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Abstract—The success of the cloud database paradigm is strictly related to strong guarantees in terms of service availability,

scalability and security, but also of data confidentiality. Any cloud provider assures the security and availability of its platform, while the

implementation of scalable solutions to guarantee confidentiality of the information stored in cloud databases is an open problem left to

the tenant. Existing solutions address some preliminary issues through SQL operations on encrypted data. We propose the first

complete architecture that combines data encryption, key management, authentication and authorization solutions, and that addresses

the issues related to typical threat scenarios for cloud database services. Formal models describe the proposed solutions for enforcing

access control and for guaranteeing confidentiality of data and metadata. Experimental evaluations based on standard benchmarks

and real Internet scenarios show that the proposed architecture satisfies also scalability and performance requirements.

Index Terms—Database, confidentiality, encryption, access control
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1 INTRODUCTION

THE diffusion of cloud database services is being hindered
by the perception of confidentiality risks when we store

our information in cloud infrastructures [1]. Cryptographic
solutions address this issue in the context of file storage
when there is no need to perform computations over
encrypted data. We aim, instead, to guarantee data confi-
dentiality and data isolation for cloud databases that repre-
sent an open research area. There are three main related
issues behind these two problems: execution of SQL opera-
tors over encrypted data; enforcement of access control
mechanisms through selective encryption strategies; design
of architectures not penalizing the performance and scalabil-
ity that are typical of cloud-based services [2]. Existing pro-
posals offer partial and separate solutions to data
confidentiality and isolation. For example, architectures sup-
porting SQL operations on encrypted data leave access con-
trol to the cloud provider [3] or enforce it through an
intermediate trusted server [4]. Other proposed architectures
solve the problem of access control without the intervention
of the cloud provider, but they do not allow execution of
SQL operations on encrypted data (e.g., [5], [6], [7]).

We propose the first architecture, called Multi-User rela-
Tional Encrypted DataBase (MuteDB), that guarantees data
confidentiality by executing SQL operations on encrypted
data and by enforcing access control policies through
selective encryption methods. By combining these two
approaches MuteDB is the only solution ensuring

confidentiality of data stored in the cloud even in the worst
threat scenario where legitimate database users collude
with cloud provider employees. This result is achieved
through an innovative model that translates access control
policies related to a plaintext database into selective encryp-
tion strategies that are applied to the corresponding
encrypted database. Our solution works even in dynamic
scenarios, in which users and access control policies change
over time, without the need to renew and redistribute
user credentials. The proposed architecture is specifically
designed for cloud database scenarios where multiple users
can access the cloud database through the Internet possibly
from different geographical areas. Special attention in the
architectural design is devoted to guarantee the same avail-
ability and scalability of a plaintext cloud database. For this
reason, MuteDB does not rely on any intermediate trusted
server that could become a system bottleneck and a single
point of failure. Moreover, it adopts innovative solutions for
guaranteeing efficient retrieval of database metadata that
are stored in an encrypted form in the cloud database.

We can consider MuteDB as the first architecture that
allows enterprises to leverage cloud database services while
achieving the same confidentiality guarantees of a tradi-
tional in-house database and the same scalability of a cloud
database service.

The performance and scalability of MuteDB are evalu-
ated through a prototype that is subject to different query
workloads based on standard (TPC-C) and recently
proposed (YCSB) database benchmarks. We highlight that,
as a further contribution, this paper reports the first perfor-
mance evaluation studies related to encrypted cloud data-
base services in real distributed environments where the
clients are geographically distributed over the PlanetLab
platform [8]. Experimental results show that MuteDB does
not affect the scalability of the original cloud service, and
its performance for geographically distributed clients
are comparable to those of unencrypted cloud database
services.
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The remaining part of this paper is organized as follow-
ing. Section 2 describes the main threats affecting a cloud
database service and that are addressed by our solution.
Section 3 outlines the main features of the MuteDB architec-
ture. Section 4 describes the novel encryption and access
control enforcement schemes for guaranteeing data isola-
tion. Section 5 describes the methods for managing
encrypted metadata that are stored in the cloud database.
Section 6 details the fundamental operations of MuteDB for
SQL query execution and privilege management. Section 7
presents the experimental results obtained in a geographi-
cally distributed environment. Section 8 discusses related
work. Section 9 summarizes the main conclusions and
future work.

2 THREAT MODEL

We propose an architecture guaranteeing confidentiality
and isolation of data stored in cloud database infrastruc-
tures that are subject to two types of threats: those related to
specific roles, and those deriving by the collusion of these
roles. The literature focuses on the former threats, while our
proposal aims to respond to both classes.

Typical threat models in literature identify the possible
issues related to four roles: the tenant database administra-
tor (DBA), the tenant database users, the cloud provider
employees, and people external to tenant’s and provider’s
organizations. We describe our assumptions based on the
four roles and then we consider collusion.

The DBA is the only role that has access to all tenant
data. He is in charge of installing and configuring the
database, implementing the access control policies and
managing the users credentials. As in related literature, our
threat model assumes that the DBA is trusted. Possible
measures to verify the loyalty of the DBA, such as hashed
logging, continuous monitoring and supervision, are out-
side the scope of this paper.

External attackers have no legitimate access to the infra-
structure and data of the tenant organization nor to those of
the cloud provider. They can try to access tenant information
through several types of attack: by eavesdropping data in
motion between the tenant clients and the cloud servers, by
compromising the cloud servers and/or the tenant clients.

The cloud insiders are employees of the cloud provider
that have access to the cloud infrastructure hosting the data-
base service of the tenant organization. Their behavior is
honest but curious [9], that is, they may be interested in
accessing tenant data, but they do not modify or delete
them. This assumption is considered realistic in all related
literature [3], [4], [5], [10] and the motivation should be
clear. While reading data would remain unnoticed by a ten-
ant, the detection of any data modification would penalize
the trust and reputation of the cloud provider in the eyes of
all of its customers.

Tenant insiders refer to database users having legitimate
access to a subset of the tenant data stored in the cloud
database. The portion of accessible data is defined by the
access control policies of the tenant organization. Tenant
insiders may try to gain access to more information by
escalating their privileges through a violation of the
access control policies.

Guaranteeing data confidentiality in the cloud against
external attackers, cloud insiders, and tenant insiders under
the assumption that they do not collude can be achieved
through some combinations of existing solutions. For exam-
ple, best practices in the field of authentication and secure
communication protocols hinder external attacks. Recent
SQL-aware cryptographic strategies [3], [4] allow a tenant to
store encrypted data thus preventing cloud insiders and
external attackers from reading tenant data. Standard data-
base access control mechanisms, such as privilege GRANTS
and reference monitors [11], limit the operations of tenant
insiders within their legitimate authorizations. Existing
access control mechanisms at the database engine side guar-
antee confidentiality and isolation in traditional in-house
deployments where the infrastructure is managed by trusted
personnel, but they do not work as well for cloud database
services because they do not consider the main threats posed
by a collusion between a cloud and a tenant insiders when
data are encrypted through a global master key.

In a cloud database scenario, the malicious operations of a
tenant insider are limited by access control policies, but these
policies cannot prevent the possibility that a tenant insider
discloses its credentials including its decryption key(s) to a
cloud insider. The latter, that has access to all the encrypted
data and can bypass the access control policies enforced at
the cloud side, can violate the confidentiality of the entire
database by means of the key(s) received by the tenant
insider. A second collusion scenario may happen if a cloud
insider delivers some encrypted data to a tenant insider that
is not authorized to access them. In this scenario the tenant
insider can leverage its credentials to decrypt all encrypted
data, thus violating the tenant access control policies.

