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ABSTRACT

Several enterprise data centers are adopting the private cloud computing paradigm as a scalable, cost-effective,  
robust way to provide services to their end users. The management and control of the underlying hw/sw infrastructure  
pose several interesting problems. In this paper we are interested to evidence that the monitoring process needs to scale to 
thousands of heterogeneous resources at different levels (system, network, storage, application) and at different time 
scales; it has to cope with missing data and detect anomalies in the performance samples; it has to transform all data into 
meaningful information and pass it to the decision process (possibly through different, ad-hoc algorithms for different 
resources).  In  most  cases  of  interest  for  this  paper,  the  control  management  system must  operate  under  real-time 
constraints. 

We  propose  a  hierarchical  architecture  that  is  able  to  support  the  efficient  orchestration  of  an  on-line  
management mechanism for a private cloud-based infrastructure. This architecture integrates a framework that collects  
samples from monitors, validates and aggregates them. We motivate the choice of a hierarchical scheme and show some  
data manipulation,  orchestration and control strategies at  different time scales.  We then focus on a specific context  
referring to mid-term management objectives.

We have applied the proposed hierarchical architecture successfully to data centers made of a large number of  
nodes that require short to mid-term control and in our experience we can conclude that it is a viable approach for the 
control of private cloud-based systems.
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1. INTRODUCTION

The design of  a  data center  has  come at  an evolutionary crossroad.  The increasing variety and 
complexity of end-user applications, the massive data growth, the challenging economic conditions,  and the 
physical limitations of power, heat, and space are all issues which must be accounted for modern hardware 
and software infrastructure. Finding architectures that can take cost, complexity, and associated risk out of 
the data center while improving service levels has become a major objective for most enterprises (Armbrust,  
S. et al, 2009; Wood, T. et al, 2009; Meisner, D. and Gold, B. T. and Wenisch, T., 2009). In this scenario, the  
private cloud computing model is starting to be seen as an ideal paradigm for a service hosting platform. A 
private cloud applies  the  main concepts  of  cloud computing,  such  as  on-demand resources,  accounting,  



service  oriented  architectures,  and  the  appearance  of  infinite  scalability  (Vaquero,  L.  M.  et  al,  2009;  
Armbrust, S. et al, 2009) to resources owned by the enterprise. Enhancing existing infrastructure with cloud  
computing capabilities  leads to  a  reduction  in  operating  costs,  provides  a  scalable  and  robust  execution 
environment and, ultimately, allows the adoption of an economy of scale through the Software-As-A-Service  
paradigm.

The adoption of a private cloud paradigm opens several issues at the level of system governance at  
real-time and off-line. In this paper, we focus on the former context. Enterprise data centers based on private  
clouds are characterized by a high number of heterogeneous  hardware and software components (processors, 
memories, storage elements, virtual machines, applications, business enforcement modules) that operate at  
different time scales (spanning from seconds to entire weeks), interact in possibly unpredictable ways, can be 
subject  to  prompt  reconfiguration  due  to  changes  in  system,  security,  and  business  policies.  In  these 
conditions, it is impossible to take critical decisions by simply looking at the output of the performance and 
utilization measures provided by the cloud infrastructure monitors. There are too many distinct data flows 
(literally, thousands per second) to analyze; many of them may contain missing or faulty measures; often, in 
order to gain a meaningful insight into the state of a system, it is necessary to correlate and aggregate several 
flows.  All  these decisions must  be taken  in  real-time.  To make matters  worse,  the  same algorithm that 
operates  well  at  a  given time scale may fail  at  a  different  one.  Thus it  is  not  immediately clear  which 
algorithms are more appropriate at different time scales. For these reasons, we are witnessing a shift from 
basic resource monitoring and management (allocation, activation, deactivation based on direct performance 
measures) to service orchestration, which shares the following goals:

• extract from a multitude of available raw performance measures those that are really relevant for a 
given business, security, or system objective;

• correlate and aggregate (both temporally and spatially that is, across different components) the most 
relevant time series in order to acquire an information about the internal system state.

