
A HIERARCHICAL ARCHITECTURE FOR ON-LINE
CONTROL OF PRIVATE CLOUD-BASED SYSTEMS

Mauro Andreolini
University of Modena and Reggio Emilia

Via Vignolese, 905/b – 41100 Modena, Italy
mauro.andreolini@unimore.it

Sara Casolari
University of Modena and Reggio Emilia

Via Vignolese, 905/b – 41100 Modena, Italy
sara.casolari@unimore.it

Stefania Tosi
University of Modena and Reggio Emilia

Via Vignolese, 905/b – 41100 Modena, Italy
stefania.tosi@unimore.it

ABSTRACT

Several enterprise data centers are adopting the private cloud computing paradigm as a scalable, cost-effective,
robust way to provide services to their end users. The management and control of the underlying hw/sw infrastructure
pose several interesting problems. In this paper we are interested to evidence that the monitoring process needs to scale to
thousands of heterogeneous resources at different levels (system, network, storage, application) and at different time
scales; it has to cope with missing data and detect anomalies in the performance samples; it has to transform all data into
meaningful information and pass it to the decision process (possibly through different, ad-hoc algorithms for different
resources). In most cases of interest for this paper, the control management system must operate under real-time
constraints.

We propose a hierarchical architecture that is able to support the efficient orchestration of an on-line
management mechanism for a private cloud-based infrastructure. This architecture integrates a framework that collects
samples from monitors, validates and aggregates them. We motivate the choice of a hierarchical scheme and show some
data manipulation, orchestration and control strategies at different time scales. We then focus on a specific context
referring to mid-term management objectives.

We have applied the proposed hierarchical architecture successfully to data centers made of a large number of
nodes that require short to mid-term control and in our experience we can conclude that it is a viable approach for the
control of private cloud-based systems.

KEYWORDS

Cloud computing, architecture, design, statistical models, anomaly detection, hierarchical.

1. INTRODUCTION

The design of a data center has come at an evolutionary crossroad. The increasing variety and
complexity of end-user applications, the massive data growth, the challenging economic conditions, and the
physical limitations of power, heat, and space are all issues which must be accounted for modern hardware
and software infrastructure. Finding architectures that can take cost, complexity, and associated risk out of
the data center while improving service levels has become a major objective for most enterprises (Armbrust,
S. et al, 2009; Wood, T. et al, 2009; Meisner, D. and Gold, B. T. and Wenisch, T., 2009). In this scenario, the
private cloud computing model is starting to be seen as an ideal paradigm for a service hosting platform. A
private cloud applies the main concepts of cloud computing, such as on-demand resources, accounting,

service oriented architectures, and the appearance of infinite scalability (Vaquero, L. M. et al, 2009;
Armbrust, S. et al, 2009) to resources owned by the enterprise. Enhancing existing infrastructure with cloud
computing capabilities leads to a reduction in operating costs, provides a scalable and robust execution
environment and, ultimately, allows the adoption of an economy of scale through the Software-As-A-Service
paradigm.

The adoption of a private cloud paradigm opens several issues at the level of system governance at
real-time and off-line. In this paper, we focus on the former context. Enterprise data centers based on private
clouds are characterized by a high number of heterogeneous hardware and software components (processors,
memories, storage elements, virtual machines, applications, business enforcement modules) that operate at
different time scales (spanning from seconds to entire weeks), interact in possibly unpredictable ways, can be
subject to prompt reconfiguration due to changes in system, security, and business policies. In these
conditions, it is impossible to take critical decisions by simply looking at the output of the performance and
utilization measures provided by the cloud infrastructure monitors. There are too many distinct data flows
(literally, thousands per second) to analyze; many of them may contain missing or faulty measures; often, in
order to gain a meaningful insight into the state of a system, it is necessary to correlate and aggregate several
flows. All these decisions must be taken in real-time. To make matters worse, the same algorithm that
operates well at a given time scale may fail at a different one. Thus it is not immediately clear which
algorithms are more appropriate at different time scales. For these reasons, we are witnessing a shift from
basic resource monitoring and management (allocation, activation, deactivation based on direct performance
measures) to service orchestration, which shares the following goals:

• extract from a multitude of available raw performance measures those that are really relevant for a
given business, security, or system objective;

• correlate and aggregate (both temporally and spatially that is, across different components) the most
relevant time series in order to acquire an information about the internal system state.