Let us anticipate a summary of the design choices and
novel solutions that allow MuteDB to protect data against
external attackers, cloud insiders and tenant insiders, and
against collusion between these roles. External attackers
that eavesdrop network traffic cannot access any plaintext
information because SQL operations issued to the cloud
database are protected by using standard encryption proto-
cols (e.g., SSL). Cloud insiders and external attackers that
have breached the cloud servers cannot access confidential
information, because MuteDB encrypts tenant data with
SQL-aware encryption algorithms and the cloud provider
never obtains the decryption keys. Tenant insiders cannot
perform privilege escalation attacks on the encrypted data-
base thanks to a novel scheme that translates and enforces
the database access control policies defined by the tenant
DBA on the plaintext database to the encrypted one. Even
in the worst case of a collusion between tenant and cloud
insiders, the proposed solution limits the data leakage to
the amount of information that is accessible to the colluding
tenant insider, because MuteDB does not delegate the
enforcement of access control policies to the cloud provider.

3 ARCHITECTURE

In this section we outline the main solutions adopted in the
MuteDB architecture that guarantee data isolation and con-
fidentiality on any relational cloud database service rented
by a tenant organization. The solutions and operational
details are described in the following three sections.
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In Fig. 1 we evidence a tenant organization in which a
trusted DBA machine hosts the MuteDB DBA client, that is
the application for the creation and management of the
encrypted database. All tenant database users can issue SQL
operations directly to the cloud database even from geo-
graphically distributed locations by executing a MuteDB cli-
ent on their machines. The entire set of tenant data are stored
in an encrypted form in the cloud database. Thanks to the
use of SQL-aware encryption strategies, the cloud database
engine can execute queries on encrypted data without
accessing any decryption keys. Even metadata that are neces-
sary to manage encryption strategies are considered critical
information, hence MuteDB stores them encrypted in the
cloud database: the DBA and the tenant users can efficiently
retrievemetadata through standard SQL queries. We refer to
the encrypted forms of tenant data andmetadata as encrypted
tenant data and encrypted metadata, respectively.

Unlike existing proposals, MuteDB does not use any
trusted intermediate proxy [4] and key distribution server
[7], nor it stores large amounts of cryptographic informa-
tion and metadata in the client machines [12]. We assume
that the DBA is the only subject that owns root credentials
for the DBA client, and that no internal nor external
attackers are able to access, steal or crack the credentials.
The DBA manages user accounts, and enforces the tenant
access control policies. These policies represent the set of
rules adopted by the tenant organization to define which
user can access to which subset of tenant data. The impor-
tance of data isolation through access control policies
should be clear: the tenant users must access all and only
authorized data where authorizations are specified as if
the database was maintained by the tenant. On the other
hand, the mechanisms for implementing access control
policies are complicated by the cloud database service
scenario. MuteDB offers the following original solutions.
Each user is provided with a set of user credentials includ-
ing all information that allows him/her to access all and
only the legitimate data. The encrypted data cannot main-
tain the same structure of the plaintext version, and the
wide literature on enforcing access control policies on

relational databases (e.g., [11], [13]) does not propose
how to extend these policies on SQL-aware encrypted
cloud databases. Hence, to the best of our knowledge,
this paper is the first addressing the issue of transforming
authorization rules expressed on a plaintext database into
rules enforced in the SQL-aware encrypted database.

The access control matrix is the most common solution for
describing discretionary access control policies [7], [14], [15].
Each row is associated with a database user and each column
is associated with a structure (e.g., column, table, database)
that is defined as a subset of tenant data onwhich it is possible
to apply an authorization rule. Each cell of the access control
matrix defines whether a user can or cannot access the corre-
sponding structure. For example, the access control matrix in
Fig. 1 denotes that user 1 and user 2 are allowed to access the
structureA, and the structuresB andC, respectively.We pro-
pose an original model that maps the 1:1 correspondence
between the sets of plaintext data and the encrypted data on
which the tenant access control policies are defined. For
example, in Fig. 1 MuteDB maps plaintext tenant data A, B,
and C into encrypted tenant data a, b, and g, respectively.
The access control policies are satisfied by enforcing any
authorization rule expressed over a plaintext structure on the
corresponding access group (e.g., A and a). The details of our
model and solution are described in Section 4.3.

A similar solution works for a database stored in-house,
but it does not guarantee the confidentiality of data stored
in the cloud because a cloud insider can access the storage
devices. Hence, MuteDB enforces the access control policies
through selective encryption strategies. Selective encryption
requires the encryption of data through multiple encryption
keys at a granularity that depends on the reference access
control model. Since our target is a discretionary access con-
trol model that is expressed over database structures, we
use a different encryption key for each structure of the
encrypted database. Each user credentials include small
cryptographic information consisting of a unique secret key
that allows him/her to calculate the database decryption
keys through derivation algorithms (e.g., [16], [17]). This
choice avoids the generation and distribution of new cre-
dentials even if the access control policies change (Section 6).
We note that our proposal can be combined with symmetric
or asymmetric SQL-aware encryption algorithms; more-
over, the derivation scheme is designed to fit symmetric,
private or public keys of different lengths.

We conclude this section by describing the main opera-
tions required to create and access the encrypted cloud
database. The DBA is in charge of translating the access con-
trol policies into an access control matrix used by MuteDB.
The DBA client takes as its input the original plaintext data-
base, and produces the encrypted tenant data. The struc-
tures of the plain database are mapped to access groups
within the encrypted tenant data. In the example of Fig. 1,
the structure A is mapped to the encrypted access group a.
Moreover, the DBA client produces metadata that are
encrypted and then stored in the cloud database. The DBA
distributes unique secret keys to the users at the creation of
their accounts according to the access control matrix. These
keys enable the users to access (decrypt) all and only the
subsets of encrypted tenant data corresponding to the struc-
tures on which the users have legitimate access. In the

Fig. 1. Architecture of MuteDB.
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example of Fig. 1, the user 2 credentials can only be used to
decrypt data included in the access groups b and g. Each
user can execute SQL operations through the MuteDB client
installed on his/her client machine. The client takes as its
inputs the user credentials and the encrypted metadata
stored in the cloud database, and translates plaintext SQL
operations into encrypted SQL operations that can be exe-
cuted on encrypted data. MuteDB guarantees the isolation of
the tenant data and protects also the names of the database
structures by enforcing access control on all these sets of
information. This solution avoids that a cloud insider infers
some information about the content of the database by know-
ing the names of the tenant database structures. Our choice
of subjecting structure names to access control enforcement
guarantees data isolation and confidentiality but it compli-
cates the management of encrypted queries and metadata
retrieval. The detailed solutions ofMuteDB for access control
through encryption and for metadata management are
described in Section 4 and Section 5, respectively.

4 ACCESS CONTROL AND DATA ENCRYPTION

We now introduce the MuteDB models and schemes for
combining encryption and key management to support
data confidentiality and isolation in cloud databases. After
the presentation of the models related to access control in
plaintext (Section 4.1) and encrypted (Section 4.2) databases,
we describe how MuteDB transforms an access control
matrix for the plaintext model to a matrix suitable for the
encrypted database (Section 4.3), and how it generates user
credentials (Section 4.4).

