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Abstract—Highly distributed smart environments, such as
Smart Cities, require scalable architectures to support a large
number of stakeholders that share Internet of Things (IoT)
resources and services. We focus on authorization solutions
that regulate access of users to smart objects and consider
scenarios where a large number of smart objects owners want
to share the resources of their devices in a secure way. A
popular solution is to delegate third parties, such as public
Cloud services, to mediate authorization procedures among
users and smart objects. This approach has the disadvantage
of assuming third parties as trusted proxies that guarantee
correctness of all authorization procedures. In this paper, we
propose a system that allows to audit authorizations managed
by third parties, to detect and expose their misbehaviors to
users, smart objects owners and, possibly, to the public. The
proposed system is inspired by the transparency projects used
to monitor Web Certification Authorities, but improves over
existing proposals through a twofold contribution. First, it
is specifically designed for IoT devices, provided with little
resources and distributed in constrained environments. Second,
it complies to current standard authorization protocols and
available open-source software, making it ready to be deployed.
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I. INTRODUCTION

IoT networks are becoming more and more pervasive
and populate most of our life-spaces, including houses,
workplaces, cars, and entire cities. They are strictly tied to
the physical world, either by monitoring our environments,
in case of sensors and alarms, or by having direct control
over our environments, such as smart locks connected to
our houses and vehicles. In largely distributed IoT networks,
where a large number of heterogeneous stakeholders share
smart objects, a very important aspect is a secure access
control management system. In this context, where smart
objects are provided with low resources and are placed
in constrained environments, access control is usually del-
egated to a third party, such as a public Cloud service.
Examples include research literature proposals [1], [2], [3]
and commercial products (e.g., AWS and Google IoT [4],
[5]). However, all the existing proposals consider third
parties as trusted actors, i.e., as someone that will grant
access on IoT resources to all and only the users authorized
by the smart object owners.

In this paper, we propose a system that increases the
security of IoT environments by allowing to monitor the
behavior of intermediate parties that manage authorization
procedures. Our proposal relies on strong cryptographic
primitives and assumes that third parties could be malicious.
We say that the system enables accountable access to IoT
services because it does not prevent the authorization service
from behaving maliciously, but allows both owners and users
to detect wrong or malicious behaviors by the authorization
services, and to show proofs of that behaviors to the public.
This is a strategy that allows to build a system that is
practical (i.e., guarantee good performance for the consid-
ered scenario) and that offers strong security guarantee in
presence of adversaries that have a reputation, such as the
Cloud services that operate authorization services. Existing
solutions based on audit logs allow to monitor the security
of Cloud-managed systems against external attackers [6],
but do not consider powerful attackers that operate within
the service provider. Moreover, proposals that improve the
security guarantees by using cryptographic protocols [7], [8],
[9], [10] or public distributed ledgers [11], [12] cannot be
deployed in IoT environments due to their high computa-
tional, storage and network requirements.

The contribution of the paper is twofold. First, we propose
a system for auditable authorizations with strong (crypto-
graphic) guarantees. Existing proposals with similar goals
are typically designed to maintain public information (e.g.,
Web certificates [7]), and cannot be used in the context
of secret authorization information. Second, contributing to
ongoing efforts of the community in the context of IoT
environments, we design the system in order to comply with
Web standards for authorization protocols in constrained
environments [13].

The manuscript is organized as following. Section II
compares our proposal with related work. Section III an-
alyzes the considered system and threat models with regard
to existing authorization protocols. Section IV describes
the details of the proposal, including its architecture and
protocols, and compares it to existing proposals. Section V
concludes the paper and discusses future work.



II. RELATED WORK

Security solutions in well-known IoT authorization ser-
vices include adoption of consolidated authorization pro-
tocols and log systems (e.g., Google Access Trans-
parency [6]') that improve security by allowing the service
administrators and even the users to monitor all mechanisms
of the system. However, they are not able to prevent attacks
by malicious attackers within the authorization service in-
frastructure, such as admins that have complete access on
these systems.