In this paper, we propose a hierarchical architecture that supports models and methodologies for the 
efficient resource management of an on-line control enforcement mechanism operating on a private cloud-
based infrastructure. Our design addresses the scalability challenge (related to the huge number of monitored 
information  available  from  monitors)  in  several  ways.  The  system  is  logically  divided  into  several  
subsystems according  to the different  management  time spans (short,  medium, long term). A significant  
subset of the data processed by the monitoring framework at shorter time spans is made available to the  
runtime management modules operating at longer time spans. In this way, the duplication of preliminary 
operations such as data filtering is avoided. Furthermore, the modules operating at longer time scales identify 
from the myriad of available measures those that are really critical for the system. The goal is avoid the  
unnecessary  and often computationally infeasible of storing, monitoring and processing all  the measures 
available from shorter time spans. Hierarchical architectures for distributed monitoring of large systems have 
already proposed in literature (Newman, H.B. et al, 2003; Massie, M. L. and Chun, B. N. and Culler, D. E, 
2004).  However,  these  architectures  are  not  capable  of  enforcing  service  orchestration.  Our  proposal 
represent a further step in this direction. 
In the final part of the paper, we show an example of the difficulties behind on-line control enforcement at 
medium-term time scales.

The paper is  organized as  follows. Section 2 details  the reference  architecture  based on private 
clouds,  explains  the available measurements  and the control  enforcement  operations,  and formalizes  the 
problem  of  service  orchestration.  Section  3  introduces  the  on-line  analysis  framework  and  its  main 
components. Section 4 provides an analysis of different linear and non linear models to resources operating at 
medium-term time scales. Finally, Section 5 concludes the paper with some final remarks.

2. ARCHITECTURE

Figure 1 describes our model of an enterprise data center driven by business and system policies.  
The system is split into several layers, whose components (technologies, mechanisms and algorithms) are 
typically spread across the private cloud infrastructure. The System Infrastructure Layer is responsible for the 
fruition  of  the  information  stored  in  the  data  center.  This  information  may  have  different  origins;  for 



example, it may pertain to user applications, or it may refer to system resources performance data. All the  
components are monitored and tested continuously; a control enforcement module makes sure that the proper 
system policies are operated  correctly.  The  Business Layer hosts all  the components  responsible for  the 
enforcement  of  proper  business  policies,  such  as  ERP,  supply  chain  management,  Finance,  Sales.  The 
Governance Layer is responsible for the orchestration of the entire infrastructure at the system and business 
level.  In this layer, the information coming from the system and the business layers is processed in order to 
detect policy violations or anomalies. The Governance Layer also produces  reports and dashboards which 
the corporate management uses to define the business, system and security policies (Kaliski, B. S., 2010).

In this paper, we focus on the architectural supports operating at the System infrastructure layer. 
These models support the on-line management tasks that are executed at different temporal scales (ranging 
from seconds up to a few hours). In a private cloud-based architecture, these management tasks use several  
control  actions  available  to  the  underlying  architecture  to  enforce  control,  including:  admission  control,  
dispatching and scheduling, load (re)balancing, addition and removal of a physical host from the pool of 
available resources,  (live)  migration of  virtual  machines,  resource  limitation through traffic  shaping and 
container-based  techniques,  resource  reallocation  (to  accommodate  high  priority  tasks,  to  reduce  power 
consumption). The control actions are executed as a reaction to different events at different time scales. For  
example, a request enters the system, or an anomaly has been detected in the last hour, or a daily forecasting  
analysis  suggests  the re-configuration of  a  whole subsystem. To enforce  control,  the  management  tasks 
require some measurement from performance monitoring tools operating at different levels (physical hosts, 
virtual machines, applications), including CPU utilization, memory utilization, network throughput, power 
consumption, storage-related metrics such as read and write throughput and disk utilization, application-level  
data  (application  throughput,  response  times,  failure  rates).  We  can  assume  that  these  performance 
monitoring samples  are  available  periodically.   Previous literature  (Andreolini,  M. and  Casolari,  S.  and  
Colajanni, M., 2008), shows how the collection of several performance samples in distinct time series can 
provide the basis for efficient monitoring and prediction of system resource behavior. Thus, we will also 
assume to have a reasonably small amount of past sample history, in the form of fixed-window time series.  
Unfortunately, choosing the right sampling interval is a challenging task, because different management tasks 

Illustration 1: High level architecture of a private cloud-based data center



run at  different  time scales  and may not  need  (or,  worse,  not  operate properly in presence  of)  frequent 
monitored data streams. It is therefore also necessary to place the management tasks at the “right” time scale.
In this paper, we distinguish three different time scales:

• short time scale;
• medium (mid-term) time scale;
• long time scale.

