
categories of authenticated update metadata: Authenticated
Update Validation Metadata (AUVM), intended to be used
by validators in the update validation phase (Section 5.5),
and Authenticated Binaries Metadata (ABM), intended to be
used by clients during update retrieval (Section 5.7 and
Section 5.8). This procedure includes two phases operated
by admins and developers, respectively.

Admins bind the update version to the multi-authority
policy A and to the freshness tolerance value ∆t by multi-
signing tuples 〈A, v〉 and 〈∆t, v〉, producing signatures σAv
and σ∆tv :

σAv ← MultiSign({ska}, 〈A, v〉) (18)
σ∆tv ← MultiSign({ska}, 〈∆t, v〉) (19)

We observe that the two bindings are computed separately
because they must be verified in different procedures. Ad-
mins compute the developers KMA (DKMA), which includes
the developers public keys {pkd} authorized to authenticate
the update at version v, as following:

DKMA =
〈〈
{pkd}d∈[nd], v, td

〉
, ta, σDKMA

〉
(20)

We note that the DKMA attestation has the update version v
in place of the validity period bounds vb and ve defined in
KMA because the set of keys {pkd} is valid only for version
v.

Admins send DKMA and the tuples 〈σAv,A, v〉 and
〈σ∆tv,∆t, v〉 to each developer who verifies the multisigna-
tures σAv and σ∆tv .

A subset D ⊆ [nd] such that |D| ≥ td of developers
authorized in DKMA participates in the following oper-
ations. Each developer in D builds through reproducible
builds procedures the update source code src, obtaining the
update binaries bin:

bin← DeterministicBuild(src) (21)

Developers agree on a shared deterministic encryption key k
by using an authenticated group key agreement [21]:

k ← KeyAgree(1µ, {pkd}d∈D) (22)

where 1µ is the security parameter. Each participating devel-
oper encrypts the update binaries bin through deterministic
encryption with k and produces eb:

eb← EncryptDET(k, bin) (23)

Then, each participating developer uses a secure hash func-
tion H(·) to compute the digests hk, heb, hsrc and hbin:

hk ← H(k) heb ← H(eb) (24)
hsrc ← H(src) hbin ← H(bin) (25)

Each developer inD encrypts the deterministic encryption
key k through MA-CP-ABE encryption by using the multi-
authority policy A received by admins, and computes its
digest hekd with a secure hash function H(·):

ekd ← EncryptABE(k,A, {pkr}r∈R) ∀d ∈ D (26)
hekd ← H(ekd) ∀d ∈ D (27)

One designated developer determines the timestamp t
of the current update and computes the update validation
metadata uvm and binaries metadata bm:

bm := 〈hbin, heb, hk,DKMA, t, 〈v,∆t, σ∆tv〉〉 (28)
uvm := 〈hsrc, bm〉 (29)

The developer sends both of them to all other participating
developers. Each developer verifies their correctness by:

• recomputing hsrc and hbin, and by verifying that they
match the corresponding values in uvm and bm;

• verifying signature σ∆tv ;
• verifying that digests hk and heb are equal to the

digests computed in Equation 24;
• verifying that DKMA is valid, as defined in Sec-

tion 5.2;
• verifying that t is a timestamp indicating a plausible

time of creation of tuples bm and uvm.

Developers in D multi-sign uvm, producing AUVM:

AUVM = 〈uvm, σAUVM〉 (30)

Finally, participating developers gather the digests hekd and
multi-sign the tuple 〈bm, {hekd}〉, producing ABM:

ABM = 〈〈bm, {hekd}〉 , σABM〉 (31)

We highlight that the digests hsrc, hbin, heb and hk along
with signatures σAUVM and σABM are used to guarantee in-
tegrity and authenticity of source code, binaries and related
cryptographic material to validators and clients, respectively.

5.5 Update validation
We model the update validation procedure as
ValidateUpdate(src, k,AUVM,ABM, location), where src
is the update source, k is the deterministic encryption key,
AUVM and ABM are authentication material, location is the
address of encrypted binaries. The goal of this procedure
is validate source-to-binary correspondence and append
ABM and location to the update and location layers of the
multi-layer skipchain, respectively.

A designated developer sends AUVM, ABM and 〈src, k〉
to validators over a confidential and authenticated channel.
Each validator obtains the admins public keys {pka} and
the latest update version value v′ from the admins and
update skipchain layers, and verifies that AUVM, ABM, the
tuple 〈src, k〉 and version value v′ are correct and authentic
information by executing Algorithm 1. If all checks pass,
validators multi-sign ABM producing σVABM:

VABM := 〈ABM, σVABM〉 (32)

Then, a designated validator sends VAUM to admins.
Admins multi-sign the location of the update at version

ABM.v producing Authenticated Location AL which we define
as follows:

location := {loceb, locek1 , . . . , locek|D|} (33)

AL := 〈〈location, 〈ABM.bm.v, vc〉〉 , σAL〉 (34)

where loceb is the location of encrypted updates eb,
locek1 , . . . , locek|D| are the locations of encrypted keys ekd
and vc is a unique counter value used to denote the number

