
World Wide Web: Internet and Web Information Systems, 9, 63–92, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11280-005-4049-9

Content Adaptation Architectures Based on Squid
Proxy Server

CLAUDIA CANALI claudia@weblab.ing.unimo.it
Department of Information Engineering, University of Parma, Parma, Italy 43100

VALERIA CARDELLINI cardellini@ing.uniroma2.it
Department of Computer Science, Systems and Production, University of Roma Tor Vergata, Roma, Italy
00133

RICCARDO LANCELLOTTI lancellotti.riccardo@unimore.it
Department of Computer Engineering, University of Modena, Modena, Italy 41100

Published online: 2 October 2005

Abstract

The overwhelming popularity of Internet and the technology advancements have determined the diffusion of
many different Web-enabled devices. In such an heterogeneous client environment, efficient content adaptation
and delivery services are becoming a major requirement for the new Internet service infrastructure. In this
paper we describe intermediary-based architectures that provide adaptation and delivery of Web content to
different user terminals. We present the design of a Squid-based prototype that carries out the adaptation of
Web images and combines such a functionality with the caching of multiple versions of the same resource. We
also investigate how to provide some form of cooperation among the nodes of the intermediary infrastructure,
with the goal to evaluate to what extent the cooperation in discovering, adapting, and delivering Web resources
can improve the user-perceived performance.

Keywords: content adaptation, proxy servers, distributed systems, performance evaluation

1. Introduction

In the last decade the Internet has become the infrastructural support to many different
services and has penetrated deeply in the daily life of a huge number of users. This
overwhelming popularity, combined with the contemporary technology advancements,
allows users to be Web-connected through many pervasive computing devices, such as
laptops, handheld computers, Web-TVs, personal digital assistants (PDAs), and cellular
phones. The major differences among these emerging devices regard network connec-
tivity, processing power, storage, display, and data handling capabilities. Hence, there
is an increasing demand for content adaptation and delivery services that enable on-the-
fly transformation of (possibly) complex Web content and its delivery to these diverse
destination devices.

The process of converting a multimedia resource from one form to another to match
the device characteristics is called content adaptation or transcoding. It can be applied
to transformations within media types (e.g., changing size and color depth of an image,
converting from high-fidelity JPEG to low-fidelity GIF format), across media types (e.g.,

64 CANALI ET AL.

from speech to text, from video item to a set of images) or to both of them. Independently
of the type of adaptation, the transcoding process should preserve the semantic attributes
of the original resource and produce a version which may be consumed by the client
device.

The existing approaches for Web content adaptation fall into three broad cate-
gories depending on the entity that performs the adaptation process [2,19]: client-side,
intermediary-based, and provider-side adaptation.

In the client-side solution, the required content adaptation occurs on the client device.
Carrying out the adaptation process at the client side avoids communicating information
about the device characteristics and allows to use proprietary adaptation technology.
Although the processing power, storage, and connection bandwidth of the client devices
are continuously improving, their capabilities will always be more limited than those of
server machines. This does not allow to perform locally the most complex adaptation
tasks that require large amount of computing and storage resources. Another problem
of the client-side approach is that it does not save network bandwidth (and transmission
time), because the resource is delivered to the client in its original size, which is usually
larger than the adapted version [24].

In the provider-side approach [14,22,23], the functionalities of the content provider
platform are enhanced with adaptation tools. Typically, the content transformation is
generated off-line when the content is created or updated, often involving a human
designer to hand-tailor the content to some specific requirements. The multiple variants
of the same resources are stored on the server and selected to match the client-related
information [22]. XSLT is also used to generate the appropriate markup language from a
structured XML representation [14,23]. The provider-side adaptation lets to the content
author the maximum control over the delivered content. The drawback of this approach
is that the transcoding cost completely burdens the server platforms which risk of being
overloaded [24]. Our experience with tools such as Mercury LoadRunner [21] leads us
to conclude that 8–10 simultaneous requests involving adaptation may overload a server.
Hence, the provider-side approach is a valid solution when the provider popularity is
medium-low.

In the intermediary-based approach [5,12,13,15,20,33], an intermediary node (ini-
tially called proxy server, nowadays edge server), that is interposed between the client
device and the content provider, analyzes and adapts the requested content on-the-fly,
before delivering the result to the client. Intermediary-based adaptation shifts compu-
tational load away from the servers of the content providers, simplifies their design,
and reduces considerably the user-perceived latency when the adapted content can be
served from a node closer to the client than the content server. It is also a viable solution
because practically all client devices requiring content adaptation need a gateway to use
Web-based services. The motivation of this paper comes from the observation that a
possible problem of the intermediary-based solution is that traditional transcoding nodes
operate singularly. A single intermediary node is affected by a limited scalability [20]
because of the significant computational cost of transcoding operations and the explo-
sion of the working set due to the presence of multiple versions that may be generated
from the same original resource. A distributed architecture of cooperative intermediary
nodes can address these issues in the research area of delivering adapted content.

In this paper, we describe the architecture and the implementation details of a Squid-
based prototype that provides a twofold enhancement of the traditional cooperative

CONTENT ADAPTATION ARCHITECTURES 65

caching systems to match the requirements of an environment characterized by hetero-
geneous client devices. The first enhancement transforms a traditional proxy server into
an active intermediary node, which not only caches Web resources but also adapts them,
stores the result, and allows multi-version lookup operations [7,28]. The second novel
enhancement allows intermediary nodes to cooperate in locating, adapting, and deliv-
ering Web content. We describe the modifications necessary to make the intermediary
nodes cooperate on the basis of hierarchical and flat distributed schemes when multiple
versions of the same resource are available.

Although the cooperative content discovery in the context of adaptation services is
based on distributed schemes, it is not a simple extension to traditional cooperative
caching because two main issues have to be addressed to achieve a suitable solution.
First, the presence of diverse target devices requires to identify, discover, and cache mul-
tiple variants of the same original resources. Therefore, we need efficacious solutions
to support the multi-version cooperative discovery. Moreover, the distributed architec-
ture should be able to share the load among multiple nodes, because the transcoding
operations may be computationally expensive.

It is worthwhile to note that we consider intermediary-based architectures which pro-
vide adaptation services for the Web resources of any content provider. The content
servers act only as providers of the original Web resources and do not perform any
content adaptation operation. As a consequence, in this paper we do not rely on priv-
ileged accesses to content provider information for the deployment of the adaptation
service, including metadata and already adapted resources. Moreover, we do not exploit
mechanisms such as server-directed adaptation [18], that allows the content provider to
give directives to guide the transcoding choices. However, our prototype can be eas-
ily modified to support the solution of an intermediary infrastructure that operates in
collaboration with the content provider, as in the case of Content Delivery Networks.

The rest of the paper is organized as follows. In Section 2, we describe the main
functionalities characterizing an intermediary node that provides adaptation, multi-
version caching, and lookup of Web content. In Sections 3 and 4, we analyze in detail
what prototype functionalities are required at the level of stand-alone and multiple
cooperative nodes, respectively. In Section 5, we describe the workload model that we
have used to exercise the Squid-based prototype. In Section 6, we present experimental
results that demonstrate the different functionalities of our prototype. Finally, we discuss
related work in the area of content adaptation carried out by intermediary nodes in
Section 7, and conclude in Section 8 with some final remarks.

2. Functionalities of the intermediary nodes

In this section we describe the peculiar features of an intermediary node in a generic
architecture for content adaptation. The considered functionalities transform a traditional
proxy from a resource repository along the delivery chain between the client and the
content server into an enhanced network node which provides cooperative content
adaptation services.

Let us first introduce the functionalities that a node belonging to a distributed archi-
tecture for content adaptation and delivery may or must provide and then discuss them.
We have identified the following basic functionalities for a single non-cooperative node:

66 CANALI ET AL.

• Gateway: to receive the client request, identify the device capabilities and charac-
teristics, and provide the response that fulfils adaptation requirements without the
intervention of any visible component for the client.