Tasks operating at short time scales must take decisions and enforce them in the range of seconds,  
typically under a minute. These decisions allow the system to serve user requests in a best-effort fashion, 
given the actual configuration. Common control actions include admission control, resource reallocation due 
to the execution of some high priority application, dispatching of a request to the proper subsystem or server.  
Short time scales are critical for two reasons. First, there is typically no time for complex analyses on the  
monitoring  data  obtained  from  the  probes.  Experience  shows  that  only  data  filtering  is  viable.  As  a  
consequence, the decisions taken by a short time task must be taken using the data as-is, cannot be optimal,  
and must focus on avoiding disasters rather than on achieving optimal performance. Second, the volume of 
monitoring data can be very high. Thus, even the storage of the performance samples in a database for later 
analysis  can  be  a  problem due to  the  high computational  overhead  and  to  the  disk space  consumption  
involved  (Ousterhout,  J.  et  al,  2010).  Algorithms  operating  at  short  time  spans  must  often  treat  the 
monitoring data as a stream of numbers.

Tasks operating at mid-term time scale must take decisions and enforce them in the minute range  
(typically, under a hour). These decisions aim to adapt and improve the configuration of the system according 
to changed operating conditions. Common control actions include dynamic load balancing, virtual machine  
migration, node activation, dynamic resource allocation. These tasks have the time to process the monitored  
data, but, in order to optimize the execution of short-time tasks, they often have to aggregate different pieces  
of information both in time (through time series smoothing techniques) and in space (across different system 
components).

Tasks operating at long time scale must take decisions and enforce them in the hours range. These  
decisions share the goal of optimizing the system at real-time but in a longer horizon. Common control 
actions include resource reallocation due to some optimization (a typical goal is to pack the applications into 
the smallest number of nodes to minimize power consumption), and capacity planning activities. At this time 
scale, tasks have the time to fully analyze their raw data, produce reports and store the relevant results (since  
the required disk space is not an issue). However, the complexity of the decision process increases as, besides 
time  and  space  aggregations,  these  tasks  also  need  to  compute  predictions,  analyze  what-if  scenarios,  
encompassing the whole system.

Any infrastructure for the on-line control enforcement of a private cloud-based architecture must 
support these operations in a scalable way. Scalability can be achieved by reducing the number of nodes 
handled  by  each  management  task  and  by  reducing  the  overhead  due  to  storage  and  processing  to  a 
minimum. This translates to the following architectural requirements:

• make sure that any task (in particular, a short-time task) is responsible for a reasonable number of  
system components;

• support persistent storage only at longer time scales;
• make the results of shorter analyses available as a starting point for longer analyses
• support more sophisticated aggregation techniques (time and space) only at longer time scales. 

In the next section, we propose a hierarchical architecture that can integrate solutions for most real-time  
management problems.

3. A HIERARCHICAL ARCHITECTURE FOR RESOURCE 
MANAGEMENT

In Figure 2 we propose our hierarchical architecture for the support of on-line management tasks. 
(We note  that  the  hierarchy  is  logical,  but  each  layer  can  be  implemented  through several  servers  and 



databases). In this scheme, the system consists of different, smaller, manageable subsystems, each of which 
is controlled by a set of management tasks operating at different time spans. At the lowest level, we have  
subsets of hardware and software resources which can be associated to subnets, racks, distinct production 
areas, and the like. Each subset is governed through the control actions operated by a control enforcement 
module. Every control enforcement module is driven by an orchestration module, which is at the heart of 
every management task. The main purpose of the orchestration module is to take the “right” decisions based 
on some measure of the subsystem's internal state. Depending on the chosen time scale, the nature of the 
monitored  data  varies.  At  short  time  scales,  a  task  has  at  most  grossly  filtered  performance  measures 
available  (to  avoid  out-of-scale  values,  outliers  and  missing  data).  At  longer  time  scales,  tasks  usually 
perform more sophisticated statistical operations based on time and space aggregations, anomaly detection,  
predictions. In these architectures, scalability represents a crucial issue. We address it through a combination 
of solutions:

• architectural solutions , oriented to avoid single points of failure;
• data  management  solutions,  oriented  to  the  efficient  storage  and  manipulation  of  measures 