Approaches to guarantee strong security of outsourced
services aim at allowing to detect violations to data in-
tegrity or even to the correctness of entire algorithms and
protocols. Data integrity can be protected by using Digital
Signatures, MACs and authenticated data structures [14],
[15]). A few approaches exist for detecting algorithms cor-
rectness, including advanced cryptographic primitives (e.g.,
verifiable computation [16]), secure hardware enclaves (e.g.,
SGX [17]), and distributed protocols based on consen-
sus assumptions (e.g., secure multi-party computation [18],
blockchain protocols [11], [19]).

In this paper, we aim at designing a practical and secure
solution that can be deployed in IoT environments. We avoid
approaches based on non-practical cryptographic primitives,
or those based on hardware technologies that seem still vul-
nerable to attacks [20] that prevent their immediate adoption
in critical environments. Our proposal is more related to
solutions based on transparency logs [21], [7], that allow
to outsource a log service to semi-trusted parties without
affecting the security of the system, and on (permission-
less) distributed ledger technologies [22], [11], [23], [21],
[24] and smart-contracts, that allow to maintain a public,
distributed and modifiable log [11], [19]. Our proposal is
based on standard cryptographic primitives that guarantee
the security of the system without affecting its efficiency. To
the best of our knowledge, no existing proposals based on
transparency logs consider the challenges related to auditing
authorizations of IoT devices, as proposed in this paper.

The most popular transparency log solution is Certificate
Transparency (CT) [7], that is a system for monitoring
Certification Authorities by requiring browsers to verify
that all certificates fetched from Websites have been stored
in approved authenticated logs. Literature also proposed a
more general approach called key transparency [21], that
allows to prevent the so-called equivocation, that is, attacks
based on binding different cryptographic keys to the same
identity. Neither solution can be trivially applied to the
considered scenario due to the different characteristics of the
delegated authorization protocols, including management of
secret information and updates to the authorization policies.

IDespite the General Transparency project and Transparency logs are
both maintained by Google and share similar names, they are completely
independent projects, with different scopes, aims, and security assumptions.

Existing proposals for distributed ledgers often provide
advanced functionalities but incur in security or performance
disadvantages. The protocol proposed in [23] penalizes
misbehaving entities by using time-locked deposits in the
form of Bitcoins and accountable assertions, offering an
additional guarantee with regard to the proposed approach
at the expense of a less efficient protocol with regard
to similar solutions [11]. We note that having penalties
automatically applied to misbehaving entities is not a critical
requirement in reputation-based systems, where parties are
discouraged due to fear of public scrutiny (such as the one
considered in this paper, where most authorization services
are deployed by well-known companies on Cloud services).
Authors of [24] propose a public auditing system based
on distributed ledgers to store interactions between IoT
entities as evidence to support investigation during attacks.
However, to preserve the confidentiality of data that cannot
be exposed publicly, the system involves a trusted third-party
to ensure the confidentiality of the data. Finally, a hybrid
protocol that combines transparency logs and permissionless
distributed ledger is represented by [21], that extends the
key transparency approach [25] by integrating Ethereum
blockchain to eliminate the need of auditors. The approach
cannot be applied to the considered IoT scenario due to the
limitations of the underlying log and blockchain systems,
but we consider integration of our proposal to distributed
ledgers as a future work.

The state-of-the-art regarding public logs maintained on
the Bitcoin network is represented by the Catena proto-
col [11], where the authors model the equivocation guarantee
first analyzed by [21] as a double-spending problem in the
Bitcoin network. Moreover, the systems proposed in [19],
[26] detect malicious authorization services by using smart-
contracts on the public Ethereum network. Any proposal
based on distributed ledger technologies have disadvantages
that prevent their adoption in many resource-constrained,
such as high storage requirements on things, the need to rely
on trusted third parties, or to connect to the public network of
the ledger. We compare our system with proposals based on
permissionless distributed ledgers [11], [19] in Section I'V-E.

III. SYSTEM AND THREAT MODELS

We outline the scope and guarantees of our proposal.
First, we describe a reference IoT scenario that motivates the
design of the system (Section III-A). Second, we model the
scenario with regard to established authorization frameworks
(Section III-B). Finally, we discuss the security threats and
guarantees of the proposed system (Section III-C).