• Adaptation: to adapt, when necessary, the original resource to the specific capabilities
of the client device that has originated the request.

• Fetch: to retrieve the original resource from the content server, when a valid version
of the requested resource is not found in the local cache.

• Cache: to manage in the cache original copies and adapted versions of previously
requested resources.

In addition, a cooperative intermediary node also has to provide the location func-
tionality to identify one or more remote nodes that may provide the requested content
and/or have a valid version of the resource. The cache functionality collaborates with
the location one to activate the external resource lookup on other nodes. Furthermore,
in a cooperative node the fetch functionality is activated only when no intermediary
node holds a valid version of the requested resource. In this paper, we consider that
each functionality is provided by a corresponding node component, which is named in
the same manner. Figure 1 illustrates the node components and the relationship among
components of different intermediary nodes.

When the intermediary node receives a client request, the first task of the gateway
component is to identify the device capabilities and characteristics to decide which
version of the resource fits the client needs. The features of client devices vary widely in

Cache

Fetch

Gateway

Cache

Fetch

Gateway

Cache

Fetch

Gateway

Cache

Fetch

Content servers

Client devices
Intermediary nodes

Gateway

Adaptation

Adaptation

Adaptation

Adaptation

Location

Location

Location

Location

Figure 1. Components of the intermediary-based architecture.

CONTENT ADAPTATION ARCHITECTURES 67

screen size and colors, processing power, storage, user interface, and software. Client’s
access links to the Internet also range from wired networks, such as LAN, xDSL, ISDN,
and telephone modems, to wireless networks, such as GSM, CDPD, and UMTS. The
client may include the resource data type it can consume as meta-information into the
HTTP request header, taking advantage of the potentialities of the protocols already in
use. Recently, the Open Mobile Alliance and the W3C have also proposed the com-
patible standards CC/PP and UAProf which allow a client device to communicate its
characteristics and capabilities [2]. The gateway component can also obtain the infor-
mation about the client capabilities by accessing a table which stores the characteristics
of the various client devices that may be served by that intermediary node. For example,
a table entry for a particular client device can be created/stored when the client first
registers with the assigned node. This entry can be transmitted to the other cooperative
nodes, for example by including it in the client request. Therefore, we can suppose that
the intermediary node is aware of the characteristics of the client devices. Hereafter,
we will refer to the information describing the capabilities of the requesting client as
requester-specific capability information (RCI).

After having identified the client capabilities, a resource version which fits the client
request has to be obtained. First, the cache component looks for the requested resource
in the local cache system. Multiple versions of the same resource are originated by the
transcoding process and may be cached by the intermediary node. A resource which was
already adapted may be further transcoded to yield a lower quality resource. In particular,
each version may be transcoded from a subset of the higher quality versions. Different
versions of the same resource (and the allowed transcoding operations among them) can
be represented through a transcoding relation graph [4]. In this paper, we consider a
complete transcoding relation graph, assuming that each version can be obtained from
any more detailed version.

Due to the presence of multiple versions of a given resource, the lookup phase differs
from the corresponding one of a traditional caching system. Therefore, it is necessary
to perform a multi-version lookup, which may cause one of the following three events:

• Exact local hit: the cache contains the exact version required by the client. The
gateway component can immediately deliver the resource to the client without any
content adaptation.

• Useful local hit: the cache contains a more detailed and transcodable version of the
requested resource that can be transformed by the adaptation component to obtain the
requested version before sending the response to the client.

• Local miss: the cache does not contain any exact or adaptable version of the requested
resource. In case of cooperation, an external multi-version lookup has to be managed
by the location component. If no remote (contacted) node contains any valid version of
the requested resource (or the cooperation has not been activated), the fetch component
retrieves the original version from the content server.

The main modifications to the traditional behavior of an intermediary node caused by
the introduction of content adaptation and multi-version caching are summarized below
and will be discussed in more detail later:

• the identification of the client device capabilities;

68 CANALI ET AL.

• the identification of multiple versions of the same resource;
• the provisioning of transcoding functionalities to adapt resources on the basis of

information regarding the client device;
• the handling of multiple versions of the same resource in the cache of each interme-

diary node;
• the multi-version lookup at local as well as global level.

Our prototype is implemented as a modification of the freely available Squid 2.4
software [29]. Squid is an open source, high-performance proxy caching server. We
chose Squid as a basic platform for its robustness and wide spread usage. Moreover, as
Squid can support many cooperation mechanisms, such as Internet Cache Protocol [32]
and Cache Digests [25], the multi-version cooperative lookup can be implemented by
modifying the existing code instead of writing it from scratch. Since our intermediary
node can operate not only singularly, but also in a cooperative way on the basis of a
hierarchical or flat distributed cooperation scheme, its behavior has been modified both
at the single node level and at the cooperation level. The modifications to Squid have
been brought in such a way to leave unchanged its standard behavior when content
adaptation is not required.

3. Interventions at the single node level

In this section we describe the main modifications we have brought to the original
Squid to supply the multi-version caching and adaptation functionalities in a single
intermediary node. Our prototype presents some substantial differences with respect to
the original Squid architecture [31]. As regards the Squid code, the most significant
changes regard the Squid modules called Client Side and Storage Manager, which
handle client request processing and caching operations, respectively.

3.1. Identifying the client device

Our prototype aims at tailoring Web content to match the device capabilities and charac-
teristics as much as possible and using all available information contained in the client
request. We have chosen not to implement a specific protocol for communicating the
client capabilities, but rather to use the HTTP protocol to let the client communicate the
resource data types it can consume.

The Client Side Squid module, which is in charge of parsing the client request [31], has
been modified in order to handle the RCI. To this purpose, we use the weak consistency
of the entity tag (ETag), which is an identifier used to compare two or more versions of
the same resource [11]. A numerical code, contained in this field, indicates the required
version of a resource. By including this information into the HTTP request header, we
avoid altering the current communication mechanism between clients and intermediary
nodes. Each client request contains the request-header field If-Match with a weak
ETag which indicates the required version of a resource. When the request header
is processed by the intermediary node, the gateway component checks whether there
is the field If-Match and extracts from it the weak Etag. A code value different

CONTENT ADAPTATION ARCHITECTURES 69

from zero means that the required version is not the original one: in this case, the code
value is stored in the data structure clientHttpRequest, which keeps information
regarding each client request.

We have chosen this approach to simplify the testing of our prototype. However, it
is possible to use any information included in the client request, such as another HTTP
header or the client IP address, since the gateway component identifies the requested
version by analyzing the client HTTP request.

A note is in order about the choice of the resource version that satisfies the client
request. In this paper, we adopt the exact matching scheme that is, the client receives the
resource version that has been identified as the most suitable for the client capabilities.
Other schemes are possible, although not considered in this paper. For example, in the
no-more-than matching scheme, the client may receive a resource that can have a lower
quality than that requested. The at-least matching approach assumes that the client
device has some transcoding ability to handle even higher quality resources and to adapt
them to its precise capabilities. Both such schemes can save CPU resources by avoiding
transcoding operations when a slightly less or more detailed version of the resource
is found in some cache. The at-least matching approach can also improve cache hit
rates because requests for different versions of the same resource can be satisfied using
only a limited number of cached versions. However, we are interested in evaluating the
performance of the content adaptation architectures also in case of high computational
requirements. Hence, in this paper we focus our attention on the exact-matching scheme,
which puts more stress on the architecture.

3.2. Identifying multiple versions

Squid identifies every resource using its relative URL, through which it elaborates the
hash key for finding the relative StoreEntry. This is the data structure that keeps
track of the resources stored in the cache of the intermediary node.