(including data compression and the use of lightweight database to shorten data access times);
• algorithmic solutions, oriented to the efficient  extraction of server status information from many 

servers.
In our experience, scalability at the network traffic level is not an issue comparable to the aforementioned 
problems.  In order to keep the control enforcement process scalable, each management task must orchestrate  
the control using the least amount of resources available. This implies the monitoring and control of only a 
limited subset  of  the entire  system (this  holds  particularly  true  for  short-time tasks).  We decide  not  to 
permanently store each raw performance measure obtained from the subset, since this would be unfeasible,  
given the literally hundreds of time series that would need to be monitored. Instead, we treat each monitor as 
a stream of data which is filtered in a basic fashion and made directly available to the orchestrator.  This 
operation is straightforward, since low-level system monitors such vmstat and sar can be easily instrumented 
to pipe their output to different processes. For some proprietary systems, it is possible to exploit the SNMP 
querying capabilities offered by more sophisticated tools such as Cacti, Nagios, Zenoss, to extract the same 
information from several system components.

Since longer tasks tend often to use the results of shorter tasks, we instrument the orchestrator to 
extract proper subsets of the filtered data (typically, the last n performance measures coming from the most  
important monitor probes) and to store them in a lightweight database. In this way, we reduce considerably  
the set of monitored data available to the mid-term and long-term tasks, and we provide a persistent data  
storage which is necessary to hold data spanning in longer ranges. A RAM database such as Firebird would 
fit  perfectly,  since it  provides excellent  performance over a moderately high volume of stored data.  Our  
experience shows that this approach allows to monitor tens of hardware and software resources per node, in a 
subsystem consisting of a few hundreds nodes.

The mid-term management tasks take the filtered data, aggregate it, detect (and possibly correct) 
anomalies, and produce a meaningful representation of a subsystem's internal state, which is used to enforce 
control  decisions  aimed  at  improving  the  performance  and  optimizing  the  present  behavior  relevant 
subsystems.  These  operations  can  be  implemented  through  any  standard  math  environment  (Matlab,  R 
Octave) or through mathematical libraries available for the most popular general purpose languages (Scipy, 
Numpy  in  Python).  With  respect  to  the  whole  set  of  time  series  available  from  the  monitors,  the  
representations produced by mid-term management tasks are much more compact in terms of size and are  
computed less often; thus, they can be stored into a DBMS, such as MySQL, PostgreSQL, Oracle.

Finally, the long-term management tasks also perform more sophisticated tasks oriented improve the 
performance and optimize the behavior of the whole system in the future. To this purpose, they retrieve the  
state representations computed by the mid-term management tasks and perform sophisticated computations 
involving long-term predictions, what-if analysis, capacity planning. The resulting models drive the decisions 
of the orchestration modules.

Our architecture is designed in such a way that the control actions can be implemented through off-
the-shelf hardware and software components. For example, request dispatching and load balancing can be 
operated through standard setups based on Apache2 (through the mod_rewrite and mod_proxy modules), 
Tomcat (through AJP connectors in a clustered setup) and, more recently, on nginx. There are several viable 
alternatives for the virtualization of services; the most popular are Xen (version 3.0 and above) and KVM 



(the hypervisor officially adopted by the Linux community). All these solutions  support (live) migrations,  
dynamic resource re-allocation, ballooning, paravirtualized device drivers for close-to-native performance. 
Another alternative is the use of resource containers (OpenVZ), which provide native performance at the 
expense of executing a shared operating system kernel for all running services.

Illustration 2: A hierarchical architecture for on-line management of cloud-based systems





4. MID-TERM ANALYSIS

In  this  section,  we  show  several  examples  pointing  out  different  problems  related  to  on-line 
management  of  cloud-based architectures.  Due to space constraints,  we focus on the mid-term temporal 
scale. At this level, control enforcement is pursued through some very specific control actions, such as virtual 
machine migrations, load balancing, resource reallocation, node activation. The decisions leading to these 
actions are taken by the proper orchestration module, which has at its disposal a subset of the data filtered by 
shorter-term  management  tasks  and  available  efficiently  through  RAM  databases.  Unfortunately,  the 
monitored data available to the orchestrator cannot be used to fulfill the management goals; it must be first  
transformed  into  a  higher  level  representation  of  a  subsystem through  data  manipulation  and  anomaly  
detection techniques. For example, let us consider a set performance metrics commonly available through 
off-the-shelf  monitoring  tools.  Figure  3  shows  the  behavior  of  CPU  utilization  performance  samples 
(obtained at intervals of 5 minutes) of a server node. The samples have been filtered to exclude outliers and  
out-of-scale values.