A. Reference scenario

We consider a real-world example represented by an
online rental service that acts as a broker between room
owners and potential guests. To improve the flexibility of
the service, each room is equipped with a smart lock that



AS Public Authorization
Key (PK) Grant (AG)

AS Secret Authorization
Key (SK) Policy (AP)

-
Authorization
Token (AT)
Authorization
Grant (AG)

Authorization
Service (AS)

Authorization
Policy (AP)
Resource
Owner (RO)

AS Public
Key (PK)

Figure 1: Reference architecture for delegated authorizations

is compliant with standard WiFi technologies available on
any smartphone. Room owners subscribe to the service and
delegate it with the capability of allowing guests to open
the room door by interacting with the associated smart
lock through their smartphones. Once an agreement is in
place (e.g., upon successful payment), the guest should be
authorized to open the smart lock in an unsupervised way
during the agreed time frame.

Let us assume that the guest tries to open the smart
lock during her renting period. The interaction between the
guest, the service, and the lock is composed by three phases.
First, the guest interacts with the service, issuing a request
to open the lock. Second, the service validates the request
and decides whether the guest should be allowed to open
the lock. The third operation depends on the outcome of
the second one: if the service decides that the guest is
authorized, it grants her access to the room by releasing
the due authorization material that allows her to open the
smart lock; if the guest is not authorized, the service denies
the guest access by not releasing the authorization material.

The aim of the proposed system is to allow both the
room owners and the guests to detect whether the rental
service is behaving correctly, allowing (1) the owner to
detect illegitimate authorizations, and (2) both the owner
and the guests to detect illegitimate denied authorizations.

B. Reference architecture and operations framework

We describe the architecture for delegated authorizations
by referring to Figure 1. We consider four roles: Things
(T), Resource Owners (RO), Clients (C) and Authorization
Services (AS). Things represent cyber-physical IoT devices
provided with sensors and/or actuators that can communi-
cate locally (e.g., via wireless local and/or personal area
networks), but might not have reliable Internet connectivity
(e.g., very slow, discontinuous, expensive, or no connectivity
at all). Resource owners represent entities (e.g., a person,
a company) that regulate accesses to things. They have
access to devices with moderate capabilities (e.g., modern
smart-phones, personal computers) and to reliable Internet
connectivity, but do not own large infrastructures to deploy
highly available and scalable services. Authorization services

represent highly available and scalable services (e.g., Web
services deployed on a public Cloud infrastructure) that act
on behalf of resource owners to control access to things.
Clients represent entities that need to get access to things
(e.g., information provided by thing-hosted sensors, access
to a facility controlled by thing-hosted actuators). They are
authorized by resource owners to access things and must in-
teract with authorization services to obtain the authorization
material required by things to validate their requests.

The architecture includes five types of data: Authorization
Policies (AP), Authorization Grants (AG), Authorization
Tokens (AT), and Authorization Service Secret and Public
Keys (SK, PK). Authorization policies are rules that regulate
access to things by clients. The semantic of the acceptable
rules depend on the adopted access control model and are or-
thogonal to the authorization protocol. Authorization grants
are authentication tokens used by authorization services to
validate clients requests. They are reference tokens, that is,
they are opaque values with no implicit information that
refers to authoritative information stored within the database
of the authorization service (e.g., they could be implemented
as long unique identifiers chosen at random). Authorization
grants usually have long expiry times and can be easily
revoked before-hand. Access tokens are authentication tokens
used by things to validate clients requests. They are self-
contained cryptographic tokens that include all the due
information to validate a request without accessing any
database (e.g., a JSON Web Token). As they cannot be
easily revoked before-hand, access tokens usually have short
expiry times. Authorization service secret and public keys are
cryptographic keys used to sign and verify access tokens.
While the secret key is only known by the authorization
service, the public key is public information that is known
by all parties.