10

Algorithm 1 Metadata validation
1: function VALIDATE({pka}, AUVM, ABM, src, k, v′)
2: uvm← AUVM.uvm
3: bm← uvm.bm
4: DKMA← bm.DMKA
5: {pkd} ← DKMA.{pkd}
6: Verify({pkd},AUVM.σAUVM,AUVM)
7: Verify({pkd},ABM.σABM, 〈bm,ABM.{hekd}〉)
8: Verify({pka}, bm.σ∆tv, 〈bm.v, bm.∆t〉)
9: Verify({pka},DKMA.σDKMA,DKMA)

10: v′
?
< bm.v

11: AUVM.hsrc
?
= H(src)

12: bin← DeterministicBuild(src)

13: bm.hbin
?
= H(bin)

14: bm.hk
?
= H(k)

15: eb← EncryptDET(k, bin)

16: bm.heb
?
= H(eb)

of location changes for the same version v which, in this
procedure, is initialized to zero. Value vc is increased in
case of updates to the location and controlled by the wit-
nesses accordingly. A designated admin starts the PBFT-CoSi
protocol with witnesses by sending VAUM and AL to the
witness leader. During the pre-prepare phase of the PBFT-CoSi
protocol, witnesses verify multi-signatures σVAUM and σAL
with the latest validators and admins public keys specified
in the validators and admins skipchain layers, respectively.
If verification succeeds, witnesses append VAUM and AL to
the update and location layers, respectively. At the end of
PBFT-CoSi commit phase, the witnesses leader returns to the
designated admin an attestation of the correct execution of
the protocol.

5.6 Client key refresh

We model the client key refresh procedure as
ClientKeyRefresh(cid, Pcid,A), where cid is the unique
identifier of the client, Pcid is the set of original attributes
associated to the client by the software house and A is the
latest version of the ABE attributes matrix (Section 5.3). The
procedure generates a set of ABE keys SKcid assigned to the
client to decrypt update binaries (Section 5.8).

A client first authenticates to the authentication server by
presenting appropriate credentials that include the client
identifier cid. If authentication is successful, the authenti-
cation server retrieves the client original attributes Pcid from
its own database. By using the ABE attributes matrix A, the
authentication server assigns the set of client ABE attributes
C depending on the original attributes Pcid associated to the
client.

For ease of presentation, we model Pcid as a set of
indexes to the enumerated set of original attributes, as de-
scribed in the update policies procedure (Section 5.3), that is:
Pcid ⊆ [|P |].

Let us consider a key reliability parameter
fk ∈ [0, nr − tr − 1] that regulates the clients tolerance
to ABE servers key rotations. As an example, a value
fk = 1 guarantees that even if one ABE server rotates
his keys, the client is still able to decrypt future updates.
The authentication server chooses a subset of ABE servers

R̄ ⊆ R for which he releases decryption keys, such that
|R̄| = (fk + tr).

The matrix of client ABE attributes C is computed as:

C =
(
αjδ(r) : αjδ(r) ∈ A

)
,∀r ∈ R̄,∀j ∈ Pcid (35)

For ease of presentation, we denote as Cr the row of C
associated to server r. The authentication server sends to each
ABE server r ∈ R̄ the row Cr over a secure channel. Each
server r computes a set of ABE keys SKcid,r as:

SKcid,r := {sk : sk ← KeyGen(cid, skr, er),∀er ∈ Cr}
(36)

where we recall that skr is server’s r secret key. Each
ABE server r ∈ R̄ sends the set of keys SKcid,r to the
client through the authentication server. Once all ABE servers
in R̄ have responded, the client can compute the matrix
SKcid = (SKcid,r),∀r ∈ R̄.

The authentication server can adopt multiple strategies to
establish the value fk and the servers of the set R̄. The
number of keys the client receives depends on the value
fk. The value fk must lie in the range [0, nr − tr − 1] and
|R̄| = (fk + tr) because the client is able to satisfy policy
A only if ABE servers issue at least tr keys (see Section 5.3).
Moreover, tdecrypt ≤ nr because R̄ ⊆ R. To one extreme,
choosing fk = 0 minimizes the number of keys sent and
managed by the client, however it forces to refresh his keys
when any of the keys belonging to ABE servers in R̄ is
rotated. On the other extreme, choosing fk = nr − tr − 1
maximizes the number of keys sent to the client, but the
client is forced to refresh his keys only when nr− tr−1 ABE
servers keys have been rotated. As long as fk < nr − tr − 1,
the authentication server can choose which ABE servers issue
the new keys. This may be useful to load balance the key
generation process among ABE servers in case of bursty key
refresh workloads.

5.7 Check for updates

The goal of this procedure, which is started by a client,
is to efficiently update the client’s copy of the multi-layer
skipchain so that the client can determine whether new
software updates are available. We model the check for
updates procedure as CheckForUpdates(τt), where τt is the
last authenticated timestamp belonging to the time skipchain
layer that is known by the client and t denotes the tth

execution of check for updates. The procedure returns the
skipblocks between the current latest skipblock of each layer
of the multi-layer skipchain maintained by witnesses, and
the skipblocks pointed by τt. Moreover, it returns the latest
authenticated timestamp that the client uses in the next
invocation of check for updates.