A first problem with this data set is its marked oscillatory behavior, which makes it very difficult (if 
not impossible) to deduct a clear representation of the server load conditions. If this data were to be used by  
the orchestrator  module to enforce load balancing across different  servers,  the result  would likely be an 
unstable subsystem where the load balancer constantly bounces process from one server node to another, in  
an endless effort to even the load. Hence, at the mid-term level our architecture must support the extraction of 
a more clean trend from the available data. This is possible through the adoption of time aggregation models. 
If  we consider the subset  of performance data as a fixed-window time series,  we can apply aggregation 
models to it in order to retrieve a synthetic representation of the resource behavior. In the considered mid-
term context,  time  aggregation  is  generally  pursued  through  the  adoption  of  linear  smoothing   that  is, 
moving-average techniques, such as exponential moving average (D. J. Lilja,  2000), through  regression and 
auto-regressive models (P. Dinda et al, 2000), and through interpolation techniques, such as the cubic spline 
(D. J. Poirier, 1973). These models have been shown to provide a good level  of precision at reasonable 
computational costs and in reasonable time (Andreolini, M. and Casolari, S. and Colajanni, M., 2008, Dinda, 
P. et al, 2000), compatible with the constraints imposed by mid-term management (usually, under one hour).  
Our experience shows that the majority of time aggregation functions require a CPU processing time well  
below 1 ms. This implies that, in one minute, a mid-term management task can aggregate at least 60000 time 
series. Our hierarchical architecture is capable of handling up to 300000 aggregations per minute by adopting 
a simple Exponential Weighted Movie Average (EWMA) model based on short, fixed windows. Figure 4 
shows a time aggregation of the CPU utilization shown in Figure 3,  based on the Exponential  Weighed 
Moving Average of the last 30 measures. The smoothing effect of the EWMA makes it easier to detect an 
oscillating server load and lowers the risk of unnecessary control enforcement.

In a complex system made up of several thousands of hardware and software components, even  
identifying the failing nodes may become a computationally intensive task. Thus,  a  scalable monitoring 
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framework  needs  to  reduce  the  number  of  relevant  system  state  information  made  available  to  the  
orchestration module. This goal can be achieved by distinguishing the components that are critical for the 
performance of the entire systems from those that are not. To make matters worse, it is very difficult if not  
impossible to infer the internal conditions of a subsystem from several, distinct internal state representations 
of (albeit relevant)a single components. We may not understand the reasons behind the failure, and we could 
simply  not  tell  whether  that  failure  is  about  to  cause  further  misbehavior  in  the  system.  Hence,  our  
monitoring  framework  must  also  aggregate  different,  heterogeneous,  time-aggregated  series  in  order  to 
produce  a  higher  level  view  of  a  subsystem,  which  allows  to  tell  whether  a  subsystem  is  performing 
suboptimally and why. To these purposes, spatial aggregation models are often used to analyze and combine 
multiple heterogeneous data sources into a single, coherent view of a system. Techniques such as the multi-
variate analysis (K.V. Mardia et al, 1979) and the Principal Component Analysis (PCA) (H. Hotelling, 1933) 
are effective  in capturing the salient  features  of  a  subsystem's internal  state,  thus drastically  cutting the 
amount of data used to perform decisions. Our experience shows that the PCA fits well in a hierarchical 
architecture  where  each  subsystem  can  be  efficiently  handled  by  a  subset  of  tasks  and  can  provide 
meaningful insight to the longer-term tasks. We have handled the reduction of more than one million samples 
pertaining to 1050 different components (21 hardware and software resources of 50 nodes) to a subset of 12 
principal components in less than a minute. A simple weighted aggregation model applied on the selected 
principal features allows to estimate a reliable representation of the system's internal state. Figure 5 shows,  
on the  left,  2  out  of  the  12 principal  components  characterizing  an  entire  subsystem. The 12  principal  
components are aggregated through a weighed regression model, shown on the right of Figure 5. Ultimately,  
the status of an entire subsystem can be represented through a single time series, available to the mid-term 
orchestrator and to the longer-term management tasks. Spatial aggregation of different resources in an the 
context of an on-line management system for distributed systems is still an open research problem, due to the 
the high number of time series available and to the heterogeneity of business-level and system-level measures 
(Zhu, X. et al, 2009). 