We consider that the parties deploy network services as
described in Table I, where: the first and second columns
(server and client) show the parties that offer and that use the
service, respectively; the third column (operation interface)
shows the interface of the service, including input and output
data; the fourth column (description) describes what is the
purpose of the operation.

The workflow of the operations that allow a client to
access a thing is as following. (/) The resource owner
inserts a new authorization policy APgo at the authorization
service by using the UpdatePolicy service, that answers with
the due return value (‘accept’) to confirm the acceptance
of the policy. (2) A client requests an authorization grant
to access a thing by sending an authorization policy AP¢
to the authorization service by using the Authorization
routine. If the requested authorization AP¢ complies to the
authorization policies APgo released by the resource owner,
the authorization service answers with an authorization grant
AG. (3) The client uses the authorization grant AG to request
an access token AT to the authorization service by using
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Description

RO {“accept’, ‘reject’} < UpdatePolicy (AP) | Update authorization policy
AS c {AG, ‘reject’} < Authorization (AP) | Request an authorization grant AG for the authorization policy AP
{AT, ‘reject’} < Token (AG) | Request an access token AT with regard to the authorization grant AG
T C result < Request (data, AT) | Access the thing by using the access token AT and send payload daia.

Table I: Plaintext operations framework of the reference architecture

the Token routine. The authorization service will accept the
request only if the authorization grant has not expired and
has not been revoked. (4) The client issues a request to the
thing by sending the (request) data and the access token AT
with the Request operation. The thing approves the request
only if the access token is valid.

We note that the proposed model represents an instance of
the OAuth2 standard for delegated authorizations [27] and
related extensions for constrained environments [13]. As a
minor variant, we denote as things the resource servers of the
OAuth2 framework to highlight that they are devices char-
acterized by limited resources and connectivity. As a major
difference, while in the standard frameworks authorization
and resource servers are controlled by the same authority, in
the proposed model things are controlled by resource owners
and are independent of authorization services. As a result,
our proposal shares many design choices with the existing
frameworks, but also provides additional guarantees that are
driven by the additional system requirements and security
threats.

C. Threat model and security guarantees

We assume that resource owners, authorization services
and clients have known identities, and can establish se-
cure and mutually authenticated connections by using any
standard Web protocols for secure communications and
credentials systems. Our proposal does not limit the adoption
of any of these solutions. We do not assume that things
and clients are able to establish secure channels in local
networks. In case of non-secure channels, they must use the
due cryptographic protocols to validate access tokens and,
optionally, to protect the security of the application data.
These are design choices that are orthogonal to our proposal.
Finally, we assume that things know the public keys of the
authorization services. As an example, public keys could be
flashed by an OEM at the factory or configured by an admin
in the local network.

The reference architecture guarantees security of the sys-
tem against all known attacks operated by clients (e.g., a
client that might try to access a thing illegitimately) and
by external attackers (e.g., impersonation attacks) in the
considered security model. For a comprehensive discussion
about these attacks and about additional technicalities for
their correct implementation the reader can refer to [13]
and [28].

We distinguish from any standard authorization frame-

work by considering weaker security assumptions, where
parties may behave dishonestly by not operating all protocols
correctly. First, we assume that authorization services could
issue authorizations that do not comply with the policies de-
fined by the resource owners, that is, they may illegitimately
deny or release an authorization to a client that do not com-
ply with the authorization policies defined by the resource
owners. The proposed system guarantees that a client (or
a resource owner) is able to detect these misbehavior and
publicly accuse the authorization service by showing the
due cryptographic proofs. A second security threat rises as a
consequence of this security guarantee, that is, the possibility
for the authorization service of being accused illegitimately
by other parties [8], [9]. Our proposal considers this threat
and propose mechanisms that allow authorization services
to defend themselves from false accusations.

IV. PROPOSED SYSTEM FOR AUTHORIZATIONS
TRANSPARENCY IN IOT ENVIRONMENTS

We describe the proposed system for auditable authoriza-
tions in IoT environments. First, we describe the adopted
access control model (Section IV-A). Second, we outline
the architecture and operations framework of the system
(Section IV-B). Third, we give details on the main auditable
authorization protocol (Section IV-C) and for verifying the
correct behavior of the authorization service (Section IV-D).
We conclude by comparing the proposal to other approaches
(Section IV-E).