The client requests the latest timestamp τ ′t+1 to at least
tw witnesses over an authenticated channel. If all timestamps
are equal, then the client sends

〈
τt, τ

′
t+1

〉
to any witness over

an authenticated channel. The witness determines the client’s
last skipblock for each skipchain layer by following the
hash pointer to the parent skipchain of each layer, starting
from the location skipblock pointed by τt. For each layer,
the witness determines the shortest chain of multi-signed
forward pointers between the client’s last skipblock and the
current latest skipblock. The witness sends to the client the

11

required skipblocks of the admins and witnesses layers, the
multi-signature chains and the latest skipblock of all other
layers. The client validates the multi-signature chains by
using the public keys contained in the witnesses skipblocks,
validates the witnesses skipblocks with the public keys con-
tained in the admins skipblocks, and finally validates the
timestamp τ ′t+1 obtained in the beginning by using the
latest set of witnesses public keys and by checking that the
timestamp respects the latest freshness tolerance value ∆t (see
Section 4.2). If skipchain validation succeeds, the client sets
τt+1 = τ ′t+1 for the following invocation of the same check
for updates procedure. The client checks the latest attributes
skipblock and executes the client key refresh procedure if he
needs to refresh his keys (see Section 5.6). If a new update
skipblock is present, then the client executes the download
and decrypt procedure described in Section 5.8.

Moreover, we observe that the network cost of transfer-
ring the multi-signature chains to clients is logarithmic in the
amount of skipblocks of each layer between τt and τt+1 [7].

5.8 Download and decrypt
The goal of the download and decrypt procedure is to let the
client download, authenticate and decrypt a new software
update after he determines its availability through the check
for updates procedure (Section 5.7). We model the procedure
as DownloadAndDecrypt(VABM,AL, SKcid), where VABM
and AL are authenticated data structures obtained from the
check for updates procedure, and SKcid is the client ABE keys
obtained from the client key refresh procedure.

We represent the procedure in Algorithm 2. In lines 2
through 10 the client downloads and decrypts eki, which
is the deterministic encryption key encrypted by developer
i with ABE encryption (Equation 26). If the digest of the
decrypted key is not equal to the digest included in the
VABM data structure, he tries to download and decrypt the
deterministic key encrypted by developer i+ 1 for all possi-
ble developers. When the client finds a valid key, he can start
the decryption procedure of the update binaries. To this aim,
he downloads the encrypted binaries from the distribution
infrastructure (line 12), validates their authenticity (line 13)
and decrypts them (line 14). We recall that the authenticity
of digest heb is guaranteed by σVABM included in VABM and
validated during the check for updates procedure. Finally, the
client can install the update binaries bin and complete the
update procedure.

5.9 Key management
The key management operations are accomplished by admins,
who collectively act as a root certification authority, and thus
are the only role responsible for rotating the public keys
of other roles. Each key management operation produces a
new authenticated set of public keys for a specific role. With
the only exception of the developers role, the new set is sent to
witnesses, who verify its authenticity, validate its correctness
and append it to the corresponding keys metadata skipchain
layer. In the following we describe key management opera-
tions for the different roles: admins, witnesses, validators, ABE
servers and developers.

Admins. Admins manage their keys {pka}, authenti-
cated in attestation AKMA, by self-authenticating a new

Algorithm 2 Download and decrypt
1: function DOWNLOADDECRYPT(VABM, AL, SKcid)
2: i← 0
3: repeat
4: i← i+ 1
5: loceki ← AL.location.loceki
6: eki ← Download(loceki)

7: H(eki)
?
= VABM.ABM.heki

8: k ← DecryptABE(SKcid, eki)
9: h← VABM.ABM.bm.hk

10: until i ?
= |D| ‖ H(k)

?
= h

11: loceb ← AL.location.loceb
12: eb← Download(loceb)

13: H(eb)
?
= VABM.ABM.bm.heb

14: bin← DecryptDET(k, eb)

set of public keys {pka}′a∈[na] in a new attestation
AKMA′. Admins must specify the new validity period
〈AKMA′.vb,AKMA′.ve〉, which must not overlap with the
validity period 〈AKMA.vb,AKMA.ve〉 (Equation 5). Admins
may also change the multi-signature threshold by specifying
AKMA′.ta 6= AKMA.ta. A threshold AKMA.ta of admins
multi-sign AKMA′ and send it to witnesses, that append it
only if it satisfies the security constraints (non-overlapping
validity periods, threshold and validity of signing keys).

Witnesses, validators. Admins manage the public keys
of witnesses and validators, authenticated in a key meta-
data attestation KMA (specifically, WKMA, VKMA for the
two roles, see Section 5.2), by computing a new attesta-
tion KMA′. Admins must specify the new validity period
〈KMA′.vb,KMA′.ve〉 which must not overlap with the va-
lidity period 〈KMA.vb,KMA.ve〉. A threshold KMA.ta of
admins multi-signs the new KMA′ and send it to witnesses,
that append it only if it satisfies the due security constraints.