Let R be the set of resources that represent plaintext ten-
ant data, S the set of plaintext database structures, E the set
of encrypted tenant data, U the set of users, and K the set of
encryption keys. We define A as the access control matrix
where, for each user u 2 U and for each structure s 2 S,
there exists a binary authorization rule a 2 A that defines
whether an access to s by u is denied (au;s ¼ 0) or allowed
(au;s ¼ 1).

The user u capability list capu denotes the set of structures
accessible to u. We assume the existence of a decryption
function D : E � K 7�! R such that for each encrypted
resource e 2 E, there exists a key k 2 K that allows us to cal-
culate r ¼ Dðk; eÞ, where r 2 R. For the sake of simplicity,
we define er 2 E and kr 2 K as the encrypted resource
and the decryption key for the resource r 2 R, that is,
r ¼ Dðkr; erÞ. For each user u 2 U , we define the keyring
Ku � K as the set of all the decryption keys known by u,
and the user accessible resources Ru as the set of all and only
resources that u is able to decrypt through the keys included
in Ku. The idea is that an encryption scheme can enforce ten-
ant access control policies if the users keyrings include the
keys that decrypt all and only the resources belonging to
their capability lists [5].

4.1 Plaintext Database Model

Wemodel the plaintext database through the following triple:

P :¼ ðS;�;RÞ; (1)

where ðS;�Þ is the partially ordered set (poset) of the data-
base structures, and R is the set of resources representing

the tenant data. Each element s 2 S is a structure of the
database (e.g., a table, a column), and the ordering operator
x � y (x; y 2 S) denotes that x is an ancestor of y, and y is a
descendant of x. If a third structure z 2 S : x � z � y does
not exist, then we use the notation x �> y, where x is a parent
node of y, and y is a child node of x. We remark that a par-
ent (child) is also an ancestor (descendant), while the oppo-
site is not true. All inclusion relations between the database
structures are represented as parent-child relations in the
poset (e.g., the column c of the table t is represented by
t �> c). Each element r 2 R is the set of all information stored
in a column of the database. If we model the structure poset
as a hierarchical tree, there is a 1:1 correspondence between
each resource r 2 R and each leaf of the poset tree. As an
example, we refer to Fig. 2 that represents the model of a
plaintext database schema (s1) containing two tables (s2, s3),
each consisting of two columns (s4, s5, and s6, s7). The col-
umns denote the leafs of the poset tree. The set of data
stored in each column is represented as a resource, that is,
r1 represents the actual data stored in the column s4. The
labels associated with the structures are the actual names of
the database structures that are concatenated to the absolute
path from the root of the structure poset. For example, the
label of the structure s4 is denoted by ‘db.t1.c1’.

The proposed plaintext database model is a poset that
extends the structure poset ðS;�Þ with the resources R: a
structure s 2 S associated with a resource r 2 R is a parent
of the resource r (s �> r); all structures s

$ 2 S that are ances-
tors of s (s

$ � s) are also ancestors of r (s
$ � r).

We model the access control rules on the plaintext data-
base through the triple ðU;S;AÞ, where U is the set of users,
S is the set of structures, and A is the access matrix [15]. An
authorization rule on a structure also grants an access to all
descendant structures and resources. For example, the rule
au1;s3 ¼ 1 authorizes u1 to access s3 and all its descendant

structures and resources, that is, s6; s7; r3, and r4.

4.2 Encrypted Database Model

Assuming that a tenant organization owns a plaintext rela-
tional database, the first goal is to preserve the confidentiality
of the tenant data and even of the database structures because
also the table and the column names may leak some informa-
tion about tenant data. To these purposes, we encrypt tenant
data through SQL-aware cryptographic schemes that allow
SQL operations on encrypted data: different algorithms sup-
port different subsets of SQL operators.

Fig. 2. The poset representing a plaintext database.
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Encrypted data are contained in encrypted tables stored
in cloud database servers. For each plaintext table, the
MuteDB DBA client generates the corresponding encrypted
table and a unique encryption key. The name of the
encrypted table is computed by encrypting the name of the
plaintext table through that key. The encryption algorithm
used for encrypting the table names is a standard AES algo-
rithm in a deterministic mode (e.g., CBC with constant ini-
tialization vector). In such a way, only the users that know
the plaintext table name and the corresponding encryption
key are able to compute the name of the encrypted table.
The deterministic scheme is preferred because it allows a
1:1 correspondence between plaintext and encrypted tables
and improves the efficiency of the query translation process
(see Section 6).

As a plaintext database column could correspond to mul-
tiple encrypted columns, MuteDB does not straightfor-
wardly encrypt its name. Instead, the name of each
encrypted column is computed by encrypting the concate-
nation of the names of the plaintext column and of the
encryption algorithm through the standard deterministic
AES function using the encryption key associated with the
plaintext column.

We model the encrypted database through the set E,
that is an extension of the plaintext database model P

(see Equation (1)):

E :¼ ðS;�;R;G;V;F;K; E; T ; u;GÞ; (2)

where:

� ðS;�;RÞ is the poset that represents structures and
resources belonging to the database, as modeled in
the previous section;

� G is the set of the access groups, where each g 2 G is a
set of structures Sg � S;

� V is the set of derivation keys that are used to compute
resource keys; each access group has exactly one der-
ivation key, hence a user u that owns an authoriza-
tion for the access group g is able to obtain the
derivation key vg 2 V associated with g;

� F is the set of the SQL-aware encryption algorithms
used to encrypt the resourcesR;

� K is the set of resource keys used to encrypt plaintext
resources;

� E is the set of encryption groups, where each group
e 2 E denotes a set of resources Re � R that are
encrypted through the same encryption key ke and
the same SQL-aware encryption algorithm f 2 F;

� T is the set of tokens; each token t 2 T is a public
value that is used to compute derivation and
resource keys;

� u is a derivation function that allows the computation
of derivation keys; it is defined as:

u : V � G � T 7�! V (3)

8ða; bÞ 2 G � G : a �> b ) 9! t : uðva; b; tÞ ¼ vb: (4)

An implementation example of derivation function
is proposed in [16].

� G is a function that allows the computation of
resource keys for all the resources descending from

structures included in an access group, and that is
defined as:

G : V � G �Fn 7�! Sn �Kn (5)

8ða;FBÞ; a 2 G; B :¼ fb 2 E : b <� ag
) Gðva; a;FBÞ ¼ fðc; kbÞ : b 2 B; c 2 S; c �> bg:

(6)

An implementation case using the AES algorithm
and metadata is proposed in Section 5.

Let us explain the proposed model by referring to the
example of the encrypted database shown in Fig. 3, where
the encrypted database structures (s1; . . . ; s10) are repre-
sented by triangles, the access groups (g1; . . . ; g7) by boxes
with rounded corners, the encrypted resources (r1; . . . ; r7)
by circles, and the encryption groups (e1; . . . ; e6) by boxes.
In this example, there is one database schema (s1) that con-
tains two tables (s2; s3). The table s2 contains four columns
(s4; . . . ; s7), and the table s3 contains three columns (s8; . . . ;
s10). Each column is associated with the corresponding set
of encrypted resources (e.g., r1 represents the actual data
stored in column s4). This scheme shows associations
between access groups and structures, and between encryp-
tion groups and encrypted resources. The access group g2
includes the structure s2, and g5 includes the structures
s5; s6; s7. Similarly, the encryption group e1 contains r1 and
e4 contains r4; r5.