A. Access control model and notation

We describe the details of the types of data adopted by
the reference architecture proposed in Section III-B for a
discretionary access control model. For ease of presentation,
we consider a simple model that does not distinguish access
privileges (e.g., read, write) and multiple resources available
on a thing. That is, a client authorized to access a thing can
operate any type of operation on all its resources. This model
does not pose limitations to many IoT scenarios, such as the
smart-lock motivating scenario described in Section III-A.
Note that more complex access control models, such as fine-
grained attribute-based models, can be used as-well without
limitations.

We represent an access policy as a tuple AP = (AR, m, V),
where AR denotes an access rule, m denotes the issue time
of the authorization policy and V denotes the validity period
of the rule. Each access rule identifies the clients that can
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access to a thing as the tuple AR = (C,T), where client
C can access thing 7. The validity period defines when the
access rule is to be considered valid and is represented as
V = (nb,na), where nb and na denote the not before and
not after time instants that define the time range, similarly
to x509 Web certificates.

An authorization grant, that is a reference token, is im-
plemented as a unique string identifier AG = id. An access
token is a cryptographic bearer token defined as the tuple
AT = (AP, V,0ar), where AP is a due authorization policy
that authorizes the client to access a thing, V is the token
validity period (with the same semantics described in the
case of an access rule), and oar = signg, (AP, V) is a
proper signature of the authorization policy with the secret
key of the authorization service.

B. Architecture overview

We describe the proposed architecture by referring to
Figure 2. It extends the reference architecture for delegated
authorizations (see Section III, Figure 1) by introducing an
additional role, the Authenticated Log Service (LS), that rep-
resents a service that stores information about authorizations
granted by the authorization service. This service is hosted
by an additional authority, external to resource owners,
authorization services and clients, at an highly available Web
service. The service allows the authorization service to insert
information about authorizations, while other parties (and
possibly the public) can query it. All information stored
within the service is authenticated via authenticated data
structures, allowing to detect any modifications on the data
by a malicious service.

The architecture includes all the types of data managed
in the reference architecture: authorization policies, au-
thorization grants and access tokens. Moreover, resource
owners, authorization services, clients and authenticated
log services maintain public and secret keys, that we
denote as (PKRro,SKgo), (PKas,SKas), (PK¢c,SK¢) and
(PKs,SKs), respectively. We assume that each secret key
is only known by its owner, while public keys are known by
all parties. Finally, the architecture includes cryptographic

attestations that authenticate the information exchanged by
the parties.

The security of the proposed approach is based on three
main design choices. (@) The system requires each party
to operate requests by using request attestations, which
are cryptographic data structures that allow to prove their
(mis)behavior to third parties. (b) The authorization service,
that is the root of trust for all issued authorizations, is
forced to log all its operations to the external authenticated
log service, thus allowing other parties and potentially
public third parties to monitor its behavior. (c) By using
authenticated data structures, the only security assumption
on the authenticated log service is that it is always available,
i.e., that it answers to all operations requests. If the service
tries to misbehave by returning incorrect answers, the other
parties are able to detect them.

For ease of presentation, we distinguish attestations in
two categories: request attestations and signed response
timestamps®. The request attestations authenticate the data
sent by a party in a request. In this category we identify au-
thorization policy attestations (APA) and authorization grant
attestations (AGA). For ease of presentation, we pospone
the details of their design to Section IV-C, that discusses
the protocols in which they are used. The Signed Response
Timestamps assess the acceptance of a request that applies
modifications on the state of the service (e.g., insert or
update data). In this category we identify the signed policy
timestamp (SPT), signed grant timestamp (SGT) and signed
denial timestamp (SDT). All signed response timestamps are
computed with regard to a request as the following function

SRT (-):
SRT (req) := (H (req) ,nb,0), (1)

where  (-) is a deterministic collision-resistant hash func-
tion (e.g., SHA256), nb is the “not before” timestamp that
defines at which time-instant the modifications required by
the request are to be considered applied at the service, and o
is the cryptographic signature (e.g., ECDSA) of the service
applied on the tuple (H (request) ,nb).