ABE servers. Admins manage the public keys of ABE
servers, authenticated in a key metadata attestation RKMA
(see Section 5.2), by computing a new attestation RKMA′ as
outlined in Algorithm 3. If admins rotate ABE servers public
keys, admins must also execute the attribute derivation phase
of the update policies procedure to update the authenticated
attributes matrix A (Section 5.3). If admins change the value
of tr to t′r after removing or adding new ABE servers, admins
must also execute the policy translation phase of the update
policies procedure to compute a new multi-authority policy A
that complies to the new t′r . Admins can rotate ABE servers
keys to promptly recover from the compromise of up to
tr − 1 ABE servers without executing Setup(1λ) again, by
executing Algorithm 3. In line 2 admins update the set of
ABE servers by excluding the set of compromised ABE servers
Rc ⊂ R and including the set of new ABE serversR′ (where
|Rc| = |R′|). In line 3 each new ABE server in R′ generates
his signing key pair. In lines 4 and 5 admins authenticate the
new set of ABE servers public keys. In lines 6 through 8
admins update and authenticate the new attribute matrix
A′ in a new attestation AAM′ and finally in lines 9 and 10
admins append the new authenticated data structures AAM′

and RKMA′ to the appropriate skipchain layers.
Developers. Admins authenticate developers keys with the

DKMA attestation at every execution of the update authenti-
cation procedure (see Equation 20). For this reason, developers

12

Algorithm 3 Rotate ABE servers
1: function ROTATEABESERVERS({ska}, Rc, R′, v)
2: R = (R \Rc) ∪R′
3: 〈skr, pkr〉 ← AuthSetup(r) ∀r ∈ R′
4: σRKMA′ ← MultiSign({ska},

〈
{pkr}r∈R, tr, v′b, v′e

〉
)

5: RKMA′ =
〈〈
{pkr}r∈R, tr, v′b, v′e

〉
, ta, σRKMA′

〉
6: A′ ← UpdatePolicy(P, v, tr,R)
7: σAAM′ ← MultiSign({ska}, 〈A′, v〉)
8: AAM′ = 〈〈A′, v〉 , σAAM′〉
9: Append(Lr,RKMA′)

10: Append(Lat,AAM
′)

can freely rotate keys between software releases, and no
skipchain layer is dedicated to tracking their evolution.

We highlight that key management operations that alter
the number of actors within a specific role might impact
the security and the performance of the system. Removing
an actor might require the remaining actors within the
same role to guarantee higher level of availability or to
operate higher workloads to comply to the required multi-
signatures threshold. At the same time, lowering the thresh-
old would guarantee the same level of performance but
decrease the security level of the system. As an example,
reducing the number validators without also reducing the
corresponding multi-signature threshold VKMA.tv implies
that a higher percentage of validators must be available
during the update validation procedure. However, reducing
VKMA.tv implies tolerating a lower amount of malicious
validators. We note that the number of witnesses is nw =
3(tw − 1) + 1 due to the use of PBFT protocol, therefore
witnesses must not be less than 4.

6 SECURITY ANALYSIS

Survivability is guaranteed by the adoption of multi-
signatures coupled with validity thresholds and by the
accurate definition of access control policies, as described in
Section 5.3. This design choice allows the compromise of up
to a threshold of actors (admins, developers, ABE servers,
witnesses, verifiers) still guaranteeing that an adversary
cannot forge any authenticated cryptographic material pro-
duced in the procedures of our proposal. The key rotation
procedure (Section 5.9) ensures recoverability. In fact, if a
threshold of admins, witnesses, verifiers, ABE servers or
developers keys are compromised, then admins can recover
the system to a safe state by rotating the compromised keys
as soon as the incident is detected.

Authenticity of software updates is protected by ad-
mins and developers multi-signatures, who digitally sign
software updates data and metadata during the update
authentication procedure (Section 5.4). The authenticity of
developers and admins digital signatures is in turn guar-
anteed by the multi-layer skipchain that allows admins to
manage keys and act as a certification authority.

An adversary can try to break authenticity in several
ways: by compromising admins to issue rogue keys, by
compromising developers to authenticate malicious source
code, by compromising validators to approve malicious
update binaries or witnesses to equivocate or fork the multi-
layer skipchain. However, authenticity does not suffer from

single points of failure as the validity of a role’s multi-
signature is determined by an admin-defined threshold on
the number of signers, which is authenticated through attes-
tations published on the multi-layer skipchain (Section 5.2).
As a result, an adversary is unable to break authenticity
of software updates because we assume it is not able to
compromise more than a threshold of actors for each role.

Confidentiality. We evaluate confidentiality guarantees
by distinguishing the confidentiality of software updates
binaries and of source code. The former is protected against
an adversary who intercepts the binaries, either by com-
promising the distribution infrastructure or by intercepting
them while being sent to and downloaded from the distri-
bution infrastructure. The adversary can try to break the
confidentiality of intercepted software update binaries by
violating ABE servers to recover the decryption key k. As a
result, the confidentiality of software update binaries does
not suffer from single points of failure because, as described
in Section 5.3, the adversary must violate at least tr ABE
servers to be able to obtain the decryption key.

The confidentiality of software update source code could
be violated by corrupting a developer or a validator during
the validation phase. Concerning this issue, we consider
the typical approach of the literature assuming that the
confidentiality of software updates source code is based on
weakest-link security. Attacks by one developer could be
even minimized by adopting software management tech-
niques that segment source code and prevent one developer
to access the whole code and/or by detailed logging and
forensics mechanisms, but the integration of similar solu-
tions is out of the scope of this paper.