Fig. 4 refers to the same encrypted database represented
in Fig. 3, but it highlights the relations among access and
encryption groups. Here, each access group g1; . . . ; g7 is
associated with a derivation key v1; . . . ; v7. Similarly, each
encryption group e is associated with an encryption key k
and an encryption algorithm f. As an example, the encryp-
tion group e2 is associated with the algorithm f1 and the
encryption key k2. The definition of encryption groups is
driven by cross-column operations. If multiple encrypted
columns are involved in cross-columns operations (e.g.,
JOIN), they must belong to the same encryption group
because they must share the same resource key. For exam-
ple, both resources r4 and r5 belong to the encryption group
e4, and are encrypted through the algorithm f3 using the
key k4. Each arrow represents a parent-child relationship
between two access groups, or one access group and one
encryption group. Each arrow that connects two access

Fig. 3. Scheme of the structure of an encrypted database.
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groups is associated with a token. As an example, a parent-
child relationship g1 �> g2 is associated with the token t1;2.

4.3 Access Control Enforcement Strategy

For the sake of clarity, from now on we refer to the pro-
posed models of plaintext (1) and encrypted (2) databases
by using the following disambiguated notations:

P :¼ ðSP ;�;RP Þ
E :¼ ðSE;�;RE;G;V;F;K; E; T ; u;GÞ:

We define that for each plaintext structure si 2 SP ,
there exists an associated access group gi 2 G in the
encrypted database. In particular, we highlight that the
access group gi is identified by the same name of the
plaintext structure si. Each encrypted structure se 2 SE

has an encrypted name. All and only users authorized to
enter the access group gi know the corresponding deriva-
tion key vi, and are able to know the names of the
encrypted structures se included in gi.

From this definition, it follows that the access control
matrix A defined by the triple ðU;SP ;AÞ for the plaintext
database P (Section 4.1) can also be applied to the triple
ðU;G;AEÞ defined for the encrypted database E. As a con-
sequence, MuteDB transparently transforms an authoriza-
tion rule au;si 2 A defined on a plaintext structure si into

the authorization rule au;gi 2 AE which is defined on the

corresponding access group gi. The authorization rules
are automatically enforced in the encrypted database
because a user u is authorized to access se if and only if
he/she is able to calculate the derivation key vi associated
with the corresponding access group gi.

Let us give an example by referring to Figs. 2, 3 and 4. If a
user u is authorized for the database structure s2 of the
plaintext database (as in Fig. 2) by the access control
matrix A, then he/she is also authorized for the access
group g2 of the encrypted database (see Fig. 3) by the access
control matrix AE . Hence, this user is able to access all the
descendant access groups by using the public tokens and
the derivation key v2 (see Fig. 4). The user is also implicitly
authorized to access the encryption groups descending
from g2, and can decrypt all the encrypted resources that
are included in these encryption groups. In the considered

example, the user u owns an implicit authorization to g4
and g5. Hence, he/she is also implicitly authorized to access
e1; e2; e3; e4, and can decrypt the resources r1; r2; r3; r4; r5.

Just to give a detailed example, we describe how u is
able to decrypt r3. Since u is authorized for g2, he/she
already knows the derivation key v2 and also the token t2;5
because all the tokens are public, and g5 because it is a
descendant of g2. Hence, u can compute v5 through Equa-
tion (4): v5 ¼ uðv2; g5; t2;5Þ. After having computed v5, u can
employ Equation (6) to compute the set of keys associated
with the encryption groups e2; e3; e4 and the encrypted
names of the associated structures s5; s6; s7: Gðv5; g5; ffe2

;

fe3
;fe4

gÞ ¼ fðs5; k2Þ; ðs6; k3Þ; ðs7; k4Þg. As the information

included in the encrypted resource r3 belongs to the encryp-
tion group e3, it can be decrypted through the key k3.

4.4 Generation of Credentials

We now describe the credentials distribution scheme D used
to generate and deliver secret keys to tenant database users.
The DBA client applies this scheme to enforce the access
rules included in the access control matrix AE :

D :¼ ðU;G;AE;V; T ; uÞ; (7)

where ðU;G;AEÞ represents the access control rules applied
to the encrypted database, V and T are the sets of derivation
keys and tokens as described in Section 4.2, u is the deriva-
tion function defined in Equation (4).

Each user u 2 U owns a single derivation key vu 2 V, and
a set of public tokens T u � T . The user u is able to calculate
the derivation keys vg 2 V through the function u if and
only if there exists an associated token tvu;vg 2 T u. In order

to enforce the access rules in the access control matrix AE ,
the DBA client randomly generates the derivation key vu for
each user u, where vu represents the secret key that is
included in the credentials of the user. After that, the DBA
client scans the access control matrix by rows, thus obtain-
ing the capability list of each user. For each access group g
that is included in the capability list capu, the DBA client
computes a token tvu;vg , and inserts it in T u.

5 METADATA MANAGEMENT

Database metadata include all information allowing a
MuteDB client to translate plaintext SQL operations into
operations working on the encrypted database.

We describe the original solutions adopted by MuteDB
to manage metadata. Existing proposals use trusted infra-
structures to store and distribute metadata information
[4], [18] or require database users to maintain them
locally [12]. These schemes simplify metadata manage-
ment, but they limit scalability and availability of a cloud
database service. The MuteDB alternative is to store meta-
data in the cloud database together with encrypted tenant
data. This approach allows each client to access metadata
directly and concurrently through standard SQL opera-
tions, thus avoiding system bottlenecks and single point
of failures at the tenant side. Metadata contain sensitive
information, hence it is necessary to store them in an
encrypted form. Unlike the proposals of the same authors
in which all users are provided with the same master

Fig. 4. Scheme of the access and encryption groups of an encrypted
database.
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encryption key [3], MuteDB proposes a new metadata
management strategy that enforces access control policies
at the encryption level, by generating a different encryp-
tion key for each user and by ensuring that each user is
able to decrypt all and only encrypted tenant data on
which he/she has legitimate access.

The na€ıve solution of using the same encrypted metadata
structure and to enforce access control policies by replicat-
ing metadata for each user has several drawbacks: metadata
replication causes storage overhead and requires some con-
sistency management scheme. This requires locking and
synchronization mechanisms that increase concurrency con-
flicts and lower database performance as the number of
users increases. The novel metadata management strategy
proposed in this paper guarantees the following benefits:
each user is provided with unique credentials that allow
him/her to encrypt and decrypt only information on which
he has legitimate access; MuteDB clients can perform all
operations supported by the SQL-aware algorithms in the
encrypted database concurrently and independently; the
DBA is the only subject authorized to modify database
metadata in order to enforce changes of the access control
matrix such as granting and revoking access authorizations.

Independently of the number of users, MuteDB stores all
metadata in three tables. The database tokens table contains
all information related to the encryption enforcement
scheme. The database encryption table contains all information
related to the algorithms and keys used to encrypt resour-
ces. These two tables include all information required by
the encrypted database model proposed in Section 4.2. The
users tokens table stores all information related to the users
credentials (see Section 4.4). Each of these tables has two col-
umns: the first column is used as an index to access the
actual metadata that are stored in the second column.