In Table II we show the operations framework of the archi-
tecture. The operations UpdatePolicy, Authorization, Token
and Request are variants of those proposed in the reference
architecture (see Section III-B, Table I). AccuseDenial and
VerifyDenial are additional operations offered by the autho-
rization service and by the resource owner that allow parties
to operate audit operations. Finally, operations InsertGrant,
QueryGrant are services offered by the authenticated log
service to store and query information by other parties.
To focus on a solution that is ready to be applied in
real-world applications, we consider operations that can
be implemented by using the Trillian software [29] as a

2We adopt the notation signed timestamp from the General Transparency
project [29] (see Section II).
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‘ Description

RO {SPT, ‘reject’} < UpdatePolicy (APA) | Update of an authorization policy
AS {(AGA, SGT) ,SDT} < Authorization (AP) | Request an authorization grant
c {AT, ‘reject’} < Token (AG) | Request an access token
APA < AccuseDenial (SDT,SPT) | Accuse of illegitimate authorization denial
T C result <— Request (data, AT, SGT) | Request access to the thing
LS AS SGT < InsertGrant (AGA) | Insert an authorization grant
RO 7 < QueryGrant (AGA) | Request proof for an authorization grant
RO 9 {SPT, D} < VerifyDenial (SDT) | Request verification of authorization denial
Table II: Operations framework of the IoT transparency architecture
RO AS LS C T . ..
(2) The client requests an authorization grant to the autho-
1 apA A Undate rization service to access a thing by using the Authorization
L {Policy routine. It builds a proper authorization policy, as described
,,,,,,,,,,,,,,,,, in Section III, that is validated by the authorization service
AP with regard to the known authorization policies. If legiti-
AS Request i Aca LS Insert mate, the authorization service builds the authorization grant
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@ | ASRequest AGA timestamp SGT = (H (AGA),nb, ospr) as a confirmation
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""""""""""""""""" ) is used to hide the content of the authorization grant from
“ TRequest || AT, SGT, data the authorization service, that is a knowledge that must
‘”mrgsgl{f?g be maintained secret between the service and the client.

Figure 3: Accountable authorization protocol

back-end, that is a production-ready open-source project
maintained by Google as a reference implementation for
Certificate Transparency log services (see Section II).

In the following, we describe the details of each operation
within the main protocols of the proposed system, that are
accountable authorization protocol, verification of denied
authorizations and verification of issued authorizations.

C. Accountable authorization protocol

The accountable authorization protocol allows clients to
obtain the due authorization material to access things from
the authorization service. It extends the original protocol for
delegated authorizations described in Section III-B to enable
accountability. In the following we describe the four phases
of the protocol by referring to Figure 3.

(1) The resource owner delegates the authorization service
by using the UpdatePolicy routine. He builds an authoriza-
tion policy attestation as the tuple APA = (id, AP, 0apa),
where id denotes a unique identifier of the attestation,
AP is the authorization policy (as defined in the reference
protocol) and oaps is the signature of the tuple (id,AP)
generated by using the secret key of the resource owner. The
service answers by returning the signed policy timestamp
SPT as a proof of acceptance of the policy, computed as
SPT = <H (APA) ,nb, USPT>-

Moreover, note that the authenticated log service does not
guarantee to insert the grant immediately, but guarantees to
insert it within the nb time of the SGT data. This is a strategy
of many architectures based on authenticated data structures
to guarantee scalability [7], [8], [9].

(3) The client requests an access token to the authorization
service through the Token routine by including the autho-
rization grant attestation AGA, that is used by the service
to compute the access token AT = (H (AGA),AP,oar),
where AP is the authorization policy included in AGA and
oar is the signature of (H (AGA),AP) computed by using
the secret key of the authorization service. Note that the
hash function H (-) computed over AGA must be the same
used to compute SGT, to allow things to validate that AT
and SGT used in the next phase refer to the same AGA.