Freshness and timeliness. The multi-layer skipchain
ensures freshness of software updates. The adoption of
PBFT along with non-equivocation mechanisms guarantees
to clients a consistent view of the skipchain state and,
more specifically, of its latest skipblocks. As described in
Section 5.7, non-equivocation is obtained by querying at
least tw witnesses so that at least an honest witness is
queried. The honest witness guarantees to detect equivo-
cation attacks if he returns a response which is inconsistent
with the responses of other possible malicious witnesses.
Moreover, the time skipchain layer allows clients to detect
freeze attacks by an adversary who controls the communi-
cation channel of the client and presents a stale view of the
skipchain.

The timely and scalable distribution of software updates
is made possible by the design of the software update en-
cryption mechanism that produces a single ABE ciphertext
for all clients, thus allowing us to leverage existing distribu-
tion infrastructures, such as Content Delivery Networks.

Transparency is guaranteed by validators through the
update validation procedure (Section 5.5). Assuming that
validators use a trusted compiler, they can detect attacks
against source-to-binary correspondence in which an adver-
sary induces developers into signing backdoored software
update binaries that do not correspond to the original up-
date source code.

13

Operation Role Procedure Costs

ABE encryption Developer (1) pT + x (H + 3 p1+
p2 + 2 pT)

ABE decryption Client (6) x (3 e+H + pT)

ABE keygen ABE server (4) a(2H + p1 + 3 p2)

(1) Auth. update, (4) Key refresh, (6) Download & decrypt
TABLE 2

Computational costs

7 COSTS ANALYSIS AND PERFORMANCE EVALUA-
TION

We evaluate the overhead introduced by the proposed
framework and demonstrate that it achieves practical per-
formance. First, we analyze the computational, network and
storage costs of our contributions: MA-CP-ABE extension
and distributed update authentication protocol. Then, we
evaluate the framework performance by considering tim-
ings of actual state-of-the-art cryptographic libraries at mul-
tiple security levels and scenarios of increasing complexity.

7.1 Costs analysis
We analyze the computational costs of MA-CP-ABE in terms
of relevant primitive cryptographic operations and com-
plexity of access control policy formulas by referring to Ta-
ble 2. We denote the pairing operation as e, exponentiation
in G1, G2 and GT as p1, p2 and pT respectively, and hash to
G2 operation as H . Moreover, we denote as x the number of
rows of the linear secret sharing scheme (LSSS) matrix used
by the ABE scheme, that is equal to the number of logic
gates in the translated access control policy A plus one [22].
As we discussed in Section 5.3, the number of logical gates
in A can be computed by knowing the number of gates in
the original access control policy P, that we denote as γ, the
number of ABE servers nr , and the ABE server threshold tr .
The value of x can be computed as following:

x = γ + (γ + 1) · [tr ·
(
nr
tr

)
− 1] + 1 (37)

We observe that the encryption and decryption costs are
linear in x, which increases as a binomial function of nr and
tr. We recall that the value nr represents the number of het-
erogeneous ABE servers that do not share common-mode
failures [23]. Thus, it is unlikely that nr exceeds a few units.
We also observe that decryption is typically more expensive
than encryption due to the three pairing operations (3 · e)
and to the possibility of using optimizations for fixed bases
in point scalar multiplication operations in the encryption
operation [24] (only the point scalar multiplication p2 is
computed on a variable base). Finally, the key generation
phase depends on the amount of original attributes granted
to the client, that we denote as a (see Section 5.6). This
represent the worst case of a client requesting keys for all
attributes, such as at setup time. In other procedures, such as
policy updates (see Section 5.3), the client may request keys
for a subset of attributes. If some load balancing strategy is
applied, then the procedure in each key generation would
involve just a subset of the ABE servers (see Section 5.6).

We discuss network and storage overhead introduced
by ABE cryptographic material by referring to Table 3.
The first column (data) describes the type of cryptographic

Data Role Proc. Type Costs

ABE
ciphertext

Developer (1) �
GT + x (2G1 +G2 +GT)

Client (6) �
Dist.Inf (3) �� |D| (GT + x (2G1 +G2 +GT))

ABE
client keys

ABE server (4) � a (G1 +G2)

Client (4) �� a (tr + fk) (G1 +G2)

(1) Auth. update, (3) Publish, (4) Key refresh, (6) Download & decrypt
�: network costs, �: storage costs

TABLE 3
Storage and network costs

material. The second and third columns (role and procedure)
describe which actors are affected by these costs and in
which procedures of the framework, respectively. The fourth
column (type) indicates whether the material affects storage
or network costs for each actor. The last column includes
the costs with regard to the type of material, where we
denote the size of an element belonging to the groups G1,
G2 and GT as G1, G2 and GT , the number of developers
that participate in the update authentication procedure as
|D|, the key reliability parameter as fk, and the number
of original attributes granted to a client as a. The size of
the ABE ciphertext grows linearly as a function of x, thus
increasing as a binomial function of nr and tr for ABE
encryption and decryption costs. Moreover, the size of the
keys received and maintained by each client depends on the
values a, tr and fk because each of (tr + fk) ABE servers
send a keys of size (G1 +G2) (see Section 5.6).