In the database tokens table, each row is associated with
a structure, namely s, of the plaintext database. The index
column is the result of a deterministic MAC function
applied to the name of the structure by using the derivation
key associated with s as its encryption key. The metadata
column memorizes the set of data associated with all the
children of s. Each child is represented by two values: the
former is an encrypted version of the child name, obtained
by using the AES algorithm and the derivation key associ-
ated with s; the latter is a public token that links s to the
child. Structures described in this table are not leafs (i.e., col-
umns) of the hierarchical representation of the plaintext
database. Table 1 is an example of database tokens table
associated with the encrypted database represented in
Fig. 3. The StructureID is the index column, and DBToken is
the metadata column. The first row includes information

related to the structure s1 that represents the database
schema. The StructureID stores an encrypted version of its
name (MACðv1; ‘db0Þ), and DBToken contains the informa-
tion related to the two children tables ‘db:t1

0 and ‘db:t2
0. For

example, for ‘db:t2
0 it stores AESðv1; ‘db:t20Þ which is the

encrypted version of its name, and t1;3 which is the public
token that allows users that know v1 and ‘db:t2

0 to compute
the derivation key associated with ‘db:t2

0 (v3) by means of
Equation (4).

The database encryption table represents the relation-
ships between columns in the encrypted and plaintext data-
bases. Each row is associated with a column, namely c, of
the plaintext database. The index column of this table has
the same structure of the index column of the database
tokens table. The metadata column stores the set of data
associated with all the encrypted columns related to c. Each
encrypted column is represented by two values: the former
is an encrypted version of the name of the SQL-aware
encryption algorithm, obtained through the AES algorithm
and the derivation key associated with c; the latter value is
an encrypted version of the resource key used to cipher
data stored in the encrypted column. This key is encrypted
through the AES algorithm and the derivation key of c.
Table 2 is an example of database encryption table, where
ColumnID is the index column, and Enc is the metadata
column. The second row includes information related to the
plaintext column ‘db:t1:c2

0. The Enc column includes meta-
data associated with the three encrypted columns s5; s6; s7
within the access group g5 (Fig. 3). As an example, the
resource r4 included in s7 is encrypted through the algo-
rithm f3 and the resource key k4. It is worth to observe that
also r5 is encrypted through the algorithm f3 and the
resource key k4, because r4 and r5 belong to the same
encryption group and hence they share the same encryption
algorithm and resource key.

The users tokens table contains information that is neces-
sary to each user to derive his/her resource encryption keys.
Each row is associated with a user. The index column stores
a MAC computed over the user identifier with the user deri-
vation key. The metadata column memorizes a set of data in
which each element represents an explicit authorization to
access a structure of the plaintext database. Each authoriza-
tion includes two values: the former is the name of the struc-
ture encrypted through AES and the user derivation key; the
latter is the public token that allows the user to compute der-
ivation key associated with the encrypted structure.

Let us consider an example in which four users
(u1; . . . ; u4) have legitimate access to different structures of

TABLE 1
Database Tokens Table

StructureID DBToken

MACðv1; ‘db’Þ fAESðv1; ‘db:t1’Þ; t1;2g,
fAESðv1; ‘db:t2’Þ; t1;3g

MACðv2; ‘db:t1’Þ fAESðv2; ‘db:t1:c1’Þ; t2;4g,
fAESðv2; ‘db:t1:c2’Þ; t2;5g

MACðv3; ‘db:t2’Þ fAESðv3; ‘db:t2:c1’Þ; t3;6g,
fAESðv3; ‘db:t2:c2’Þ; t3;7g

TABLE 2
Database Encryption Table

ColumnID Enc

MACðv4; ‘db:t1:c1’Þ fAESðv4; ‘f1’Þ; AESðv4; k1Þg
MACðv5; ‘db:t1:c2’Þ fAESðv5; ‘f1’Þ; AESðv5; k2Þg,

fAESðv5; ‘f2’Þ; AESðv5; k3Þg,
fAESðv5; ‘f3’Þ; AESðv5; k4Þg

MACðv6; ‘db:t2:c1’Þ fAESðv6; ‘f1’Þ; AESðv6; k5Þg,
fAESðv6; ‘f3’Þ; AESðv6; k4Þg

MACðv7; ‘db:t2:c2’Þ fAESðv7; ‘f4’Þ; AESðv7; k6Þg
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the plaintext database of Fig. 2. The user u1 has an explicit
authorization for ‘db:t1

0 and ‘db:t2
0; u2 for ‘db:t2

0; u3 for ‘db0;
u4 for ‘db:t2:c2

0. We recall from Section 4.1 that users are
implicitly authorized to access all the descendant structures
and resources. Table 3 shows the content of the users tokens
table in the corresponding encrypted database.

An important objective of the metadata table design is to
avoid disclosure of any association between the encrypted
database structures and the metadata, and between the
users and the metadata information. To this purpose,
MuteDB uses AES, MAC functions and random initializa-
tion vectors. As a result, the same metadata or structure
identifier is never encrypted to the same ciphertext value,
thus making each of them indistinguishable to a cloud
insider even if he colludes with a legitimate database user.

6 OPERATIONS

In this section we describe how database operations are per-
formed by the MuteDB clients. By referring to the same
encrypted database, users and access control policies pre-
sented in Section 5, we consider the three most important
use cases from the point of view of this paper: translation of
a plaintext SQL operation into an encrypted operation; pro-
visioning a new user with access privileges; revocation of
existing privileges.

Query translation. We describe how a plaintext SQL oper-
ation is translated into an encrypted operation by taking as
an example that the user u1 has to execute the following
operation: SELECT SUM(c2) FROM t1 WHERE c1 > 10. We
assume that the encryption algorithm f1 used to encrypt r1
is order preserving [19], and the algorithm f2, which is used
to encrypt r2, is homomorphic with respect to sums [20].
We also assume that this is the first execution of the MuteDB
client, hence no metadata is cached locally, but the only
information available is vu1, that is the u1 derivation key
included in the user credentials. The MuteDB client of u1
retrieves the u1 tokens from the user tokens table (ut-table)
by executing the following query: SELECT UToken FROM
ut-table WHERE UserID ¼ MACðvu1; ‘u10Þ. This operation
returns all the structures for which u1 is explicitly autho-
rized and the related tokens. The MuteDB client decrypts
the structure names by using its own derivation key vu1 and
computes the derivation key v2 by using the public token
tu1;v2 because the query requires an access to the table t1. A

second query is executed on the database tokens table (db-
table): SELECT DBToken FROM db-table WHERE StructureID
¼ MACðv2; ‘db:t10Þ. This operation returns encrypted col-
umn names and their tokens. By using v2, the u1 client
decrypts these names and computes the derivations keys v4

and v5 required to operate over encrypted versions of the
columns t1:c1 and t1:c2. The MuteDB client executes the
third query on the database encryption table (enc-table):
SELECT Enc FROM enc-table WHERE ColumnID ¼ MACðv4;
‘db:t1:c1

0Þ OR ColumnID ¼ MACðv5; ‘db:t1:c20Þ. The results
include resource keys and encryption algorithms of all the
encrypted columns corresponding to the plaintext columns
t1:c1 and t1:c2. The MuteDB client decrypts algorithms
names and resources keys. Since t1:c2 has three encrypted
representations, the client chooses f2 as its encryption algo-
rithm and k3 as its resource key. Now, the client owns all
the information required to translate the plaintext query
into the encrypted query. First it computes the names of the
encrypted table s2 and of the encrypted columns s4 and s6:
s2 ¼ AESdetðv2; ‘db:t10Þ; s4 ¼ AESdetðv4; ‘db:t1:c10j‘f1

0Þ, and s6
¼ AESdetðv5; ‘db:t1:c2 0j‘f2

0Þ, where AESdet represents deter-
ministic AES encryption using a constant initialization vec-
tor. Moreover, the client encrypts the constant value ‘10’ as
y ¼ f1ðk3; 10Þ. The encrypted query is: SELECT HSUM(s6)
FROM s2 WHERE s4 > y, where HSUM is a remote stored
procedure that executes homomorphic sums [20]. Metadata
are cached by the MuteDB clients, hence the successive exe-
cutions of SQL operations using the same metadata do not
require a metadata retrieval from the cloud database. In
most workloads metadata caching allows the client to
directly encrypt queries. In the use case scenarios that
include database structure modifications, MuteDB can
leverage standard isolation mechanisms to guarantee con-
sistency of encrypted data and metadata as proposed in [3].