In this paper, we propose a hierarchical architecture that supports models and methodologies for the
efficient resource management of an on-line control enforcement mechanism operating on a private cloud-
based infrastructure. Our design addresses the scalability challenge (related to the huge number of monitored
information available from monitors) in several ways. The system is logically divided into several
subsystems according to the different management time spans (short, medium, long term). A significant
subset of the data processed by the monitoring framework at shorter time spans is made available to the
runtime management modules operating at longer time spans. In this way, the duplication of preliminary
operations such as data filtering is avoided. Furthermore, the modules operating at longer time scales identify
from the myriad of available measures those that are really critical for the system. The goal is avoid the
unnecessary and often computationally infeasible of storing, monitoring and processing all the measures
available from shorter time spans. Hierarchical architectures for distributed monitoring of large systems have
already proposed in literature (Newman, H.B. et al, 2003; Massie, M. L. and Chun, B. N. and Culler, D. E,
2004). However, these architectures are not capable of enforcing service orchestration. Our proposal
represent a further step in this direction.
In the final part of the paper, we show an example of the difficulties behind on-line control enforcement at
medium-term time scales.

The paper is organized as follows. Section 2 details the reference architecture based on private
clouds, explains the available measurements and the control enforcement operations, and formalizes the
problem of service orchestration. Section 3 introduces the on-line analysis framework and its main
components. Section 4 provides an analysis of different linear and non linear models to resources operating at
medium-term time scales. Finally, Section 5 concludes the paper with some final remarks.

2. ARCHITECTURE

Figure 1 describes our model of an enterprise data center driven by business and system policies.
The system is split into several layers, whose components (technologies, mechanisms and algorithms) are
typically spread across the private cloud infrastructure. The System Infrastructure Layer is responsible for the
fruition of the information stored in the data center. This information may have different origins; for

example, it may pertain to user applications, or it may refer to system resources performance data. All the
components are monitored and tested continuously; a control enforcement module makes sure that the proper
system policies are operated correctly. The Business Layer hosts all the components responsible for the
enforcement of proper business policies, such as ERP, supply chain management, Finance, Sales. The
Governance Layer is responsible for the orchestration of the entire infrastructure at the system and business
level. In this layer, the information coming from the system and the business layers is processed in order to
detect policy violations or anomalies. The Governance Layer also produces reports and dashboards which
the corporate management uses to define the business, system and security policies (Kaliski, B. S., 2010).

In this paper, we focus on the architectural supports operating at the System infrastructure layer.
These models support the on-line management tasks that are executed at different temporal scales (ranging
from seconds up to a few hours). In a private cloud-based architecture, these management tasks use several
control actions available to the underlying architecture to enforce control, including: admission control,
dispatching and scheduling, load (re)balancing, addition and removal of a physical host from the pool of
available resources, (live) migration of virtual machines, resource limitation through traffic shaping and
container-based techniques, resource reallocation (to accommodate high priority tasks, to reduce power
consumption). The control actions are executed as a reaction to different events at different time scales. For
example, a request enters the system, or an anomaly has been detected in the last hour, or a daily forecasting
analysis suggests the re-configuration of a whole subsystem. To enforce control, the management tasks
require some measurement from performance monitoring tools operating at different levels (physical hosts,
virtual machines, applications), including CPU utilization, memory utilization, network throughput, power
consumption, storage-related metrics such as read and write throughput and disk utilization, application-level
data (application throughput, response times, failure rates). We can assume that these performance
monitoring samples are available periodically. Previous literature (Andreolini, M. and Casolari, S. and
Colajanni, M., 2008), shows how the collection of several performance samples in distinct time series can
provide the basis for efficient monitoring and prediction of system resource behavior. Thus, we will also
assume to have a reasonably small amount of past sample history, in the form of fixed-window time series.
Unfortunately, choosing the right sampling interval is a challenging task, because different management tasks

Illustration 1: High level architecture of a private cloud-based data center

run at different time scales and may not need (or, worse, not operate properly in presence of) frequent
monitored data streams. It is therefore also necessary to place the management tasks at the “right” time scale.
In this paper, we distinguish three different time scales:

• short time scale;
• medium (mid-term) time scale;
• long time scale.