As described in Section 5.4, our distributed update au-
thentication protocol includes the costs due our MA-CP-
ABE extension, and costs due to distributed key agreement
and deterministic encryption. We observe that any deter-
ministic symmetric encryption scheme adds only a minor
computational overhead with respect to probabilistic sym-
metric encryption schemes [25], that in turn are negligible
with regard to asymmetric encryption schemes. Moreover,
they do not add relevant network overhead. Thus, any role
that is able to operate MA-CP-ABE is also able to sup-
port deterministic encryption. We analyze the costs of the
distributed key agreement by considering an instantiation
based on authenticated group key agreement protocol [21].
Each developer executes 2|D|+1 group exponentiations and
3|D| signatures, where td ≤ |D| ≤ nd is the number of
developers that participate in the key agreement protocol.
Moreover, the network costs of each developer consist of
3|D| group elements and 3|D| signatures. If we consider
realistic values of |D| being within the tens of developers,
the amount of group elements and digital signatures that
a developer must compute and transmit introduce feasible
computational and network costs.

7.2 Performance evaluation

The performance evaluation of our MA-CP-ABE extension
is based on two pairing-friendly curves: BN256 [26] and
BN462 [27], which account for security levels of about 100
and 128 bits. In Table 4 we report timings expressed in
clock cycles and group element sizes expressed in bits. We
obtained timings by using the implementations included in
the MCL library v1.10 [28] compiled for Intel i7-8665U pro-
cessor. Moreover, we analytically computed element sizes
by using the curves parameters. For BN256 G1 = 256 and

14

Curve λ
Timings [Clock cycles] Size [bit]

p1 p2 pT e H G1 G2 GT

BN256 100 97 k 210 k 332 k 638 k 131 k 256 3063 3063
BN462 128 719 k 1.6 M 1.9 M 4.8 M 788 k 462 5535 5535

TABLE 4
Curves parameters and performance

nr tr γ x
BN256 BN462

Enc Dec Size Enc Dec Size
2 2 1 4 1.2 ms 2.0 ms 3.7 kB 7.3 ms 14 ms 6.7 kB
2 2 2 6 1.7 ms 3.0 ms 5.4 kB 11 ms 21 ms 9.7 kB
2 2 5 12 3.3 ms 5.9 ms 10.4 kB 21 ms 43 ms 18.7 kB
2 2 10 22 6.0 ms 11 ms 18.7 kB 38 ms 78 ms 33.7 kB
2 2 50 102 28 ms 51 ms 85.2 kB 177 ms 363 ms 153.8 kB
3 2 1 12 3.3 ms 5.9 ms 10.4 kB 21 ms 43 ms 18.7 kB
3 2 2 18 4.9 ms 8.9 ms 15.4 kB 32 ms 64 ms 27.7 kB
3 2 3 24 6.6 ms 12 ms 20.4 kB 42 ms 85 ms 36.7 kB
3 2 10 66 18 ms 33 ms 55.3 kB 115 ms 235 ms 99.8 kB
3 2 50 306 83 ms 152 ms 255.0 kB 530 ms 1.1 s 460.2 kB
4 2 10 132 36 ms 65 ms 110.2 kB 229 ms 470 ms 198.9 kB
5 3 3 120 33 ms 59 ms 100.2 kB 208 ms 427 ms 180.9 kB

TABLE 5
Evaluation of encryption and decryption times, and of the ciphertext

size

G2 = GT = k · G1 = 3072 bits, and for BN462 G1 = 462
and G2 = GT = k ·G1 = 5544 bits, where G1 is computed
by the designers of the curve with regard to the security
level and k = 12 is the embedding degree of both curves.
The sizes are computed by considering compressed elliptic
curve coordinates and uncompressed finite field elements.
In such a way, the size of G1 and G2 is equal to the size of
an element of the field over which the curve is defined.

To estimate the performance of the approach in realistic
scenarios, in Tables 5 and 6 we propose results based on
a set of parameters that are representative for real-world
scenarios. In both tables, we compute timings from the
clock cycles reported in Table 4 and formulas reported
in Tables 2 and 3, and in Equation (37) by considering a
modern x86 64 CPU operating at 4.8GHz. The considered
parameters influence the system performance: nr, tr , γ, a
and fk. In Table 5 we show encryption and decryption times
as well as ciphertext size which depend on parameters nr , tr
and γ. Moreover, in Table 6 we report key generation times
and the sizes of decryption keys for ABE servers and clients,
which depend on parameters a, tr and fk.

Results in Table 5 highlight that decryption, run by
clients, is the most expensive operation and typically costs
twice the encryption, run by developers. Our proposal is
practical in realistic scenarios where the number of ABE
servers nr and the amount of tolerable malicious servers
tr− 1 is of few units. For example, when nr = 3, tr = 2 and
γ is within tens of logical gates, timings are acceptable (if
γ ∈ [1, 10] then decryption takes between 60ms to 200ms).
A possible instance of the original access policy with γ = 3
is P = A ∧ (D ∨ (B ∧ C)).

Table 5 also reports the space overhead of a single ABE
ciphertext in columns “Size”, which corresponds to the
network cost for clients during the download and decrypt
procedure, and for developers during the authenticate up-
date procedure (see Table 3). As highlighted in Table 3, this
value must be multiplied by |D| so to compute the network
and storage costs of the distribution infrastructure bears
during the publish procedure. In realistic scenarios where

a (tr + fk)
BN256 BN462

Keygen Server Client Keygen Server Client

2
2

413 us 6.7 kB
13.3 kB

3.0 ms 12.0 kB
24.0 kB

3 20.0 kB 36.0 kB
6 39.9 kB 72.1 kB

3 3 619 us 10.0 kB 30.0 kB 4.5 ms 18.0 kB 54.1 kB
30 4 6.2 ms 99.8 kB 399.4 kB 45 ms 180.2 kB 720.7 kB

TABLE 6
Evaluation of key generation timings and key sizes

the number of ABE servers nr and the amount of tolerable
malicious ABE servers tr are within a few units, and the
number of logical gates γ of the original access policy is
within tens of gates, the overhead does not exceed 200KB.
When software updates are in the order of hundreds of
kilobytes, the space overhead of one ABE ciphertext has
a size comparable to that of the update. This overhead
becomes negligible in scenarios where software updates
tend to be in the order of ten megabytes or more.