User creation and privilege provisioning. Whenever a new
user is created or when access control policies change by
giving more privileges to an existing user, the DBA has to
update metadata reflecting the new access control policies.
The creation of a new user implies the generation of a new
derivation key, and the insertion of a new row in the users
tokens table. The index field of the new row is the determin-
istic MAC computed over the user identifier through the
user derivation key. Since the metadata field of the row
related to the new user is empty, at this point the user can-
not access any structure of the encrypted cloud database. To
provision a new privilege to an existing user, the DBA
updates the metadata field of the user tokens table row
related to that user by inserting all metadata information
related to the new authorization. This information includes
the encrypted version of the plaintext structure for which
the user is authorized, and the new public token that the
user needs to compute the structure derivation key. We
highlight that MuteDB is able to provision new privileges
with no necessity of distributing new credentials to the
users. This necessity represents one of the main disadvan-
tages of existing architectures for access control enforce-
ment that store encryption keys and complex metadata
structures in client machines (e.g., [5]).

User removal and privilege revocation. When a database
user is removed or when some of his access privileges are
revoked, we have to invalidate all information related to the
revoked privileges because the user should not be able to
decrypt information for which he/she is no longer autho-
rized. These operations include the renewal of metadata,
and the re-encryption of encrypted information through
download/upload operations of encrypted tenant data

TABLE 3
Users Tokens Table

UserID UToken

MACðvu1; ‘u1’) fAESðvu1; ‘db:t1’Þ; tu1;v2g,
fAESðvu1; ‘db:t2’Þ; tu1;v3g

MACðvu2; ‘u2’) fAESðvu2; ‘db:t2’Þ; tu2;v3g
MACðvu3; ‘u3’) fAESðvu3; ‘db’Þ; tu3;v1g
MACðvu4; ‘u4’) fAESðvu4; ‘db:t2:c2’Þ; tu4;v7g
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from/to the cloud database. They are among themost expen-
sive processes of any architecture that enforces access control
of outsourced data through encryption. Indeed, other coun-
termeasures (e.g., access limitation to the database, updating
just tokens or derivation keys) that do not include data re-
encryption do not guarantee confidentiality because the user
may have maintained locally a private copy of resource keys
and use them to collude with a cloud insider. In addition
to resource re-encryption, MuteDB updates metadata by
renewing all the encryption keys of the revoked resources,
and the tokens and derivation keys that were used to obtain
these encryption keys.We describe themetadata update pro-
cess by considering as an example the revocation of access
privileges on table t2 for user u1 (see Figs. 3 and 4). Renewing
resources encryption keys require the DBA client to identify
all encryption groups that are descendant of the access group
related to t2. In this example, the access group is g3 and all
descendant encryption groups are e4; e5; e6. The DBA client
generates a new random resource key for each encryption
group, and generates new random derivation key for g3 and
for the descendant access groups g6 and g7. Then, it computes
all tokens that point to or that exit from any access groups for
which a new derivation key has been generated, that are
t1;3; t3;6; t3;7, and between users and access groups, that are
tu2;v3 ; tu4;v7 . These operations are efficiently executed by

MuteDB thanks to the fine-grained storage granularity of the
access control enforcement scheme and ofmetadata tables.

7 EXPERIMENTAL EVALUATION

In this section we evaluate the performance and scalability
of the proposed architecture by using workloads based on
the standard database benchmark TPC-C and on the cloud
database stress test YCSB [21] executed by concurrent cli-
ents that are geographically distributed over ten different
countries of the Planetlab platform [8]. The experimental
results on a real setting represent an additional contribution
of this paper.

7.1 Experimental Testbed

TheMuteDB prototype is implemented in Python. It supports
the main data manipulation (SELECT, INSERT, UPDATE,
DELETE) and data definition (CREATE, DELETE) operations
of the SQL language with no required modification of the
cloud database service, and it can be ported to any relational
DBMS and to any commercial cloud database service.

The current implementation of the MuteDB prototype
includes all the encryption algorithms that are necessary to
support each SQL operation of the TPC-C and YCSB work-
loads on the encrypted database columns. For example,
equality check is supported by deterministic ciphers (DET)
that preserve data equality [22], [23], [24]; order comparison
operations, that is, ¼, <, >, 	, 
, can be executed through
Order Preserving Encryption (OPE) [19] that preserves the
same order of unencrypted data; sum of integers is made
available through the Paillier algorithm [20] that is homo-
morphic with respect to the sum operator. Other operations,
such as string match and multiplication, are feasible
through Search algorithms [25], [26] and RSA, respectively.
The database columns not requiring any computation can
be encrypted through standard algorithms such as AES [23]

or Blowfish [24] with random initialization vectors. It is
important to observe that the MuteDB architecture is modu-
lar so it can integrate other encryption algorithms.

The experimental testbed is composed by a PostgreSQL 9.3
database server located in Europe and by up to 80 clients geo-
graphically distributed over ten countries of Planetlab Europe
[8]. We highlight that this setting not considering clients
located in other continents represents a worst case for the per-
formance of the MuteDB architecture: we have experimen-
tally verified that network latencies higher than 100 ms
introduce a unrealistic positive bias favoring our solution
because they mask the overheads introduced by the encryp-
tion, access control and concurrencymanagement ofMuteDB.

As we present the first thorough experimental evaluation
of an encrypted cloud database service subject to real Inter-
net dispersed clients, we had to carry out some preliminary
experiments that aimed to evaluate the characteristics of the
Planetlab clients having different network latencies and
computational capabilities. For each client, we evaluated its
average Round Trip Time with respect to the cloud database
server (RTT in ms), and the average time required for an
OPE encryption (ENC time in ms) that is the most computa-
tionally expensive algorithm in our prototype. The ENC
times of the 80 Planetlab clients with respect to their RTT
are represented in Fig. 5. The RTTs of most clients concen-
trate between 30� 40 ms (Central Europe) and 50� 60 ms
(West and North Europe), with some clients between
15� 20 ms and around 70 ms. The majority of clients have
similar computational capabilities as demonstrated by the
concentration of the ENC times in a range between 8 and
13 ms with the exception of a few outliers.

The first set of experiments aims to compare the perfor-
mance of MuteDB and a plaintext database that receive real-
istic SQL operations. To this purpose, we use a workload
based on the standard TPC-C benchmark and two TPC-C
compliant database configurations with 100 warehouses
that we denote as:

� TPC-C Standard (TPCC-STD), in which the TPC-C
workload is executed over a plaintext database not
using MuteDB;

� TPC-C MuteDB (TPCC-MuteDB), in which the TPC-
C workload is executed on a database encrypted
through MuteDB. All columns are encrypted with
the most secure encryption algorithm supporting the
SQL operations of the TPC-C workload.