Since the transcoding process implies the presence of multiple versions of the same
resource, the URL alone is no more sufficient to identify a resource, because it would
be identical for any version. To manage multiple versions of the same resource, we have
decided to modify the relative URL by adding the string “/X” to it, where X represents
the numerical identifier of a particular version. This modification has some impact on the
Storage Manager Squid module, which is responsible for handling the cache content.
The URLs encoded with the version identifier are completely transparent to the clients
as well as to the content servers because they are only used within the intermediary
architecture (specifically, for the internal representation of the resource in the Squid
data structures and the flat cooperative protocols described in Section 4.2).

As shown in Figure 2, the gateway component identifies the requested version by
parsing the HTTP request header. If the If-Match field is present, the numerical code
contained in the Etag is extracted and added to the original URL.

3.3. Adapting a resource

To provide the adaptation functionality, our prototype uses an external process, called
Transcoder, which is created when necessary and exchanges information with Squid

70 CANALI ET AL.

Parse Header HTTP

clientInterpretRequestHeader

Check presence of

If-Match header

httpHeaderHas

Extract ETag value

extractTransLevel

Encode URL

uriEncode

[no If-Match]

[If-Match]

Figure 2. Parsing of the HTTP request.

through a pipe. The motivation for this choice is that, unlike traditional caching software,
Squid handles all the requests in a single, non-blocking, I/O-driven process. Since
transcoding operations are generally longer than any other typical Squid task, it would
not be efficient to include them in the main() program. Our solution allows to perform
in parallel multiple transcoding operations. Moreover, the use of multiple instances of
the Transcoder process can increase the performance in SMP systems (our experience is
on bi-processor machines). For example, we found that on a bi-processor SMP system
this approach reduces the 90-percentile of the transcoding time up to 110% with respect
to a uniprocessor system.

An alternative approach to multi-processing is to use multiple threads for serving
the client request. The use of threads has a clear benefit when there is a high number
of short client sessions. This is the typical case of HTTP servers serving static Web
resources, for whom the performance improvement introduced by multi-threading is
significant (e.g., Apache 2.0 vs. Apache 1.3 servers [1]). However, we should consider
that a transcoding intermediary node is characterized by a more limited number of
long-lasting sessions, because the transcoding operations add a computational impact
that traditional HTTP servers do not have to support. Hence, for a transcoding node
the benefit achieved from multi-treading over multi-processing may be negligible. For

CONTENT ADAPTATION ARCHITECTURES 71

this reason, we preferred the simpler approach of using a separate transcoding process
instead of deploying a multi-threaded transcoder. To motivate our choice, we also carried
out some preliminary tests where the transcoding operation is a file compression. We
processed a set of images using both the fork system call and threads to carry out
transcoding. We found that the average processing time is 151 ms for the thread-based
solution and 152 ms for the fork-based approach. Therefore, the performance gain of
multi-treading over multi-processing is less than 1%. For more complex transcoding
operations this performance gain can be even lower. Indeed, Figure 7 shows that the
adaptation task can take a time up to seconds.

Squid and the Transcoder process use temporary files to exchange data. First, the
transcodable resource is written on a temporary file, then an external process is created
and a communication pipe is opened through the Squid Inter Process Communication
functions. Squid uses other external processes, like pinger or unlinkd, so that our solution
is completely consistent with the Squid code. When the adaptation is over, the Transcoder
process notifies Squid through the pipe that the adapted resource is available on the
temporary file. Figure 3 illustrates the interaction among the processes: the continuous
lines represent data exchanges, the dashed ones the execution flow.

The Transcoder process uses the freely available ImageMagick library [16] to adapt
the image resources to the client capabilities. This library allows to manipulate many
image formats, supplying numerous transcoding algorithms. To extend the adaptation
functionalities to different media types, other transcoding tools can be used with simple
software integration. Indeed, the adaptation component is implemented as an external

Temporary
file convert

Transcoder

 End of transcoding

Transcoded
resource

 Transcodable
resource

Squid
 Creation

Call to
'convert'

 End of
 transcoding

Transcoded
resource

 Transcodable
resource

 ImageMagick

Figure 3. Interaction among processes.

72 CANALI ET AL.

process with the specific purpose of maximizing flexibility and making the prototype
independent of the transcoding functionality. The manipulation methods for adapting
media resources are a function of their current type (HTML, image, video, and audio)
and the client device characteristics.

3.4. Caching multiple versions

After having performed the transcoding operations, the intermediary node has to decide
which resource version is more useful to cache. To avoid repeating the likely expensive
transcoding operations at the same node, the output version resulting from adaptation
may be cached. On the other hand, the input version, on which the adaptation has been
applied, may be useful to serve a larger number of devices being more detailed.

Three simple caching policies have been described in [4] to manage the caching of
multi-version content. In the demand-based policy, the intermediary node caches the
output version resulting from adaptation; in the coverage-based policy, the node caches
only the input transcodable version retrieved from its local cache or from another remote
node; finally, in the anticipatory policy, the node caches both the versions.

Our prototype adopts the anticipatory policy. Hence, the Squid caching mechanism has
been modified to cache both versions of the same resource, before and after transcoding.
Figure 4 shows the sequence of operations performed when the intermediary node
receives an HTTP reply from either a remote cooperative node or the content server.

The Squid standard behavior, according to which the resource caching is carried
out contemporaneously to the resource delivery, has been modified in the following
way. The transcodable version is both cached and written on a temporary file at the
same time. After the transcoding process, a new StoreEntry structure is created to
save the adapted version in the local cache. As shown at the bottom of Figure 4, the
caching of the transcoded version happens contextually to its delivery. As replacement
algorithm our prototype adopts the standard LRU. It is worthwhile to note that the Squid
caching mechanism has been preserved; hence, every cache replacement policy already
implemented in Squid can be used in our prototype without any software integration.
Moreover, our prototype represents an extensible framework that also allows to integrate
more sophisticated cache replacement policies as those described in [7,28].

4. Interventions for cooperation

The use of a distributed system of intermediary nodes as an infrastructure for cooperative
content adaptation and delivery opens up many possible alternatives, because the nodes
can be organized according to different topologies and for each specific topology various
cooperation mechanisms can be defined [24]. In this paper, we consider two feasible
architectures that is, the hierarchical and the flat ones. In a hierarchical architecture, the
nodes are organized in a hierarchy of different levels [8], where only the bottom level
(leaf) nodes handle client requests directly. In a flat architecture, all the nodes are placed
on the same level. In the following of this section, we describe the main modifications
brought to Squid with the aim of providing content adaptation and delivery services in
a cooperative environment.

CONTENT ADAPTATION ARCHITECTURES 73

Transcode the resource

Cache the transcodable version

storeSwapOut

Write in a temporary file

clientTranSendLater

Send data to the client

clientSendMoreData

Cache the exact version

storeSwapOut

Receive a HTTP reply from a
remote node or a content server

httpProcessReplyHeader

Create a new data structure

clientCreateStoreEntry

Figure 4. Anticipatory caching.

4.1. Hierarchical topologies for cooperative content adaptation

In a hierarchical caching architecture, the device-contacted leaf node forwards the client
request up to the hierarchy until an hit occurs. If no hit occurs at any level, the root
node retrieves the original version of the requested resource from the content server. We
assume that only the leaf nodes host the gateway functionality to manage client requests,
while the fetch functionality is played only by the root node. The cache and location
functionalities are provided by all the intermediary nodes, although no cooperation
occurs among sibling nodes at the same level. Message and resource exchanges occur
only along the vertical direction between a parent and a child node. As a consequence of
the presence of a cache in each node of the infrastructure and the vertical way in which
the location task is managed by the nodes, the global working set may be replicated on
each path from a leaf node to the root node, thus causing a scarce usage of the global
storage resource and leading to low cache hit rates.

74 CANALI ET AL.

The introduction of the content adaptation task in a hierarchical architecture opens up
the issue of mapping such a task on the nodes of the hierarchy. It is possible to realize an
homogeneous scheme where each node of the hierarchy provides both adaptation and
cache functionalities, as well as to consider a scheme where nodes at different levels
provide differentiated functionalities.