Our performance evaluation shows that the timings for
generating ABE keys are acceptable even in cases where
a client satisfies several tens of attributes, as evidenced in
Table 6. Curve BN256 allows to compute a single ABE key
in 206.5 microseconds, allowing to generate 4842 ABE keys
per second. Curve BN462 allows to compute a single ABE
key in 1.5 milliseconds, allowing to generate 666 ABE keys
per second. We note that these throughput values consider
the maximum achievable throughput of a single machine
with a single core executing the key generation procedure.
Higher throughput values can be obtained by horizontally
and vertically scaling ABE servers or by choosing a key
reliability value fk such that 0 ≤ fk < nr − tr − 1, so that
the authentication server can apply load balancing strategies
to share the load between ABE servers, as we discussed
in Section 5.6. The network costs for ABE servers and the
network and storage costs for clients in scenarios where
a client satisfies a few attributes, tend to be several tens
of kilobytes. In extreme scenarios where a client satisfies
several tens of attributes of an unrealistically complex access
policy, the space overhead of ABE keys is several hundreds
of kilobytes.

Our analysis shows that the framework is practical for a
number of ABE servers in the order of several units, and a
number of developers and logical gates in access control
policies in the order of tens. In particular, the proposed
framework is better suited for scenarios in which software
updates tend to be in the order of megabytes. As a require-
ment to support the framework, clients must have enough
memory and storage capacity to maintain ABE decryption
keys and decrypt ciphertexts, that are typically of tens of
kilobytes each.

8 CONCLUSIONS

We propose an original framework that allows the secure
and survivable distribution of confidential software up-
dates. This framework is based on multi-authority attribute-
based encryption, and extends its key generation procedure
with an original technique to guarantee survivability. It is
based on a distributed infrastructure with no single points
of failure which is able to guarantee availability and security
even in the presence of partial compromises. We demon-
strate the practicality of the proposal through a performance

15

evaluation of our original key generation technique and of
the encryption scheme in the context of secure software
updates. The results show that the proposed framework
can achieve practical performance at 128-bit security level
on modern computers in realistic settings. This framework
paves the way to the design of secure and robust business-
oriented architectures for the distribution of confidential
software updates. Our proposal highlights even some inter-
esting open problems, such as the protection of source code
confidentiality with no weakest link security assumption,
and the possibility of enabling software transparency with-
out relying on third parties. These issues may be addressed
in future work that may well be integrated into the proposed
framework.

REFERENCES

[1] Kaspersky Lab, “Operation ShadowHammer: new supply chain
attack threatens hundreds of thousands of users world-
wide,” https://www.kaspersky.com/about/press-releases/2019
operation-shadowhammer-new-supply-chain-attack, 2019, Ac-
cessed Jun. 2020.

[2] Microsoft Defender ATP Research Team, “Win-
dows Defender ATP thwarts Operation Wily-
Supply software supply chain cyberattack,”
https://www.microsoft.com/security/blog/2017/05/04/windows-
defender-atp-thwarts-operation-wilysupply-software-supply-
chain-cyberattack/, 2017, Accessed Jun. 2020.

[3] NIST, “Software Supply Chain Attacks,” https://csrc.nist.
gov/CSRC/media/Projects/Supply-Chain-Risk-Management/
documents/ssca/2017-winter/NCSC Placemat.pdf, 2017,
Accessed Jun. 2020.

[4] A. Bellissimo, J. Burgess, and K. Fu, “Secure Software Updates:
Disappointments and New Challenges,” in HotSec, 2006.

[5] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in the
mirror: Attacks on package managers,” in Proc. 15th ACM Conf.
Computer and Communications Security, 2008.

[6] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Surviv-
able Key Compromise in Software Update Systems,” in Proc. 17th
ACM Conf. Computer and Communications Security, 2010.

[7] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive Software-
Update Transparency via Collectively Signed Skipchains and Ver-
ified Builds,” in Proc. 26th USENIX Security Symp., 2017.

[8] M. Al-Bassam and S. Meiklejohn, “Contour: A Practical System
for Binary Transparency,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, J. Garcia-Alfaro, J. Herrera-
Joancomartı́, G. Livraga, and R. Rios, Eds. Springer, 2018, vol.
11025.

[9] J. Li, P. L. Reiher, and G. J. Popek, “Resilient Self-Organizing
Overlay Networks for Security Update Delivery,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 1, 2004.

[10] H. Johansen, D. Johansen, and R. van Renesse, “Firepatch: Secure
and Time-Critical Dissemination of Software Patches,” in Proc.
IFIP Int’l Information Security Conf., 2007.