We also perform several experiments based on YCSB
[21], that is a stress test for cloud database services recently

Fig. 5. Distribution of the RTTs and ENC times for the 80 Planetlab
clients.
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proposed by Yahoo. YCSB emulates various workloads by
executing different mixes of SQL operations (Table 4). They
are complementary to the TPC-C evaluations because they
allow us to estimate the impact of different encryption algo-
rithms on the performance perceived by the clients.

In the reported experiments, we consider YCSB-compliant
databases each consisting of one table composed by 11 col-
umns: one primary key and 10 data columns. The table con-
tains one million tuples, each having a size of about 1 KB. We
design the following three configurations:

� YCSB Standard (YCSB-STD), where the columns of
the YCSB table are not encrypted.

� YCSB MuteDB—Best Case (MuteDB-Best), where the
primary key of the YCSB table is encrypted with
DET that is the fastest encryption algorithm sup-
ported by MuteDB.

� YCSB MuteDB—Worst Case (MuteDB-Worst), where
the primary key of the YCSB table is encrypted with
OPE that is the most computationally expensive
encryption algorithm supported by MuteDB.

The data columns on which no computation is required
are encrypted through AES with a random initialization
vector. We observe that each query of any YCSB workload
requires the execution of at least one operation on the pri-
mary key column. For the encrypted configurations, it
means that each query requires at least one encryption
using the algorithm associated with the primary key. Hence,
the overhead introduced by MuteDB for a realistic work-
load will fall between the overheads of MuteDB-Best and
MuteDB-Worst scenarios.

7.2 Performance Evaluation

In the first set of experiments, we execute several TPC-C
tests with the 80 concurrent distributed clients for all data-
base configurations. Each test lasts 12 minutes, of which we
report the stable state results of 10 minutes in the middle.
We monitor the TPC-C SQL operations response times in
order to evaluate the performance overhead of MuteDB
with respect to the network latencies that are intrinsic to
any cloud environment.

Fig. 6 reports the response times of the 80 clients of the
testbed with respect to all the SQL operations of the TPC-C
scenarios. The two boxplots represent the distribution of the
response times (Y -axis) experienced by clients in the TPCC-
STD (left boxplot) and TPCC-MuteDB (right boxplot) con-
figurations. This figure shows that clients experience similar
performance in the two configurations: the median response
time for the plaintext database is slightly lower than 40 ms,
and the overhead added by MuteDB is less than 6 ms. The
distribution of the response times is similar as well: the

interquartile range differs of about 3 ms and the whiskers
distance of about 10 ms. These experiments carried out for a
realistic OLTP workload and geographically distributed
clients characterized by different computational capabilities
and round trip times show that the overhead expected by a
cloud tenant using MuteDB is limited and compatible with
real use cases.

We then investigate the details of the presented cumula-
tive results. For space reasons, we report how the network
RTT influences the response times by focusing on the most
frequent SELECT, UPDATE, INSERT and DELETE SQL
operations included in the TPC-C workload. The scatterplot
in Fig. 7 represents the average response time of themost fre-
quent SELECT operation executed by all clients in both TPC-
C configurations with respect to their average RTTs. The
X-axis represents the clients average RTTs while the Y -axis
is the average response time. To facilitate the interpretation
of the results, we draw two linear regression lines denoted
by LR-STD and LR-MuteDB, for the TPCC-STD and the
TPCC-MuteDB configurations respectively. The low perfor-
mance overhead introduced by MuteDB is highlighted by
the overlap between the clouds of points related to the
TPCC-STD and TPCC-MuteDB configurations. The linear
regressions show that the overhead introduced by MuteDB
is approximately constant and independent of the RTT.
Indeed, while MuteDB overhead may be not negligible for
clients with very low RTT (e.g., from 13 to 15 ms for a client
having an average RTT of 13 ms), it becomes less significant
for clients characterized by higher RTTs (e.g., from 61 to
64 ms for a client having an average RTT of 60 ms). Analo-
gous charts related to the most frequent INSERT, UPDATE
and DELETE operations of the TPC-C workload confirm the

TABLE 4
YCSB Workloads

Type Name Query Ratios

A Update Heavy 50% READ, 50% UPDATE
B Read Mostly 95% READ, 5% UPDATE
C Read Only 100% READ
D Read Latest 95% READ, 5% INSERT

Fig. 6. Response times for the SQL operations in the TPC-C
configurations.

Fig. 7. Average response time of the most frequent TPC-C SELECT
operation for different clients.
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same results and are not included in this paper due to space
limitations.

We now investigate the effects of different encryption
configurations on performance through several experiments
based on the YCSB stress test. In particular, we consider 80
concurrent clients executing the YCSB workloads A, B, C
and D (Table 4), and we analyze the distribution of the
response times considering all the SQL operations compos-
ing YCSB. Fig. 8 compares the response times of the clients
in the YCSB-STD (leftmost boxplot), MuteDB-Best (central
boxplot) and MuteDB-Worst (rightmost boxplot) configura-
tions. We observe that the performance of YCSB-STD and
MuteDB-Best are almost equal. On the other hand, in the
MuteDB-Worst scenario, the response times are approxi-
mately 25� 30 ms higher, and the interquartile range and
the whiskers distance increase. The higher variability is
caused by the different computational capabilities of the
Planetlab clients that compose our testbed. A breakdown of
these results is presented by the scatterplot in Fig. 9 where
the average response time of each client is plotted as a func-
tion of its average RTT. Similarly to Fig. 7 we draw three
linear regressions (LR-STD, LR-Best and LR-Worst) to high-
light the trends of the three clouds of points that correspond
to the YCSB-STD, MuteDB-Best and MuteDB-Worst config-
urations. The linear regressions related to the YCSB-STD
and MuteDB-Best configurations are similar and the scatter-
plots denote narrow clouds of points. As expected, the lin-
ear regression of the MuteDB-Worst response time is higher
and its scatterplot is characterized by a high dispersion of
the results. The interesting result is that the overall over-
head of the worst case scenario remains stable for any RTT
between the clients and the cloud service.

7.3 Scalability Evaluation

In the following set of experiments we evaluate the scalabil-
ity of the proposed architecture subject to different work-
loads with respect to increasing number of concurrent
clients. Since we are working on a real platform consisting
of clients that differ in terms of RTT and computational
capability, for the sake of fairness it is important to add at
each new iteration of the scalability tests a set of clients that
are relatively uniform to the previous set. To this purpose,
we divide the 80 Planetlab clients in ten groups where each
group consists of eight clients with similar RTT. The tests
are repeated for increasing number of geographically dis-
tributed and concurrent clients, by adding one client from

each group at every iteration. The first iteration of each test
has 10 clients, the second iteration 20 clients, and so on.
Each iteration lasts twelve minutes of which we report the
stable state results of ten minutes in the middle. The results
of the most significant scalability experiments are reported
in Fig. 10.