Tasks operating at short time scales must take decisions and enforce them in the range of seconds,
typically under a minute. These decisions allow the system to serve user requests in a best-effort fashion,
given the actual configuration. Common control actions include admission control, resource reallocation due
to the execution of some high priority application, dispatching of a request to the proper subsystem or server.
Short time scales are critical for two reasons. First, there is typically no time for complex analyses on the
monitoring data obtained from the probes. Experience shows that only data filtering is viable. As a
consequence, the decisions taken by a short time task must be taken using the data as-is, cannot be optimal,
and must focus on avoiding disasters rather than on achieving optimal performance. Second, the volume of
monitoring data can be very high. Thus, even the storage of the performance samples in a database for later
analysis can be a problem due to the high computational overhead and to the disk space consumption
involved (Ousterhout, J. et al, 2010). Algorithms operating at short time spans must often treat the
monitoring data as a stream of numbers.

Tasks operating at mid-term time scale must take decisions and enforce them in the minute range
(typically, under a hour). These decisions aim to adapt and improve the configuration of the system according
to changed operating conditions. Common control actions include dynamic load balancing, virtual machine
migration, node activation, dynamic resource allocation. These tasks have the time to process the monitored
data, but, in order to optimize the execution of short-time tasks, they often have to aggregate different pieces
of information both in time (through time series smoothing techniques) and in space (across different system
components).

Tasks operating at long time scale must take decisions and enforce them in the hours range. These
decisions share the goal of optimizing the system at real-time but in a longer horizon. Common control
actions include resource reallocation due to some optimization (a typical goal is to pack the applications into
the smallest number of nodes to minimize power consumption), and capacity planning activities. At this time
scale, tasks have the time to fully analyze their raw data, produce reports and store the relevant results (since
the required disk space is not an issue). However, the complexity of the decision process increases as, besides
time and space aggregations, these tasks also need to compute predictions, analyze what-if scenarios,
encompassing the whole system.

Any infrastructure for the on-line control enforcement of a private cloud-based architecture must
support these operations in a scalable way. Scalability can be achieved by reducing the number of nodes
handled by each management task and by reducing the overhead due to storage and processing to a
minimum. This translates to the following architectural requirements:

• make sure that any task (in particular, a short-time task) is responsible for a reasonable number of
system components;

• support persistent storage only at longer time scales;
• make the results of shorter analyses available as a starting point for longer analyses
• support more sophisticated aggregation techniques (time and space) only at longer time scales.

In the next section, we propose a hierarchical architecture that can integrate solutions for most real-time
management problems.

3. A HIERARCHICAL ARCHITECTURE FOR RESOURCE
MANAGEMENT

In Figure 2 we propose our hierarchical architecture for the support of on-line management tasks.
(We note that the hierarchy is logical, but each layer can be implemented through several servers and

databases). In this scheme, the system consists of different, smaller, manageable subsystems, each of which
is controlled by a set of management tasks operating at different time spans. At the lowest level, we have
subsets of hardware and software resources which can be associated to subnets, racks, distinct production
areas, and the like. Each subset is governed through the control actions operated by a control enforcement
module. Every control enforcement module is driven by an orchestration module, which is at the heart of
every management task. The main purpose of the orchestration module is to take the “right” decisions based
on some measure of the subsystem's internal state. Depending on the chosen time scale, the nature of the
monitored data varies. At short time scales, a task has at most grossly filtered performance measures
available (to avoid out-of-scale values, outliers and missing data). At longer time scales, tasks usually
perform more sophisticated statistical operations based on time and space aggregations, anomaly detection,
predictions. In these architectures, scalability represents a crucial issue. We address it through a combination
of solutions:

• architectural solutions , oriented to avoid single points of failure;
• data management solutions, oriented to the efficient storage and manipulation of measures

(including data compression and the use of lightweight database to shorten data access times);
• algorithmic solutions, oriented to the efficient extraction of server status information from many

servers.
In our experience, scalability at the network traffic level is not an issue comparable to the aforementioned
problems. In order to keep the control enforcement process scalable, each management task must orchestrate
the control using the least amount of resources available. This implies the monitoring and control of only a
limited subset of the entire system (this holds particularly true for short-time tasks). We decide not to
permanently store each raw performance measure obtained from the subset, since this would be unfeasible,
given the literally hundreds of time series that would need to be monitored. Instead, we treat each monitor as
a stream of data which is filtered in a basic fashion and made directly available to the orchestrator. This
operation is straightforward, since low-level system monitors such vmstat and sar can be easily instrumented
to pipe their output to different processes. For some proprietary systems, it is possible to exploit the SNMP
querying capabilities offered by more sophisticated tools such as Cacti, Nagios, Zenoss, to extract the same
information from several system components.

Since longer tasks tend often to use the results of shorter tasks, we instrument the orchestrator to
extract proper subsets of the filtered data (typically, the last n performance measures coming from the most
important monitor probes) and to store them in a lightweight database. In this way, we reduce considerably
the set of monitored data available to the mid-term and long-term tasks, and we provide a persistent data
storage which is necessary to hold data spanning in longer ranges. A RAM database such as Firebird would
fit perfectly, since it provides excellent performance over a moderately high volume of stored data. Our
experience shows that this approach allows to monitor tens of hardware and software resources per node, in a
subsystem consisting of a few hundreds nodes.

The mid-term management tasks take the filtered data, aggregate it, detect (and possibly correct)
anomalies, and produce a meaningful representation of a subsystem's internal state, which is used to enforce
control decisions aimed at improving the performance and optimizing the present behavior relevant
subsystems. These operations can be implemented through any standard math environment (Matlab, R
Octave) or through mathematical libraries available for the most popular general purpose languages (Scipy,
Numpy in Python). With respect to the whole set of time series available from the monitors, the
representations produced by mid-term management tasks are much more compact in terms of size and are
computed less often; thus, they can be stored into a DBMS, such as MySQL, PostgreSQL, Oracle.

Finally, the long-term management tasks also perform more sophisticated tasks oriented improve the
performance and optimize the behavior of the whole system in the future. To this purpose, they retrieve the
state representations computed by the mid-term management tasks and perform sophisticated computations
involving long-term predictions, what-if analysis, capacity planning. The resulting models drive the decisions
of the orchestration modules.

Our architecture is designed in such a way that the control actions can be implemented through off-
the-shelf hardware and software components. For example, request dispatching and load balancing can be
operated through standard setups based on Apache2 (through the mod_rewrite and mod_proxy modules),
Tomcat (through AJP connectors in a clustered setup) and, more recently, on nginx. There are several viable
alternatives for the virtualization of services; the most popular are Xen (version 3.0 and above) and KVM

(the hypervisor officially adopted by the Linux community). All these solutions support (live) migrations,
dynamic resource re-allocation, ballooning, paravirtualized device drivers for close-to-native performance.
Another alternative is the use of resource containers (OpenVZ), which provide native performance at the
expense of executing a shared operating system kernel for all running services.

Illustration 2: A hierarchical architecture for on-line management of cloud-based systems

4. MID-TERM ANALYSIS

In this section, we show several examples pointing out different problems related to on-line
management of cloud-based architectures. Due to space constraints, we focus on the mid-term temporal
scale. At this level, control enforcement is pursued through some very specific control actions, such as virtual
machine migrations, load balancing, resource reallocation, node activation. The decisions leading to these
actions are taken by the proper orchestration module, which has at its disposal a subset of the data filtered by
shorter-term management tasks and available efficiently through RAM databases. Unfortunately, the
monitored data available to the orchestrator cannot be used to fulfill the management goals; it must be first
transformed into a higher level representation of a subsystem through data manipulation and anomaly
detection techniques. For example, let us consider a set performance metrics commonly available through
off-the-shelf monitoring tools. Figure 3 shows the behavior of CPU utilization performance samples
(obtained at intervals of 5 minutes) of a server node. The samples have been filtered to exclude outliers and
out-of-scale values.