As transcoding may involve computationally expensive operations, in a hierarchical
architecture where all nodes perform adaptation there is a great risk of overloading
upper level nodes and particularly the root node. Indeed, preliminary results obtained
by the authors [3] show that an homogeneous scheme achieves poor performance due
to overload in the upper level nodes, which have to handle all misses from the lower
levels. We found that the root node can achieve a mean CPU load higher than 0.90,
while the leaf nodes are often idle (the corresponding mean CPU load is less than 0.02),
waiting for upper level nodes to process their requests. Therefore, in this paper we
consider a hierarchical scheme where the adaptation functionality is performed only by
the leaf nodes, while the intermediary nodes of the upper levels and the root node of
the hierarchy act only as traditional caching servers. In the latter case, the CPU load on
the leaf nodes is close to 0.3, while the root node is less utilized (its CPU load is below
0.1). If compared to the homogeneous hierarchical scheme, the latter solution provides
a better performance while remaining simple and easy to implement.

After the gateway component on the leaf node has received a client request and
identified the desired version of the resource, the cache component on the same leaf
node performs a local multi-version lookup in its cache. In case of exact hit, the node
delivers immediately the resource to the client, while in case of useful hit, the node
performs the transcoding operations locally before sending the resource to the client.
A local miss forces the location component on the leaf node to forward the request
to the upper levels of the hierarchy. That request refers to the original version of the
resource, hence no content adaptation is required to the upper nodes. If the client-
requested version of the resource was not the original one, the adaptation component on
the leaf node performs the transformation needed to obtain the proper version, before the
gateway component delivers it to the client. When a resource passes down the hierarchy,
it is left in the cache of each intermediary cache, until the resource reaches the leaf node.

The hierarchical cooperation does not require further modifications to the Squid code
in addition to the ones described in Section 3.

4.2. Flat topologies for cooperative content adaptation

We now consider flat architectures for intermediary-based adaptation where the nodes
are peers and provide all the functionalities (gateway, cache, location, fetch, and adap-
tation). External lookup in a distributed system has been studied for a while and many
mechanisms have been proposed to address the related issues [24]. Most of those mech-
anisms are viable solutions also for the multi-version lookup of resources. Apart from
the specific lookup protocol, the existence of multiple versions of the same resource
implies modifications to the cooperative discovery. Indeed, the external lookup may
provide one of the following results:

• Remote exact hit: the exact version of the required resource is found in the cache of
a remote node.

CONTENT ADAPTATION ARCHITECTURES 75

Client HTTP

request

Lookup in the

local cache

[LOCAL MISS]

[LOCAL EXACT HIT][LOCAL USEFUL HIT]

Send

data to

the client

Retrieve data from

the remote cache

Remote lookup in the

cooperative caches

Retrieve data

from the content server

[REMOTE MISS]

[REMOTE EXACT HIT][REMOTE USEFUL HIT]

Transcoding

Retrieve data from

the remote cache

Figure 5. Multi-version lookup in a flat architecture.

• Remote useful hit: a transcodable and more detailed version of the required resource
is found in the cache of a remote node.

• Remote miss: no version of the requested resource is found in any node caches; in
this case, a global miss occurs and the original version is retrieved from the content
server and, if needed, transcoded.

Figure 5 shows the behavior of an intermediary node in a flat architecture when it
receives a client request: it searches simultaneously for exact and useful hits, but the
exact hit is preferred to the useful one as it allows to avoid transcoding operations.

In the following two sections, we consider two opposite schemes that are at the basis
of different distributed architectures for intermediary content adaptation (namely query-
based and summary-based schemes), and their extension to provide the multi-version
location functionality.

4.2.1. Flat summary-based scheme. In summary-based schemes, as Cache Di-
gests [25], the location component of each node stores locally information about the

76 CANALI ET AL.

cache contents of the other intermediary nodes and exchanges periodically (indepen-
dently of the client request arrivals) this content information with other location com-
ponents to refresh its local estimation on remote cache server contents and to inform
the others about changes in its own set of cached resources. When a local miss occurs,
the location component on the node checks the summary of the resources cached at the
other nodes to discover potential remote exact or useful hits.

To allow all the location operations that are at the basis of the flat summary-based
scheme, the cache component must offer a richer set of operations than that provided
in the other considered architectures. In addition to the local multi-version lookup,
insertion, and delete operations, the cache component must make available to the location
component the whole cache index, in order to allow content information exchange with
the remote nodes.

For the experiments, we choose Cache Digests as a representative of the summary-
based architectures, because of its popularity and its implementation in the Squid soft-
ware [25,31]. By adding to the URL the resource version identifier, our prototype
supports in a transparent way the summary-based lookup process with multiple versions
of the same resource. Therefore, the basic mechanism of Cache Digests cooperation is
preserved. Since the hashing mechanism used by Cache Digests is very fast, the need
of one lookup for every possible useful version has a negligible impact on the overall
lookup time.

4.2.2. Flat query-based scheme. Unlike a summary-based location scheme where the
messages are periodically exchanged among the nodes, in the query-based cooperation
the location component activates message exchanges only at lookup time. When a
node experiences a local miss, the remote lookup starts with the location component
of the local node issuing query messages for the requested resource to the location
component on the other nodes in order to locate either the exact or a useful version of
the requested resource. The most important query-based protocol is ICP, defined in [32]
and implemented in Squid [31]. For this reason, we used ICP as the basic protocol for
query-based cooperation.

The pros and cons of the two flat schemes should be clear. The cache component
complexity of the summary-based scheme is no longer needed in the flat query-based
scheme, which can rely on a simpler cache component similar to that of the hierarchical
architecture. Moreover, due to the synchronous nature of query-based interactions, this
scheme tends to offer more accurate information. This means that we expect a remote
cache hit rate, both exact and useful, potentially higher than that of the summary-based
scheme. On the other hand, the remote lookup operations of the query-based scheme are
inherently slower and more expensive. The location component of the summary-based
scheme has only to access locally available information, while the discovery process
of the query-based scheme requires an expensive query/reply message exchange that
is also subject to network conditions. Moreover, while a remote exact hit is detected
as soon as the location component receives an exact hit reply message, the cases of
misses and useful hits may be particularly expensive. Indeed, the location component
declares a global miss and a remote useful hit only when it has received the last reply
message. This means that the location component must wait for the slowest remote node
to respond or the expiration of a timeout (set for default to 2 seconds in ICP).

CONTENT ADAPTATION ARCHITECTURES 77

Extract

numerical code

from the URL

Lookup in the

local cache

[EXACT HIT][MISS]

[USEFUL HIT]

 ICP_MULT_VERSION

ICP_QUERY with

Receive a

Send

message

ICP_OP_USEFUL_HIT

ICP_OP_MISS

Send

message

ICP_OP_HIT

Send

message

Figure 6. Receiving an ICP query with ICP MULT VERSION flag set.

Some essential modifications are necessary to add the support for multi-version
lookup into the Squid version of ICP (defined in the module ICPv2). ICP does not
supply support for HTTP semantics: an ICP query contains only the URL of the
resource, but none of HTTP headers. Hence, we insert the encoded URL with the
resource version identifier in the payload of the ICP message in order to indicate the
required resource version. To distinguish the multi-version lookup from the standard
lookup of the ICP protocol, we define a new flag, namely ICP MULT VERSION. We
also introduce a new response code to distinguish a useful hit from an exact hit. In
the ICP OP USEFUL HIT response, the URL field of the ICP message contains the
identifier of the transcodable version encoded into the URL.

The multi-version enhanced ICP lookup is activated by setting the flag
ICP MULT VERSION in the request message. Then, we have three possible re-
sponse codes: ICP OP HIT in case of exact hit in the cache of the remote node,
ICP OP USEFUL HIT for useful hits, and ICP OP MISS when neither exact nor use-
ful hits are detected. Figure 6 shows the ICP reply mechanism of an intermediary node
upon receiving an ICP QUERY message with the ICP MULT VERSION flag.