Control enforcement is applied as a reaction to events that perturb the normal operating conditions 
of the system: anomalies in the workloads, changes in the offered load, events that normally do not occur. 
The  orchestrator  must  be  able  to  detect  these  events  timely  through  the  adoption  of  on-line  anomaly 
detection, state change detection and event detection models. We have evaluated and integrate several on-line 
detectors in our hierarchical architecture. The models relying on a prior knowledge of all the possible states  
of a process (Lu, D. et al. 2004) are completely inadequate both statistically due to the non deterministic 
behavior  of  the  resource  measures  and  for  their  unfeasible  computational  costs.  Other  widely  adopted 
methods that use one or more load thresholds for detecting relevant state changes (Ramanathan, P. 1999.) 
seem  unsuitable  to  the  highly  variable  context  of  interest  for  this  paper.  In  the  private  cloud-based  
architectures  that  are  characterized  by  high  variability  of  the  measures,  by  non  stationary  and  by 
unpredictable behavior, a good state change detection model that is able to guarantee adequate solutions 
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while respecting the time constraints of the mid-term management, is based on the Cumulative Sum (Cusum) 
statistics (Montgomery, D. C., 2008; Basseville, M. et al, 1993). Figure 6 and Figure 7 illustrate the behavior 
of the threshold-based and the Cusum-based state change detection models, respectively. Filtered and non-
filtered data is overlaid point out relevant state changes; true and false positives are depicted with crosses and 
circles at the bottom of the figures. 

For our evaluation purposes we consider the data aggregation generated by the data manipulation of the CPU 
utilization of the subsystem nodes. An off-line analysis allows us to determine that relevant state change to be 
signaled to the control-enforcement management system occurs at times 50, 125, 200, 275, 350, 400, 475,  
and 550, as shown by the horizontal/vertical lines in the figures. This scenario characterized by multiple state  
changes  can  be  considered  a  good benchmark  for  on-line  detection  models.  Traditional  threshold-based 
detection models are capable of detecting all state changes, but their precision decreases, resulting in a high  
number of false detections during the stable states. This is a consequence of the inability of threshold-based  
models to guarantee reliable detections in highly variable contexts. On the other hand, the Cusum-based 
detection model exhibits a high detection quality. The proposed model detects timely the state change and it  
is affected by just one false detection at sample 540. Because of the computational cost of the considered  
model is able to provide reliable detections in the range of milliseconds it can be completely integrate in our  
hierarchical architecture.

5. CONCLUSIONS AND FUTURE WORK

The private cloud computing model is a viable paradigm for a service hosting platform, capable of  
keeping up with the challenging requirements behind complex end-user applications, massive data growth, 
sophisticated business models and the physical limitations of power, heat, and space. In this paper, we have  
proposed an architecture that supports models and methodologies for the efficient resource management of an 
on-line control enforcement mechanism operating on a private cloud-based infrastructure. The design of the 
architecture addresses several interesting challenges:

• it is modular, easy expandable through off-the-shelf hardware and software components;
• it integrates an on-line monitor and analyzer, suitable for run-time decisional tasks at different 

temporal scales (short, mid-term, long);
• it is hierarchical, allowing for scalable monitoring and control enforcement of subsystems made 

of up to hundreds of components.

We have also outlined the difficulties of on-line management and control enforcement at a given 
temporal  scale  (mid-term).  In  particular,  the monitored time series  available to the orchestrator  must be 
subject  to  time  and  spatial  aggregations  (in  order  to  derive  a  clear  view of  the  controlled  subsystem). 
Furthermore,  on-line  detection  algorithms are  necessary  to  identify  anomalies  in  an  otherwise  normally 
operating  subsystem.  Control  enforcement  is  typically  pursued  as  a  reaction  to  these  anomalies.  Our 
experience shows that management can happen efficiently even at different time scales. In particular, in the 

Illustration 7: Cusum-based modelIllustration 6: Threshold-based model



time span of one minute our architecture can seamlessly aggregate several tens of thousands time series over 
time (producing a clear view for every component) and identify the most relevant components of a system 
made up of one thousand components.

As a next step, we plan to enrich our on-line management task with supports oriented to power 
consumption (Raghavendra, R. et al, 2008), for example to place the incoming workload in areas at lower  
temperature or with higher cooling capacity. We will also try to scale our testbed to larger sizes to evaluate  
the scalability limits of the proposed architecture.
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