A first problem with this data set is its marked oscillatory behavior, which makes it very difficult (if
not impossible) to deduct a clear representation of the server load conditions. If this data were to be used by
the orchestrator module to enforce load balancing across different servers, the result would likely be an
unstable subsystem where the load balancer constantly bounces process from one server node to another, in
an endless effort to even the load. Hence, at the mid-term level our architecture must support the extraction of
a more clean trend from the available data. This is possible through the adoption of time aggregation models.
If we consider the subset of performance data as a fixed-window time series, we can apply aggregation
models to it in order to retrieve a synthetic representation of the resource behavior. In the considered mid-
term context, time aggregation is generally pursued through the adoption of linear smoothing that is,
moving-average techniques, such as exponential moving average (D. J. Lilja, 2000), through regression and
auto-regressive models (P. Dinda et al, 2000), and through interpolation techniques, such as the cubic spline
(D. J. Poirier, 1973). These models have been shown to provide a good level of precision at reasonable
computational costs and in reasonable time (Andreolini, M. and Casolari, S. and Colajanni, M., 2008, Dinda,
P. et al, 2000), compatible with the constraints imposed by mid-term management (usually, under one hour).
Our experience shows that the majority of time aggregation functions require a CPU processing time well
below 1 ms. This implies that, in one minute, a mid-term management task can aggregate at least 60000 time
series. Our hierarchical architecture is capable of handling up to 300000 aggregations per minute by adopting
a simple Exponential Weighted Movie Average (EWMA) model based on short, fixed windows. Figure 4
shows a time aggregation of the CPU utilization shown in Figure 3, based on the Exponential Weighed
Moving Average of the last 30 measures. The smoothing effect of the EWMA makes it easier to detect an
oscillating server load and lowers the risk of unnecessary control enforcement.

In a complex system made up of several thousands of hardware and software components, even
identifying the failing nodes may become a computationally intensive task. Thus, a scalable monitoring

Illustration 3: Available Monitored Data Illustration 4: Time aggregation (EWMA)

framework needs to reduce the number of relevant system state information made available to the
orchestration module. This goal can be achieved by distinguishing the components that are critical for the
performance of the entire systems from those that are not. To make matters worse, it is very difficult if not
impossible to infer the internal conditions of a subsystem from several, distinct internal state representations
of (albeit relevant)a single components. We may not understand the reasons behind the failure, and we could
simply not tell whether that failure is about to cause further misbehavior in the system. Hence, our
monitoring framework must also aggregate different, heterogeneous, time-aggregated series in order to
produce a higher level view of a subsystem, which allows to tell whether a subsystem is performing
suboptimally and why. To these purposes, spatial aggregation models are often used to analyze and combine
multiple heterogeneous data sources into a single, coherent view of a system. Techniques such as the multi-
variate analysis (K.V. Mardia et al, 1979) and the Principal Component Analysis (PCA) (H. Hotelling, 1933)
are effective in capturing the salient features of a subsystem's internal state, thus drastically cutting the
amount of data used to perform decisions. Our experience shows that the PCA fits well in a hierarchical
architecture where each subsystem can be efficiently handled by a subset of tasks and can provide
meaningful insight to the longer-term tasks. We have handled the reduction of more than one million samples
pertaining to 1050 different components (21 hardware and software resources of 50 nodes) to a subset of 12
principal components in less than a minute. A simple weighted aggregation model applied on the selected
principal features allows to estimate a reliable representation of the system's internal state. Figure 5 shows,
on the left, 2 out of the 12 principal components characterizing an entire subsystem. The 12 principal
components are aggregated through a weighed regression model, shown on the right of Figure 5. Ultimately,
the status of an entire subsystem can be represented through a single time series, available to the mid-term
orchestrator and to the longer-term management tasks. Spatial aggregation of different resources in an the
context of an on-line management system for distributed systems is still an open research problem, due to the
the high number of time series available and to the heterogeneity of business-level and system-level measures
(Zhu, X. et al, 2009).