If different useful versions are detected in the remote caches, the location component
on the client-contacted node tries to retrieve the least detailed version to reduce both the
transmission time and the adaptation cost.

5. Client and workload models

In this section, we describe the client and workload models used to evaluate the perfor-
mance of the Squid-based content adaptation architectures.

We consider a classification of the client devices on the basis of their capabilities of
consuming different resources and connecting to the assigned intermediary node [4,7].
We have identified the following six classes of devices:

78 CANALI ET AL.

• HighPC: a high-end workstation/PC with a network link ranging from Ethernet to
DSL; this device can consume every resource in its original form.

• MedPC: a midrange PC or a laptop connected through a fast/medium wire-connected
modem; to reduce network-resource usage, the image size and the quality factor (for
JPEG images) are reduced.

• TVBrowser: a set-top box that can turn a TV into a Web browser; as the maximum
resolution is limited by the TV screen, the image size should be trimmed down not to
waste network and CPU appliance resources.

• HPC: a handheld PC connected through a modem; it can display color images with
different resolutions, but the screen is typically small.

• PDA: a personal digital assistant using a wireless connection; it is not capable of
displaying colorful and large images.

• Phone: a cellular phone using a wireless GSM connection; the screen is small and
can only display black and white (1 bit) graphics.

Table 1 shows the bandwidth of the network link connecting the device to the inter-
mediary node and the different device capabilities for handling images.

To characterize the workload, it is worth making prediction about the future diffusion
of different Web-connected devices. In this paper, we assume that traditional devices,
such as PCs and laptops, are still more popular than other client devices. The percentages
of diffusion of client devices are reported in the last column of Table 1. It is difficult to
predict the trend of diffusion of future Web-connected devices. However, we found that
experiments with percentages within 10% of those reported here did not affect the main
conclusions of the paper.

In this paper, we consider that transcoding operations are applied only to image
resources (both GIF and JPEG formats), as more than 70% of the files requested on the
Web still belongs to this class [6]. However, in our experiments we also consider a likely
future scenario where the transcoding operations have higher costs because of the larger
percentage of non-textual resources.

To choose efficient and appropriate transcoding algorithms it is useful to determine
which characteristics of Web images may be critical for displaying on devices with
limited capabilities. The nature of typical images in Web workload and their transcoding
characteristics have been analyzed in [6], where the authors found that 74.81% were GIF
and 24.41% were JPEG images. GIF and JPEG images represent almost all the image

Table 1. Client device characteristics.

Device Bandwidth Color
Maximum resolution
(pixels)

Percentage of
diffusion %

HighPC 10 Mbps 24-bit color original 25

MedPC 64 Kbps 24-bit color 800 × 600 25

TVBrowser 56 Kbps 8-bit color 640 × 480 12.5

HPC 56 Kbps 8-bit color 120 × 120 12.5

PDA 28.8 Kbps grayscale 120 × 120 12.5

Phone 9.6 Kbps b&w 120 × 120 12.5

CONTENT ADAPTATION ARCHITECTURES 79

bytes transferred, but the percentages are evenly distributed between the two formats.
With regard to the image size, most of the GIF images accessed on the Web (about
80%) are smaller than 6 KB, while about 40% of the JPEG images are larger than 6
KB. Transcoding can be performed along a number of different axes. To obtain a file
size reduction, the transcoding algorithms seem to perform better if operating on spatial
geometry, color depth, quality, animation, and MIME subtype.

In our experiments we used two different workload models, namely light and heavy,
being the working set the main difference between the two workloads.

The light workload aims at capturing a realistic Web scenario with a reduced content
adaptation load. The set of resources used in this workload is based on proxy traces
collected in August 2002 and belonging to the nodes of the IRCache infrastructure [17].
We downloaded the resources from their content servers and placed them on our content
server. We performed some characterization on the images in the light workload, such
as file size, JPEG quality factor, and number of colors of GIF images, and found
that they are very close to the results reported in [6]. Hence, we can assume that our
workload captures a realistic scenario of present Web requests. We measured the costs
of transcoding operations in the light workload by submitting a sequential stream of
requests on the machines used for our experiments. The results of such test are 0.04
and 0.22 seconds for the median and the 90-percentile service time, respectively (the
cumulative distribution is shown in Figure 7).

The heavy workload has a higher majority of larger files (pictures). This workload
does not aim at being realistic, but we used it to put much more stress on the transcoding
process. As the trend of the Web is towards a growing demand for multimedia resources,
this workload can represent a situation with a large amount of them. In this scenario,
the costs for transcoding operations are 0.27 and 1.72 seconds for the median and the
90-percentile service time, respectively (as for the previous workload, the cumulative
distribution of the transcoding time is shown in Figure 7).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Transcoding time [s]

Light workload
Heavy workload

Figure 7. Cumulative distributions of transcoding time for the light and heavy workloads.

80 CANALI ET AL.

For both workloads, the size of the original working set (i.e., the working set composed
only by the original versions of each resource) is similar. If we focus on the actual
working set, that includes the original resources and all their adapted versions, we
observe that its size exceeds significantly that of the original working set. In particular,
the working set growth due to the presence of multiple versions is 50% and 100% for
the light and heavy workloads, respectively.

The size of the caches depends on the workload model that is, we use caches of
different size in such a way that for both light and heavy workloads the global cache
size (i.e., the sum of the sizes of the caches used in our experiments) is nearly 80% of
the actual working set for the basic setup of our servers (in Section 6.3 we vary the size
of the caches). Specifically, the global cache size is 3 GB for the light workload and 4
GB for the heavy workload.

The mean file size of the two workload models differs considerably; the main conse-
quence is that the heavy workload causes cache hit rates lower than those of the light
workload.

We have also introduced a popularity resource distribution for both workloads by
defining a set of hot resources (corresponding to 1% of the working set): 10% of the
total number of requests refers to this set.

From the file list of each workload, we obtained 80 different traces that were used
in parallel during the experiments. The traces have been obtained as follows. For each
workload, we have identified a set of hot resources (selected randomly from the workload
file list) and a set of normal resources. Each trace contains 1000 requests. For each
request, we have determined randomly whether it belongs to the hot set or not. A further
random number is then used to select the specific resource from the proper set. Finally,
each request is associated to a client device according to the percentage of diffusion
reported in Table 1.

In each trace a random delay elapses between two consecutive requests. The client
request rate can be controlled by adjusting the mean value of the delay. Figure 8 shows
the results of a preliminary test conducted on a single machine to analyze how the
90-percentile of response time is affected by the client request rate for both workloads.
As the request rate grows, the response time increases more than linearly due to the
higher CPU load caused by transcoding operations. In our experiments, the default
client request rate has been set to 5 requests per second, being this value consistent with
our analysis of real-world IRCache proxy logs. The results shown in the figure also
evidence the transcoding load imposed on the CPU and motivate the need of caching
already adapted resources and distributing the content adaptation on multiple nodes.

6. Experimental results

The experimental results described in this section have a twofold goal. First, we aim to
evaluate the effectiveness of the transcoding process in reducing the resource sizes and,
consequently, the transmission times on the link between the client and its assigned
intermediary node. We then focus on cooperative resource discovery, analyzing the
performance of different cooperative architectures of intermediary nodes organized
in hierarchical and flat distributed topologies, and comparing them to the case of a

CONTENT ADAPTATION ARCHITECTURES 81

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8

90
-p

er
ce

nt
ile

 o
f r

es
po

ns
e

tim
e

[s
]

Request rate [req/s]

Heavy workload
Light workload

Figure 8. 90-percentile of response time as a function of client request rate for the light and heavy workloads.

non-cooperative system. In this second set of experiments we use both light and heavy
workloads to provide a more detailed analysis.