The TPC-C throughput denotes the number of TPC-C
transactions committed per minute on the database
server. In Fig. 10a, we report on the Y -axis the TPC-C
throughput of the TPCC-STD and TPCC-MuteDB configu-
rations for increasing number of concurrent clients repre-
sented on the X-axis. We are mainly interested in
evaluating the scalability of the proposed architecture
and the impact of cryptography. Although the absolute
values of the TPC-C throughputs are less important for
the scope of this paper, we observe that the proposed
results are affected by network latencies and hence they
cannot be compared to those of typical TPC-C evaluations
obtained in local deployments. From Fig. 10a we can
appreciate that both the TPCC-STD and TPCC-MuteDB
throughputs scale linearly for up to 40 clients and slightly
sub-linearly for higher numbers of clients. Even more
importantly, the throughput slowdown, which is defined as
the difference between the plaintext and the encrypted
configuration throughputs, remains rather constant for
any number of clients. This is an important result because
it shows that the scalability of the cloud database service
is not affected by the solutions adopted by MuteDB.

Similar conclusions can be drawn by analyzing the
results obtained by using the Update Heavy workload (A)
of YCSB reported in Fig. 10b. The X-axis represents the
number of concurrent clients, and the Y -axis reports the
YCSB throughput as the total number of SQL operations exe-
cuted per second on the database server. The three lines rep-
resent the YCSB throughput of the YCSB-STD, MuteDB-Best
and MuteDB-Worst configurations, respectively. In all the
three scenarios, the scalability is linear up to 30 clients, and
then sub-linear.

Different results are obtained for the read-only (C) YCSB
workload. Fig. 10c shows that the system scales linearly for
up to 80 clients in all the three database configurations. We
observe that a read-only workload is rather unrealistic but it
is interesting as a term of comparison. In such scenario,
where the throughputs keep scaling linearly because there
are no database consistency issues due to additional concur-
rent clients, the throughput slowdown of the MuteDB-Worst

Fig. 8. Response times for the SQL operations in the YCSB
configurations. Fig. 9. Average response time of YCSB SELECT operation for different

clients.
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configuration tends to be more evident. In any case, we
remark that this represents a worst case scenario and in real-
istic workloads the throughput would fall between those of
MuteDB-Best andMuteDB-Worst.

All results confirm that the solutions adopted in the
MuteDB architecture are efficient and do not affect the scal-
ability of cloud database services.

8 RELATED WORK

Many confidentiality solutions exist for cloud storage serv-
ices [27], [28] but they do not support the execution of SQL
operations on encrypted data. Other techniques guarantee-
ing data confidentiality through encryption managed by the
cloud provider, standard database methods [29] and policy
enforcement strategies [30] are not acceptable because mod-
ern threat models assume that a cloud provider employee
could access tenant data. MuteDB is more related to pro-
posals performing operations on encrypted databases [3],
[4], [7], [10], and enforcing access control at the encryption
level [5], [6], [31], although the following reasons differenti-
ate our architecture from the state of the art.

The solutions in [4] and [10] require that clients issue
SQL queries through one trusted proxy managing all
encryption and decryption operations, and forwarding
them to the encrypted cloud database. We avoid a similar
approach because any architecture relying on one interme-
diate server limits the availability and elasticity of a cloud
database service. Moreover, from the access control per-
spective, the proposed solutions are similar to that of an
internally managed infrastructure where a trusted proxy
stores all encryption and decryption keys, and clients access
the encrypted database transparently.

The proposals in [3], [7] avoid the need of an intermedi-
ate proxy server. The architecture in [7] adopts an access
control mechanism that is based on a reference monitor
within the cloud infrastructure and on a trusted authentica-
tion server. The solution proposed in [3] by the same
authors solves client concurrency management problems
for write/read accesses to encrypted data in the cloud, but
it does not guarantee data isolation and confidentiality
against the collusion threats considered in this paper.
Indeed, all tenant users are provided with the same master
key, and access control policies are implemented by
leveraging the standard database access control mecha-
nisms at the cloud provider side. Here, we present an archi-
tecture guaranteeing same security and confidentiality
levels of an internally managed database in which the

maximum information leakage that can be caused by a ten-
ant insider is limited by his/her database access privileges.

Some interesting solutions for enforcing access control
policies on outsourced information are proposed in [5], [6],
[31], [32]. The encryption schemes in [31] allow a tenant
company to outsource confidential information to the cloud,
but they do not permit execution of SQL operations on
encrypted data. The authors in [5] allow efficient key-value
data retrieval in publish-subscribe scenarios where only one
user is able to execute write operations. These architectures
enforce access control through encryption at the record-
level. However, they cannot be applied to a cloud database
scenario where several users should be able to execute read
and write operations as well as execute computations on
encrypted data. The proposal of hierarchical attribute-based
encryption schemes [6] to enforce access control policies
may be applied to a cloud storage service, but not to a cloud
database service because they do not support SQL opera-
tions. As theoretically introduced in [33], our proposal com-
bines for the first time standard access control models of
relational databases with the execution of SQL operations
on encrypted data stored in the cloud. As a further original
contribution, we remark that this paper includes for the first
time performance and scalability evaluations obtained in a
real environment and for realistic workloads executed by
clients that are dispersed over different geographical areas.

9 CONCLUSIONS

In this paper we propose MuteDB, a novel architecture for
cloud database services that guarantees for the first time
data confidentiality through SQL-aware encryption algo-
rithms and data isolation through access control enforce-
ment based on encryption and key derivation techniques.
These solutions allow MuteDB to address threat issues
that are relevant for cloud services including risks of
information leakage due to collusions between cloud pro-
vider employees and tenant users. The most important
solutions are described through formal models, while the
feasibility, performance and scalability of the proposed
architecture are demonstrated through a large set of
experiments carried out through a prototype deployed in
a real Internet-based environment where cloud database
services are accessed concurrently by geographically dis-
tributed clients. All results confirm that for realistic work-
loads the MuteDB architecture achieves performance and
scalability comparable to those of unencrypted cloud
database services. Ongoing work is focused on integrating

Fig. 10. Throughput for increasing number of concurrent clients for different workloads and database configurations.
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private information retrieval solutions in MuteDB with
the goal of preventing information leakage caused by
access pattern analyses, and novel architectural solutions
for hybrid cloud environments.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valu-
able comments and suggestions that helped to improve the
quality of this paper.

REFERENCES

[1] S. Pearson and A. Benameur, “Privacy, security and trust issues
arising from cloud computing,” in Proc. IEEE Int. Conf. Cloud Com-
put. Technol. Sci., Nov./Dec. 2010, pp. 693–702.

[2] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 41, no. 1, pp. 45–52, 2011.

[3] L. Ferretti, M. Colajanni, and M. Marchetti, “Distributed, concur-
rent, and independent access to encrypted cloud databases,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 437–446, Feb. 2014.

[4] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query proc-
essing,” in Proc. 23rd ACM Symp. Oper. Syst. Principles, Oct. 2011,
pp. 85–100.

[5] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S.
Paraboschi, and P. Samarati, “Key management for multi-user
encrypted databases,” in Proc. ACM Workshop Storage Secur. Sur-
vivability, Nov. 2005, pp. 74–83.

[6] G. Wang, Q. Liu, J. Wu, and M. Guo, “Hierarchical attribute-based
encryption and scalable user revocation for sharing data in cloud
servers,” Comput. Secur., vol. 30, no. 5, pp. 320–331, 2011.

[7] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting
complex queries and access policies for multi-user encrypted
databases,” in Proc. ACM Workshop Cloud Comput. Secur., Nov.
2013, pp. 77–88.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,M.Wawrzoniak,
and M. Bowman, “Planetlab: An overlay testbed for broad-coverage
services,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 3,
pp. 3–12, 2003.

[9] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge, U.K.: Cambridge Univ. Press, 2004.
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