Control enforcement is applied as a reaction to events that perturb the normal operating conditions
of the system: anomalies in the workloads, changes in the offered load, events that normally do not occur.
The orchestrator must be able to detect these events timely through the adoption of on-line anomaly
detection, state change detection and event detection models. We have evaluated and integrate several on-line
detectors in our hierarchical architecture. The models relying on a prior knowledge of all the possible states
of a process (Lu, D. et al. 2004) are completely inadequate both statistically due to the non deterministic
behavior of the resource measures and for their unfeasible computational costs. Other widely adopted
methods that use one or more load thresholds for detecting relevant state changes (Ramanathan, P. 1999.)
seem unsuitable to the highly variable context of interest for this paper. In the private cloud-based
architectures that are characterized by high variability of the measures, by non stationary and by
unpredictable behavior, a good state change detection model that is able to guarantee adequate solutions

Illustration 5: Spatial Aggregation

while respecting the time constraints of the mid-term management, is based on the Cumulative Sum (Cusum)
statistics (Montgomery, D. C., 2008; Basseville, M. et al, 1993). Figure 6 and Figure 7 illustrate the behavior
of the threshold-based and the Cusum-based state change detection models, respectively. Filtered and non-
filtered data is overlaid point out relevant state changes; true and false positives are depicted with crosses and
circles at the bottom of the figures.

For our evaluation purposes we consider the data aggregation generated by the data manipulation of the CPU
utilization of the subsystem nodes. An off-line analysis allows us to determine that relevant state change to be
signaled to the control-enforcement management system occurs at times 50, 125, 200, 275, 350, 400, 475,
and 550, as shown by the horizontal/vertical lines in the figures. This scenario characterized by multiple state
changes can be considered a good benchmark for on-line detection models. Traditional threshold-based
detection models are capable of detecting all state changes, but their precision decreases, resulting in a high
number of false detections during the stable states. This is a consequence of the inability of threshold-based
models to guarantee reliable detections in highly variable contexts. On the other hand, the Cusum-based
detection model exhibits a high detection quality. The proposed model detects timely the state change and it
is affected by just one false detection at sample 540. Because of the computational cost of the considered
model is able to provide reliable detections in the range of milliseconds it can be completely integrate in our
hierarchical architecture.

5. CONCLUSIONS AND FUTURE WORK

The private cloud computing model is a viable paradigm for a service hosting platform, capable of
keeping up with the challenging requirements behind complex end-user applications, massive data growth,
sophisticated business models and the physical limitations of power, heat, and space. In this paper, we have
proposed an architecture that supports models and methodologies for the efficient resource management of an
on-line control enforcement mechanism operating on a private cloud-based infrastructure. The design of the
architecture addresses several interesting challenges:

• it is modular, easy expandable through off-the-shelf hardware and software components;
• it integrates an on-line monitor and analyzer, suitable for run-time decisional tasks at different

temporal scales (short, mid-term, long);
• it is hierarchical, allowing for scalable monitoring and control enforcement of subsystems made

of up to hundreds of components.

We have also outlined the difficulties of on-line management and control enforcement at a given
temporal scale (mid-term). In particular, the monitored time series available to the orchestrator must be
subject to time and spatial aggregations (in order to derive a clear view of the controlled subsystem).
Furthermore, on-line detection algorithms are necessary to identify anomalies in an otherwise normally
operating subsystem. Control enforcement is typically pursued as a reaction to these anomalies. Our
experience shows that management can happen efficiently even at different time scales. In particular, in the

Illustration 7: Cusum-based modelIllustration 6: Threshold-based model

time span of one minute our architecture can seamlessly aggregate several tens of thousands time series over
time (producing a clear view for every component) and identify the most relevant components of a system
made up of one thousand components.