In our experiments, we set up a system of 16 intermediary nodes. Each machine has
a P-III 933 MHz CPU with 256 MB RAM and runs Linux. The servers are equipped
with the prototype described in this paper and configured to cooperate through different
architectures and resource discovery protocols. An additional node acts as the server
which hosts the original Web content.

6.1. Performance benefits of transcoding

Figures 9 and 10 show the size reduction obtained by transcoding JPEG and GIF
images, respectively, in the light workload. As performance index we use the cumulative
distribution of the stretching factor, which is defined as the ratio of the size of a
transcoded image over the size of its original version.

We can see that in some cases the adaptation is not productive in term of size reduction.
The reason is that the effect of the applied transcoding algorithm depends on the peculiar
characteristics of the images. For example, GIF format uses a compression algorithm
to reduce the number of bits required to store frequent color map values; an adaptation
that reduces the spatial geometry could consequently increase the number of unique
colors with low occurrence frequency, with the side effect of increasing also the output
image size. Hence, we observe that for the GIF format almost 20% of images adapted
for HPC is larger than the original ones, but for other transformations we obtain a
considerable size reduction. As regards JPEG images adapted for TVBrowser devices,
we have obtained a stretching factor value lower than 1 for 85% of images. For JPEG
images adapted for other devices this percentage reaches 95%, as shown in Figure 9.
The adaptation for cellular phones reduces all the JPEG images at least of 50%: for this

82 CANALI ET AL.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Stretching factor

MedPC
TVBrowser

HPC
PDA

Phone

Figure 9. Size reduction for JPEG images.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Stretching factor

MedPC
TVBrowser

HPC
PDA

Phone

Figure 10. Size reduction for GIF images.

class of devices, we convert JPEG images to the GIF format because the latter is more
suitable for black and white images. In this case, it is necessary to change dynamically
the MIME subtype within the HTTP reply header. For MedPC the size of GIF images
after adaptation is reduced only by a little percentage (5%), while better results are
achieved for the other classes of devices (40% for TVBrowser, 50% for HPC, 70% for
PDA and over 90% for Phone), as shown in Figure 10.

The size reduction obtained by performing adaptation reduces the transmission time
of the adapted resources on the link between the intermediary node and the client device.
Figures 11 and 12 report for the two image formats the median value of transfer and

CONTENT ADAPTATION ARCHITECTURES 83

Figure 11. Median of transfer and transcoding times for JPEG images.

Figure 12. Median of transfer and transcoding times for GIF images.

transcoding times for the different classes of devices requiring adaptation (the transfer
time values for HighPC devices, which consume only original resources, are equal to
0.002 and 0.005 sec. for GIF and JPEG formats, respectively.)

It is interesting to note that the median value of transfer times for the transcoded
resources is comparable for all the client classes, while the corresponding times for
original resources show an increase of one order of magnitude for clients with slow
connections. As shown in Figure 12, in case of GIF images the transmission time of
transcoded resources slowly connected devices as Phone is even lower than that of better
connected devices as MedPC.

On the other hand, the content adaptation costs vary according to the resource type and
the transcoding algorithm, but they are generally high as confirmed by measurements on

84 CANALI ET AL.

machines used for our experiments (see Figure 7). In Figures 11 and 12 we also report
the median value of transcoding times for each class of client devices and the two image
formats.

We observe that for each device and image format the sum of transcoding and transfer
times for transcoded images (the column on the right) never exceeds the corresponding
transfer times of original resources (the column on the left). Hence, the size reduction
of transcoded resources can counterbalance the time spent performing adaptation. For
MedPC and TVBrowser devices, the two measurements are comparable because of the
lower size reduction obtained by adaptation, especially for the GIF format. On the other
hand, for the devices with slow network connections the gain achieved by performing
adaptation is considerable: Figures 11 and 12 show that summing up the transcoding
time to the transfer time, the results for these devices are of one order of magnitude
lower than the corresponding transfer times of original resources.

It is worthwhile to note that the transcoding time values shown in these figures
represent a worst case, because transcoding costs do not necessarily affect each client
request; indeed, the resource adaptation is not performed when the desired version is
found in one of the caches belonging to the distributed architecture (i.e., in case of exact
hit). Hence, cache hit rate is a fundamental parameter to improve the user-perceived
response time as discussed in the following set of experiments.

6.2. Performance benefits of cooperation

In this section, we compare the performance of the hierarchical and flat architectures
for collaborative content adaptation of Web resources and quantify to what extent
cooperation among nodes improves the system performance with respect to the case of
no cooperation.

We set up a scenario where the intermediary nodes are well connected among them and
with the clients. The content server is placed in a remote location, connected through
a geographic link with 14 hops in between, a mean round-trip time of 60 ms, and a
maximum bandwidth of 2 Mbps. We verified that in this scenario the network path
to the content server (reached in case of global miss) was one of the possible system
bottleneck. Hence, the global cache hit rate may impact on the response time. In the
experiments described in this section, we set the global cache size so that it is nearly 80%
of the actual working set. Even if storage costs decrease day by day, we can consider the
finite cache size assumption as realistic, because the global size of the actual working
set largely exceeds the original one.

We consider a Hierarchical architecture, a flat architecture using a query-based
discovery protocol (Flat-query), and a flat architecture adopting a summary-based
protocol (Flat-summary). The configuration for Flat-query and Flat-summary schemes
is based on a flat cooperative architecture, where all intermediary nodes have sibling
relationships among them. The 80 traces used for the experiments are fed to the system
so that each of the 16 nodes running our prototype receives 5 traces. The hierarchical
architecture is configured on the basis of a three-level hierarchy with 12 leaf nodes, 3
intermediate nodes (with a nodal out-degree of 4), and one root node. The client requests
reach only the leaf nodes. In this case, the original 80 traces are redistributed over the
12 leaf nodes, so that 8 nodes receive 7 traces each while the remaining 4 leaf nodes

CONTENT ADAPTATION ARCHITECTURES 85

receive only 6 traces. For performance comparison, we consider also the non-cooperative
scheme (No Coop), in which the intermediary nodes do not cooperate. In this scheme,
exact and useful hits can only be local, while local misses cause a request of the original
resource to the content server. In the following experiments we use both light and heavy
workloads. First, we evaluate the cache hit rates of the various cooperation schemes. We
then focus on the response time, which is the crucial performance index for the users.

Tables 2 and 3 show the cache hit rates for light and heavy workloads, respectively.
The first four columns report the local and remote hit rates (exact and useful), while the
last column summarizes the global hit rate, given by the sum of the various hit rates.

From the last column of Tables 2 and 3, we can observe that there are some significant
differences in the global hit rates, depending on the used cooperation mechanism. For
both workloads, flat architectures offer the best results. In particular the Flat-query
scheme achieves higher values for remote hit rates, while Flat-summary turns out to be
less effective in finding hits. Indeed, when the cooperation occurs among many nodes,
Flat-summary becomes imprecise (i.e., the accuracy of the exchanged cache digests
decreases) and its remote hit rates diminish. This is particularly evident for the heavy
workload (but it can be also observed for the light one): the presence of larger resources
causes faster changes in the cache contents, thus reducing the accuracy of the exchanged
digests. Columns 4 and 5 in Table 2 show that the reduction in the global hit rate is
caused by a reduction of the remote hit rate. On the other hand, the Flat-query architecture
clearly presents a higher overhead than Flat-summary in terms of messages exchanged
over the network, as pointed out in [10]. In our experiments the time for ICP queries
lies in the range from 10 to 50 ms. By comparing the time for the query-based lookup
to that required by adaptation, we see that queries are much cheaper than transcoding.
Taking into account the computational cost of transcoding, we can conclude that, for
the distributed content adaptation architecture, the most important objective is to reduce

Table 2. Cache hit rates (light workload).

Local exact HR
(%)

Local useful
HR (%)

Remote exact
HR (%)

Remote useful
HR (%) Global HR (%)

No Coop 18.4 7.6 n/a n/a 26.0

Hierarchical 10.2 8.2 10.4 9.2 38.0

Flat-summary 21.2 11.9 11.5 11.5 56.1

Flat-query 19.4 16.9 13.8 19.3 69.4

Table 3 Cache hit rates (heavy workload).