(4) The client accesses the thing by sending a valid access
token AT, the signed grant timestamp SGT and the due
payload data of the request. The thing accepts the request if
and only if the values corresponding to H (AGA) included
in AT and SGT are the same. Then, the thing validates AT
by verifying the authorization policy, as in the reference
protocol (see Section III-B) and the signature included in
the access token by using the known public key of the
authorization service. Finally, the thing also validates the
signature of the signed grant timestamp SGT by using the
known public key of the authenticated log.
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Figure 4: Verification of illegitimate authorization denial

D. Verification protocols

We propose two verification protocols: to verify that
no authorization has been granted to unauthorized clients,
and to verify that all authorizations have been granted to
authorized clients.

The first protocol allows a resource owner to verify
if the authorization service has issued authorizations to
unauthorized clients. To this aim, a resource owner can act
as a monitor of the authenticated log service, downloading
the whole authenticated data structure periodically. This
procedure is similar to that of monitors for the Certificate
Transparency system and could be easily deployed by using
existing software implementations. An alternative would be
to use the more efficient QueryGrant routine offered by the
authenticated log service. In this case, the authenticated log
service must maintain authenticated data structures that are
efficient with regard to the considered queries [14]. As an
example, a resource owner might want to monitor all the
authorizations released within a certain time frame for a
specific thing or for a specific client.

The second protocol allows clients to verify if the autho-
rization service has illegitimately refused to issue authoriza-
tions despite existing authorization policies released by the
resource owner. This verification procedure includes three
phases, that we describe by referring to Figure 4.

(1) We assume that the authorization service denies access
to a thing by a client that invoked the Authorization routine,
and thus it answers by returning a signed denial timestamp
SDT = (H (AP),nb,ospr). Please note that the nb value
represents the time instant at which the authorization service
refuses the authorization request.

(2) To verify that the authorization denial was legitimate,
the clients uses the VerifyDenial routine offered by the
resource owner by sending AP and SDT previously sent
and obtained by the previous invokation of the Authorization
routine. The resource owner verifies if the SDT is correctly
bound to the AP by re-computing the hash value H (AP) on
its side, and verifies if the AP complies to the authorization
policies previously established by using the UpdatePolicy
routine (see Section IV-C). If an authorization policy exists
that can assess that the client had legitimate access to the

thing, then the resource owner returns the signed policy
timestamp SPT that the authorization service returned as an
answer to the UpdatePolicy routine. Note that, for SPT to be
considered valid, the release timestamp nb included within
SPT must be greater than the one included in SDT.

(3) The client uses the SPT received by the resource
owner, together with the SDT received in phase (7), to
send a request to the AccuseDenial primitive offered by the
authorization service. The protocol allows the authorization
service to defend itself against the accusation by returning an
authorization policy attestation APA that is more recent that
the SPT and that can assess that the denial was legitimate.
Note that this is only possible if the resource owner actually
updated its policies and misbehaved in phase (2) by not
operating correctly. If such an APA does not exist, then the
authorization service behaved incorrectly.

E. Comparison with related approaches

We present a comparison of the proposed system with
regard to alternative approaches proposed in the literature
by referring to Table III. We consider four proposals that
have strong security guarantees, based on cryptographic
primitives, and consider similar threat models where the
authorization service is considered malicious: transparency
refers to the system proposed in this paper; Bitcoin log
refers to the Catena protocol illustrated in [11], proposed
in the two architectural variants based on a device that
runs a blockchain full node or the Simplified Payment
Verification protocol (SPV); the Ethereum smart-contract
approach refers to the systems proposed in [19], [26]. For a
better overview of the protocols please refer to Section II.

We distinguish three types of characteristics: security
identifies the peculiar traits of each protocol in terms of
security assumptions and guarantees; thing requirements
identifies the characteristics of the IoT environments, dis-
tinguished in hardware capabilities of the IoT devices (e.g.,
capability of execution of certain algorithms, and storage
size) and characteristics of the architecture where things
are operated (e.g., availability of an Internet connection);
protocols timings identify the performance of the main
protocols operations, that are grant authorization by an
authorization service (the time required by a party to release
an authorization that can be considered valid by a thing),
audit delay (the maximum delay after which a party can
operate a verification at the authorization service) and re-
quest verification (the time required by a thing to validate a
request by a client).