As a next step, we plan to enrich our on-line management task with supports oriented to power
consumption (Raghavendra, R. et al, 2008), for example to place the incoming workload in areas at lower
temperature or with higher cooling capacity. We will also try to scale our testbed to larger sizes to evaluate
the scalability limits of the proposed architecture.

ACKNOWLEDGEMENT

The authors acknowledge the support of the MIUR-PRIN project AUTOSEC “Autonomic Security”.

REFERENCES

Armbrust, S. et al, 2009. Above the Clouds: A Berkeley View of Cloud Computing. UC Berkeley Reliable Adaptive
Distributed Systems Laboratory.

Wood, T. et al, 2009. The Case for Enterprise-Ready Virtual Private Clouds. Proceedings of the Workshop on Hot Topics
in Cloud Computing. San Diego, CA, pp. 10-15.

Zhu, X. et al, 2009. 1000 islands: An integrated approach to resource management for virtualized data centers. Cluster
Computing, Special Issue on Autonomic Computing, Volume 12, Number 1, pp. 172-181.

Clark, C. et al, 2005. Live migration of virtual machines. Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI’05). Boston, MA, pp. 273-286.

Andreolini, M. and Casolari, S. and Colajanni, M., 2008. M. Models and framework for supporting run-time decisions in
Web-based systems. In ACM Transactions on the Web. Vol. 2, no. 3, Aug. 2008.

Meisner, D. and Gold, B. T. and Wenisch, T., 2009. PowerNap: eliminating server idle power. In ACM SIGPLAN
Notices. Vol. 44, Number 3, pp. 205-216.

Vaquero, L. M. et al, 2009. A break in the clouds: towards a cloud definition. In ACM SIGCOMM Computer
Communication Review. Vol. 39, Number 1, pp. 50-55.

Kaliski, B. S., 2010. Towards Risk Assessment as a Service in Cloud Environments. Proceedings of the 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud'10). Boston, MA, pp. 20-29.

Ousterhout, J. et al, 2010. The case for RAMClouds: scalable high-performance storage entirely in DRAM. In ACM
SIGOPS Operating Systems Review. Vol. 43, Number 4, pp. 92-105.

Hotelling, H. 1933. Analysis of a complex statistical variables into principal components. J. Educ, Psy.
Lilja, D. J. 2000. Measuring computer performance. A practitioner's guide. Cambridge University Press.
Dinda, P. et al, 2000. Host load prediction using linear models. Cluster Computing. Vol. 3, Number 4, pp. 265-280.
Poirier, D. J. 1973. Piecewise regression using cubic spline. Journal of the American Statistical Association. Vol. 68

Number 343, pp. 515-524.
Mardia, K.V. et al, 1979. Multivariate Analysis. Academic Press.
Montgomery, D. C., 2008, Introduction to Statistical Quality Control. John Wiley and Sons.
Basseville, M. et al, 1993. Detection of Abrupt Changes:Theory and Application. Prentice-Hall.
Lu, D. et al. 2004. Change detection techniques. In Int. Journal of Remote Sensing. Vol. 25, Number 12, pp. 2365-2347.
Ramanathan, P. 1999. Overload management in real-time control applications using (m,k)-firm guarantee. Performance

Evaluation Review. Vol. 10, Number 6, pp. 549-559.
Raghavendra, R. et al, 2008. No power struggles: Coordinated multi-level power management for the data center. In
Proceedings of the 13th International Conference on Architectural Support for Programming Languages (ASPLOS'08).
New York, NY, pp. 48-59.
Newman, H.B. et al, 2003. MonALISA: A distributed monitoring service architecture. In Proceedings of the Conference
for Computing in High Energy and Nuclear Physics (CHEP'03). La Jolla, California.
Massie, M. L. and Chun, B. N. and Culler, D. E, 2004. The Ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing, Vol. 30, No. 7, pp. 817-840.