Local exact HR
(%)

Local useful
HR (%)

Remote exact
HR (%)

Remote useful
HR (%) Global HR (%)

No Coop 5.1 4.3 n/a n/a 9.4

Hierarchical 3.6 2.8 4.1 3.1 13.6

Flat-summary 5.2 4.5 10.7 9.3 29.7

Flat-query 5.1 4.7 20.1 22.1 52.0

86 CANALI ET AL.

Figure 13. Median and 90-percentile of response time (light workload).

the load at the nodes. Therefore, the Flat-query scheme turns out to be preferable as it
considerably increases the cache hit rates. The Hierarchical architecture shows hit rates
lower than those of other cooperative architectures. The motivation is that, for every
client request resulting in a local miss, the original resource is stored at each level of
the hierarchy. This leads to an inefficient use of cache space that, due to the limitation
of the cache size, notably reduces hit rates.

The strong relationship between hit rate and response time is confirmed by the
following set of experiments. Figures 13 and 14 shows an histogram of median and
90-percentile values of response time for the various cooperation schemes for light and
heavy workloads, respectively. If we consider the 90-percentile, we can see clearly the
relationship between the hit rate and the response time: higher hit rates lead to lower
response times. However, it is also interesting to note the slightly different values of the
median. In particular, even if the global hit rate of the Flat-summary scheme is lower
than that of Flat-query, nevertheless the median response time of Flat-summary is lower
than that of Flat-query. This is a consequence of the faster lookup mechanism of Flat-
summary that can carry out a remote lookup using only already available information
on the local node. Therefore, remote hits are typically serviced faster than those of the
Flat-query scheme.

The Hierarchical scheme is penalized with respect to the flat architectures. There
are two reasons for this result. In the Hierarchical scheme, the upper level nodes can
only act as pure cache servers (in our testbed prototype, 4 nodes over 16 do not perform
transcoding operations); hence, the overall computational power available for adaptation
is reduced. Moreover, as shown in Tables 2 and 3, the flat cooperation schemes achieve
the highest cache hit rate that contributes to improve the response time.

6.3. Sensitivity to cache size

As a further analysis of the proposed cooperative content adaptation schemes, we
now present a sensitivity analysis to the cache size aiming to demonstrate the best
performance of the Flat-query scheme over a wide range of values for this parameter. In

CONTENT ADAPTATION ARCHITECTURES 87

Figure 14. Median and 90-percentile of response time (heavy workload).

this set of experiments we focus only on the flat architectures, because those schemes
have outperformed the hierarchical one in the previous architectural comparison.

Tables 4 and 5 show the global hit rate of the two flat architectures. We report only
the global cache hit rate because the disaggregation of hits in local, remote, useful
and exact is similar to the one shown in Tables 2 and 3. The cache size refers to the
globally available cache storage (i.e., the sum of the cache sizes of each intermediary
node) and is normalized against the actual working set size. As expected, increasing the
amount of storage available for caching has a positive effect on the hit rate, which grows
monotonically as the cache size increases. The experiments have been carried out also
for values of global cache size greater than 100%. The achieved hit rate for a cache size
of 106% is far lower than 100%: this indicates that both cooperation schemes present a
fair amount of cache content duplication.

The most significant result arises from the comparison of the two flat cooperation
schemes: from the values shown in Tables 4 and 5 it is evident that, for both workloads
and for each tested cache size, the Flat-query scheme achieves a higher hit rate than
Flat-summary.

Figures 15 and 16 show the 90-percentile of the response time as a function of the
cache size. The relationship between the hit rates in Tables 4 and 5 and the results shown
by the figures is clear: the better cache hit rate of the Flat-query scheme determines a
lower 90-percentile of response time with respect to Flat-summary.

Table 4 Global cache hit rates as a function of cache size
(light workload).

Cache size (%) Flat-summary (%) Flat-query (%)

40 36.8 42.6

80 56.1 69.4

106 80.4 82.1

132 98.2 98.3

88 CANALI ET AL.

Table 5 Global cache hit rates as a function of cache size
(heavy workload).

Cache size (%) Flat-summary (%) Flat-query (%)

40 22.1 40.2

80 29.7 52.0

106 34.3 66.9

132 53.6 78.4

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 40 60 80 100 120 140

90
-p

er
ce

nt
ile

 o
f r

es
po

ns
e

tim
e

[s
]

Cache capacity (%)

Flat-query
Flat-summary

Figure 15. 90-percentile of response time for different cache sizes (light workload).

To summarize the results that can be got from all the experiments, cooperation
improves the response time for both workload models with respect to the non-cooperative
case. Among the cooperation schemes, the Hierarchical one is the slowest; Flat-query
turns out to be the best performing scheme to serve the large majority of the requests,
even if Flat-Summary can be faster than Flat-query to serve half of the requests for
both workloads. Furthermore, a sensitivity analysis of response time and cache hit rate
to the cache size confirms that the Flat-query scheme achieves a better performance
than Flat-summary for cache sizes ranging from 40% to more than 130% of the actual
working set.

7. Related work

While the investigation of the intermediary-based approach, in which the adaptation
and caching functionalities are provided by stand-alone nodes that do not cooperate

CONTENT ADAPTATION ARCHITECTURES 89

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 40 60 80 100 120 140

90
-p

er
ce

nt
ile

 o
f r

es
po

ns
e

tim
e

[s
]

Cache capacity (%)

Flat-query
Flat-summary

Figure 16. 90-percentile of response time for different cache sizes (heavy workload).

among them (or at most by cluster of nodes [12]), has attracted the attention of many
researchers, only recently cooperative intermediary architectures for content adaptation
have been addressed [3,4,27] (although the study in [27] regards peer-to-peer networks
and is more focused on content personalization). Therefore, in this section we mainly
discuss proposals related to non-cooperative intermediary nodes.

Most research efforts have focused on handling the variations in client bandwidth
and display capabilities [5,12,13,15,33]. In these proposals, the node that directly con-
nects to the clients typically reduces the resource size, thus reducing bandwidth con-
sumption, apart from providing a resource version that the client device can consume.
Although some of the above mentioned works investigate resource compression tech-
niques [13,33], none considers caching.

A limited number of recent proposals have exploited techniques to combine both
content adaptation and caching to reduce the computational resource usage at the in-
termediary node [7,26,28,30]. In [28] the authors have examined how to improve the
effectiveness of transcoding by integrating it with caching mechanisms and taking into
account the transcoding utility of any cached resource to decide about transcoding.
The transcoding operations regard images and are carried out using the ImageMagick
library, as in our proposal. While the architecture discussed in [28] is based on the Java-
based proxy Rabbit, we propose to enhance with transcoding and caching functionalities
the Squid proxy server, which is characterized by robustness and wide spread usage.
Moreover, we introduce a new challenge by enhancing some cooperation mechanisms
provided by Squid to provide multi-version resource discovery. A Squid-based transcod-
ing proxy has been first presented in [20], which also discusses how to match client
requests to cached transcoded resources. Again, this work considers only a stand-alone
intermediary node.

90 CANALI ET AL.

More sophisticated cache replacement policies designed for transcoding intermediary
nodes have been proposed in [7,26,30]. The transcoding cost is taken into account in
the caching policies investigated in [7]. While the works in [7,20,28] focus primarily
on the transcoding of static Web resources (as also this paper), [30] and [26] combine
caching with transcoding of streaming media resources. Comparison of sophisticated
cache replacement policies for multi-version content is out of the goals of this paper.
Nevertheless, our Squid-based prototype provides an extensible framework that allows
to integrate new caching policies and evaluate their performance in a real Web
environment. Indeed, most of the above mentioned works provide a performance
evaluation of the proposed policies through simulation.