The security characteristics allow to understand if a so-
lution is able to satisfy the requirements of the considered
scenario. As an example, we highlight that approaches based
on distributed ledgers do not guarantee only protection
against a dishonest authorization service but, due to the
native characteristics of the distributed ledgers protocols,
also availability of the service. Moreover, protocols based on



Transparency Bitcoin log [11] Ethereum
(our proposal) Full Node SPV smart-contract [19], [26]
Guarantees Accountability Accountability, Availability Accountability, Availability
Security
Assumptions Availability Consensus Consensus, SPV proxy M Consensus,
anagement proxy
Execution Hash functions, Bitcoin protocols, SPV protocols, Management protocols,
Things capabilities Signature verification Signature verification Signature verification Signature verification
requirements Architecture Trusted configuration Bitcoin network SPV proxy Management Proxy,
Trusted configuration
Storage Public keys Bitcoin blockchain Bitcoin headers Public keys
capabilities [min 2 x 32 bytes) [ hundreds of GBs | [ tens of MBs ] [ min 1 X 32 bytes ]
Grant Signatures sign Signatures sign Mining + next 10 — 50 blocks
authorization [tens of ms] [tens of ms] [about 2.5 — 12.5 minutes |
Ptl,‘Ot?wls Audit Maximum Merge Mining + next 6 blocks Mining + next 10 — 50 blocks
lmmgsd wait time || Delay (MMD) [hours| [about 1 hour ] [about 2.5 — 12.5 minutes |
estimate,
[esti ] Request Signature verification Blocks verification SPV verification Blocks verification
verification [ms or tens of ms] [tens of ms] [ tens of ms] [tens of ms]

Table III: Comparison with other cryptographic approaches for accountable IoT authorizations

smart-contracts offers even stronger securities by preventing
an authorization service from behaving maliciously (we
identify this trait by using the enforcement guarantee instead
of accountability guarantee).

The thing requirements allow to identify if each solution
can be deployed in a certain scenario. As an example, we
note that both blockchain solutions might require a lot of
storage at the thing side to maintain the blockchain. This
disadvantage could be reduced by using special-purpose
blockchain networks of smaller sizes separated from the
public ones, or by using the SPV protocol, that however
introduce stronger security assumptions (that is, trust in
intermediate proxy nodes). The proposed approach is very
lightweight as it requires only storage of a few public keys
and it does not require any Internet connectivity for the
things. As disadvantages, the proposed system requires a
trusted setup of these keys (as we discussed in Section IV-B),
and the resource owner to be available to verify illegitimate
authorization denials.

Finally, the protocol timings highlights that the proposed
approach might require longer wait times to be able to
operate an audit operation after an authorization grant (the
audit delay time field), that is the Maximum Merge Delay
(MMD) value used by the authenticated log service to merge
the released authorization grants within its authenticated
data structures. However, please note that while the wait
time in our approach is deterministic and refers to the
release of the authorization grant, in bitcoin-based logs
it depends on when miners are able to insert the due
transactions in the blockchain. Finally, note that releasing
a verified authorization in the smart-contract approaches
requires significant additional times because they require
that the transactions are inserted in the blockchain before
releasing the authorization.

V. CONCLUSIONS

We proposed a system that allows to audit authorization
procedures operated by intermediate services in smart IoT
environments, characterized by many stakeholders, and by
devices with low resources placed in constrained environ-
ments. The security of the system is based on cryptographic
signatures that allow to detect and expose misbehaviors of
intermediate services to the public. The proposed design
is compliant with ongoing Web standardization efforts in
the context of delegated authorization protocols, and con-
tribute to the body of PKl-related transparency literature
by allowing authorization material being logged without
leaking secrets to the log. In light of the proposed design
and analyses, future work will be devoted to implement a
proof-of-concept, to be exercised and evaluated in a smart
city deployment.
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