[11] M. Ambrosin, C. Busold, M. Conti, A.-R. Sadeghi, and
M. Schunter, “Updaticator: Updating Billions of Devices by an
Efficient, Scalable and Secure Software Update Distribution Over
Untrusted Cache-enabled Networks,” in Computer Security - ES-
ORICS, 2014.

[12] K. Trishank, B. Akan, A. Sebastien, M. Damon, B. Russ,
M. Cameron, L. Sam, W. André, and C. Justin, “Uptane: Securing
Software Updates for Automobiles,” in The 14th Escar Europe, 2016.

[13] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos, “Diplo-
mat: Using Delegations to Protect Community Repositories,” in
Proc. 13th USENIX Symp. Networked Systems Design and Implemen-
tation, 2016.

[14] T. K. Kuppusamy, V. Diaz, and J. Cappos, “Mercury: Bandwidth-
Effective Prevention of Rollback Attacks Against Community
Repositories,” in Proc. USENIX Annual Tech. Conf., 2017.

[15] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic
Patch-Based Exploit Generation is Possible: Techniques and Impli-
cations,” in Proc. IEEE Symp. Security and Privacy, 2008.

[16] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy
Attribute-based Encryption,” in Proc. IEEE Symp. Security and
Privacy, 2007.

[17] Y. Rouselakis and B. Waters, “Efficient Statically-Secure Large-
Universe Multi-Authority Attribute-Based Encryption,” in Proc.
Int’l Conf. Financial Cryptography and Data Security, 2015.

[18] A. Beimel, “Secure Schemes for Secret Sharing and Key Distribu-
tion,” PhD thesis, Technion-Israel Institute of Technology, 1996.

[19] A. Boldyreva, “Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme,” in Int’l Work. Public Key Cryptography, 2003.

[20] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from
the Weil Pairing,” in Proc. Int’l Conf. Theory and Application of
Cryptology and Information Security, 2001.

[21] E. Bresson and D. Catalano, “Constant Round Authenticated
Group Key Agreement via Distributed Computation,” in Proc. Int’l
Work. Public Key Cryptography, 2004.

[22] A. Lewko and B. Waters, “Decentralizing Attribute-Based En-
cryption,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2011.

[23] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Transactions on Dependable and Secure Computing, 2004.

[24] N. Pippenger, “On the evaluation of powers and related prob-
lems,” in 17th Annual Symp. Foundations of Computer Science. IEEE,
1976.

[25] S. Gueron and Y. Lindell, “GCM-SIV: Full Nonce Misuse-Resistant
Authenticated Encryption at Under One Cycle per Byte,” in Proc.
22nd ACM SIGSAC Conf. Computer and Communications Security,
2015.

[26] M. Naehrig, R. Niederhagen, and P. Schwabe, “New software
speed records for cryptographic pairings,” in Int’l Conf. Cryptology
and Information Security in Latin America. Springer, 2010.

[27] Y. Sakemi, T. Kobayashi, T. Saito, and R. S. Wahby, “Pairing-
Friendly Curves,” Internet Engineering Task Force, Internet-Draft
draft-irtf-cfrg-pairing-friendly-curves-05, Jun. 2020, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-irtf-cfrg-pairing-friendly-curves-05

[28] S. Mitsunari, “mcl: a portable and fast pairing-based cryptography
library,” https://github.com/herumi/mcl.

Federico Magnanini received the master’s de-
gree in computer engineering from the University
of Modena and Reggio Emilia, Italy in 2019. He
is working toward the PhD degree at the In-
ternational Doctorate School in information and
communication technologies (ICT) of the Uni-
versity of Modena and Reggio Emilia, Italy. His
research interests include information security
and distributed ledger technologies.

Luca Ferretti is assistant professor in com-
puter science and engineering at the Univer-
sity of Modena and Reggio Emilia. He received
the PhD degree at the International Doctorate
School in information and communication tech-
nologies (ICT) of the same university. His re-
search interests include information security and
applied cryptography.

Michele Colajanni is full professor of computer
engineering at the University of Bologna. He
received the Master degree in computer science
from the University of Pisa, and the Ph.D. degree
in computer engineering from the University of
Roma. He was assistant professor at the Univer-
sity of Roma, and full professor at the University
of Modena since 2000. His research interests in-
clude cybersecurity, performance and prediction
models, big data on cloud systems.

https://www.kaspersky.com/about/press-releases/2019_operation-shadowhammer-new-supply-chain-attack
https://www.kaspersky.com/about/press-releases/2019_operation-shadowhammer-new-supply-chain-attack
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-Management/documents/ssca/2017-winter/NCSC_Placemat.pdf
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-Management/documents/ssca/2017-winter/NCSC_Placemat.pdf
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-Management/documents/ssca/2017-winter/NCSC_Placemat.pdf
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-05
https://github.com/herumi/mcl

	Introduction
	Related work
	System and threat model
	System model
	Threat model

	Framework design
	Framework components and operations
	Multi-layer skipchain
	Information flow

	Framework Details
	Adopted schemes and notations
	Setup
	Update policies
	Update authentication
	Update validation
	Client key refresh
	Check for updates
	Download and decrypt
	Key management

	Security analysis
	Costs analysis and performance evaluation
	Costs analysis
	Performance evaluation

	Conclusions
	References
	Biographies
	Federico Magnanini
	Luca Ferretti
	Michele Colajanni