The main motivation that leaded us to study cooperative intermediary-based architec-
tures for content adaptation is the limited scalability to which the existing intermediary-
based approach may be subject. The main issues arise from the computational cost of
transcoding operations, especially for large multimedia resources [20,26], and the net-
work connection between the client and the intermediary node. The scalability issue has
been addressed in [12] through a cluster of locally distributed proxies. A cluster-based
approach may solve the CPU-resource constraint of the computational nodes, but it tends
to move the system bottleneck from the node CPU to the cluster connection to Internet.
On the other hand, in our proposal the cooperative intermediary nodes can be distributed
over a wide area network. With respect to a cluster-based architecture, a WAN solution
allows to use network resources more fairly and to reduce response time variance due to
network-related delays, as demonstrated in [9] for traditional cooperative Web caching.

In [4] the authors have obtained some preliminary results through simulation that
demonstrated the importance of distributing the computational load of transcoding in
a hierarchical architecture of cooperative intermediary nodes. In [3] the authors have
focused on the performance comparison of hierarchical cooperative architectures and
transcoding algorithms for flat cooperation schemes.

8. Conclusions

In this paper we proposed a Squid-based prototype that provides on-the-fly image
transcoding services on the basis of the client device capabilities and operating on
various image parameters, such as spatial geometry, color depth, quality factor, and
MIME subtype. We modified most of the traditional phases of the standard Squid proxy
server in order to support adaptation and multi-version caching functionalities on the
intermediary node. We used an external transcoder process to maximize flexibility and
make the prototype independent of the particular tool used to adapt the resources. We also
investigated how to enable cooperation for intermediary nodes organized in hierarchical
and flat distributed topologies. Our results demonstrated that the flat cooperation among
the nodes clearly improves the response time with respect to the non-cooperative case
for different workload scenarios. In particular, we found that the Flat-query cooperation
scheme achieves the best performance even for different cache sizes.

Integrating content adaptation services within cooperative intermediary infras-
tructures raises many research issues. Some interesting topics that deserve further
investigation include the use in a cooperative environment of different transformations
regarding content types such as video and audio data, the integration of content server

CONTENT ADAPTATION ARCHITECTURES 91

and intermediary node operations, as well as the analysis of cache replacement policies
designed for multi-version content in a cooperative distributed architecture.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions
which were helpful in preparing the final version of the paper. The authors acknowledge
the support of the Italian MIUR in the framework of the FIRB project “Wide-scale,
Broadband, Middleware for Network Distributed Services” (WEB-MINDS).

References

[1] Apache, Apache HTTP Server, 2005. http://httpd.apache.org/
[2] M. Butler, F. Giannetti, R. Gimson, and T. Wiley, “Device independence and the Web,” IEEE Internet

Computing, 6(5), 2002, 81–86.
[3] C. Canali, V. Cardellini, M. Colajanni, R. Lancellotti, and P. S. Yu, “Cooperative architectures and

algorithms for discovery and transcoding of multi-version content,” in Proc. of 8th Int’l Workshop on
Web Content Caching and Distribution, 2003.

[4] V. Cardellini, P. S. Yu, and Y. W. Huang, “Collaborative proxy system for distributed Web content
transcoding,” in Proc. of 9th ACM Int’l Conf. on Information and Knowledge Management, Nov. 2000,
pp. 520–527.

[5] C. S. Chandra, S. Ellis, and A. Vahdat, “Application-level differentiated multimedia Web services using
quality aware transcoding,” IEEE J. on Selected Areas in Communication, 18(12), 2000, 2544–2465.

[6] S. Chandra, A. Gehani, C. S. Ellis, and A. Vahdat, “Transcoding characteristics of Web images,” in Proc.
of Multimedia Computing and Networking Conf., Jan. 2001.

[7] C.-Y. Chang and M.-S. Chen, “On exploring aggregate effect for efficient cache replacement in transcod-
ing proxies,” IEEE Trans. on Parallel and Distributed Systems, 14(6), 2003, 611–624.

[8] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrel, “A hierarchical Internet
object cache,” in Proc. of USENIX Ann. Tech. Conf, Jan. 1996, pp. 153–163.

[9] S. G. Dykes and K. A. Robbins, “A viability analysis of cooperative proxy caching,” in Proc. of IEEE
Infocom 2001, April 2001.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable wide-area Web cache sharing
protocol,” IEEE/ACM Trans. on Networking, 8(3), 2000, 281–293.

[11] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Frystyk, L. Masinter, P. J. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. RFC 2616, June 1999.

[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier, “Cluster-based scalable network
services,” in Proc. of 16th ACM SOSP, Oct. 1997, pp. 78–91.

[13] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas, “Dynamic adaptation in an image
transcoding proxy for mobile Web browsing,” IEEE Personal Comm., 5(6), 1998, 8–17.

[14] IBM. IBM WebSphere Transcoding Publisher, 2005. http://www.ibm.com/software/pervasive/transcoding
publisher/

[15] S. Ihde, P. P. Maglio, J. Meyer, and R. Barrett, “Intermediary-based transcoding framework,” IBM System
Journal, 40(1), 2001, 179–192.

[16] ImageMagick, 2005. http://www.imagemagick.org/
[17] IRCache project, 2005. http://www.ircache.net
[18] B. Knutsson, H. Lu, and J. Mogul, “Architecture and performance of server-directed transcoding,” ACM

Trans. on Internet Technology, 3(4), 2003, 392–424.
[19] W. Y. Lum and F. C. M. Lau, “On balancing between transcoding overhead and spatial consumption in

content adaptation,” in Proc. of ACM Mobicom 2002, September 2002, pp. 239–250.
[20] A. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy, “TransSquid: Transcoding and caching

proxy for heterogeneous e-commerce environments,” in Proc. of 12th IEEE Int’l Workshop on Res.
Issues in Data Eng., Feb. 2002, pp. 50–59.

92 CANALI ET AL.

[21] Mercury. Mercury LoadRunner, 2005. http://www.mercury.com/us/products/performance-
center/loadrunner/

[22] R. Mohan, J. R. Smith, and C.-S. Li, “Adapting multimedia Internet content for universal access,” IEEE
Trans. on Multimedia, 1(1), 104–114, 1999.

[23] A. Pashtan, S. Kollipara, and M. Pearce, “Adapting content for wireless Web services,” IEEE Internet
Computing, 7(5), 2003, 79–85.

[24] M. Rabinovich and O. Spatscheck, Web Caching and Replication. Addison Wesley, 2002.
[25] A. Rousskov and D. Wessels, “Cache digests,” Computer Networks, 30(22/23), 1998, 2155–2168.
[26] B. Shen, S.-J. Lee, and S. Basu, “Caching strategies in transcoding-enabled proxy systems for streaming

media distribution networks,” IEEE Trans. on Multimedia, 6(2), 2004, 375–386.
[27] W. Shi, K. Shah, Y. Mao, and V. Chaudhary, “Tuxedo: A peer-to-peer caching system,” in Proc. of 2003

Int’l Conf. on Parallel and Distributed Processing Techniques and Applications, June 2003.
[28] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy, “PTC: Proxies that transcode and cache in

heterogeneous Web client environments,” World Wide Web, 7(1), 2004, 7–28.
[29] Squid Internet Object Cache, 2005. http://www.squid-cache.org
[30] X. Tang, F. Zhang, and S. T. Chanson, “Streaming media caching algorithms for transcoding proxies,”

in Proc. of Int’l Conf. on Parallel Processing, Aug. 2002, pp. 287–295.
[31] D. Wessels, Squid Programmers Guide, 2004. http://www.squid-cache.org/Doc/Prog-Guide/.
[32] D. Wessels and K. Claffy, Internet Cache Protocol (ICP), version 2. RFC 2186, Sept. 1997.
[33] B. Zenel, “A general purpose proxy filtering mechanism applied to the mobile environment,” Wireless

Networks, 5(5), 1999, 391–409.

