Scalability of content-aware server switches for
cluster-based Web information systems

Mauro Andreolini
Department of Information,
Systems and Production
University of Tor Vergata
Roma, Italy 00133

andreolini@ing.uniromaz2.it

ABSTRACT

A cluster-based architecture with a front-end Web switch and lo-
cally distributed servers seems the most appreciated solution to face
the ever increasing demand for complex services offered through
Web interfaces. The complexity of the novel services is often re-
lated to the possibility of content-level identification and person-
alization that can be achieved through a content-aware front-end
component. It is common belief that content-based operations pre-
vent the scalability of the Web cluster, to the extent that a content-
aware switch alone is seldom used as the front-end of a popular
Web site. In this paper, we demonstrate that a careful design and
optimized implementation choices based on a modern PC-based ar-
chitecture can give a Web switch with content-aware functionality
and very limited overheads. We present the design and prototype
implementation of a so called one-way system based on Linux ker-
nel, single CPU and SMP-based architectures, for HTTP/1.0 and
HTTP/1.1 protocols. The experimental results confirm that the pro-
posed solution is extremely scalable, thus making a content-aware
Web switch a viable solution to the performance requirements of
the majority of cluster-based architectures.

Keywords

Cluster-based systems, Network servers, Scalability, Performance
evaluation, Content-aware routing

1. INTRODUCTION

Scalability remains a main requirement of a modern Web-based
system that should be able to accommodate for user requests that
augment in number and complexity. Unfortunately, upgrading just
the number of servers does not represent a valid solution to the scal-
ability problem, because this would move the bottleneck from the
(back-end) server side to the front-end side. This risk is even more
serious when we consider that new Web-based services require that
the front-end component can catch from a request the largest set
of information that exists at application level but not at TCP level.
Content-aware features augment the front-end scalability issues of
one-two orders of magnitude. Many solutions have appeared to
improve the delivery of Web content [5, 3, 8, 11] through locally
distributed Web-server systems, briefly Web clusters. For a recent
survey on the topic, see [6].

Basically, a Web cluster is a set of server machines that are in-
terconnected through a high-speed LAN. The cluster is publicized
Copyright is held by the author/owner(s).

VWWW2003, May 20-24, 2003, Budapest, Hungary.
ISBN 963-311-355-5.

Michele Colajanni
Department of Information
Engineering
University of Modena
Modena, Italy 41100

colajanni@unimo.it

Marcello Nuccio
Department of Information
Engineering
University of Modena
Modena, Italy 41100

marcenuc@weblab.ing.unimo.it

through one site name and one virtual 1P address that typically
corresponds to the address of a dedicated front-end node. This im-
portant component, also called Web switch, is the main focus of this
paper. It acts as an interface between the nodes of the cluster and
the rest of the Internet, thus masking the distributed architecture of
the site to the users and the clients. The Web switch receives all
client requests and routes them to a Web server node through some
centralized dispatching policy. We distinguish layer-4 from layer-
7 Web switches. A layer-4 switch performs content-blind routing
that is, it does not take into account any content information in the
client request in performing assigning decisions. On the other hand,
a layer-7 Web switch performs content-aware routing: it first estab-
lishes a complete TCP connection with clients, parses each request
and assigns a Web server node according to the content. Content-
aware routing allows a Web cluster to use sophisticated dispatch-
ing strategies, improves cache hit rates, permits content partitioning
and gets a much larger set of user/client information. However, it
tends not to be used as a front-end component of a popular Web-
based information system because it has been demonstrated to be
less efficient than a layer-4 Web switch. As an example, Aron et
al. [3] show that the peak throughput achieved by a layer-7 switch
is limited to 3500 conn/sec, while a software based layer-4 switch
implemented on the same hardware is able to sustain a through-
put up to 20000 conn/sec. To improve scalability of layer-7 ar-
chitectures, alternative solutions for scalable \Web-server systems,
which combine content-blind and content-aware request function-
ality, have been proposed, e.g. [18, 27].

The motivation of this paper comes from the observation that
the absolute efficiency is not the right measure to judge the pos-
sibility of using a content-aware Web switch. Indeed, its perfor-
mance should be related to the operational requirements that a \Web
switch should satisfy in a realistic multi-tier environment. This in-
cludes the inter-connection of the Web cluster to the Internet (for
example, the large majority of Web clusters for economic reasons
does not use more than T3-based connections, that have a peak
bandwidth of 45 Mbps), the HTTP servers (with typical workload
and modern hardware, they are not the system bottleneck anymore,
unless they have to manage secure transmissions), and the back-
end servers (that can easily become the system bottleneck, when
the dynamic requests are computationally expensive). Moreover,
when the classes of services provided by the Web site require peak
throughputs higher than 40-50 Mbps, it is more likely that a dif-
ferent architecture should be considered, for example a system dis-
tributed over a geographical area.

These motivations induced us to investigate whether the previous
prejudices against layer-7 Web switches are still valid when one

considers modern hardware and multi-tier architectures for content-
aware distribution in cluster-based Web information systems.

We describe the design and implementation of an efficient, content-

aware Web switch (called ClubWeb-1w) that takes advantage of
all possible features and optimizations of modern PC-based archi-
tecture. We demonstrate that careful design and implementation
choices produce a Web switch with content-aware functionalities
and very limited overheads. A careful analysis of its performance
demonstrates that the proposed solution is extremely scalable, thus
making a content-aware Web switch a viable solution to the per-
formance requirements of the majority of popular Web sites based
on cluster architectures. The most important contributions of the
layer-7 Web switch are outlined below and discussed in the follow-
ing sections.

e Almost all Web switches are based on two-way architectures
that, even if implemented at the kernel level, are less efficient
because both requests and responses transit through the Web
switch [16, 21, 7, 19, 30, 9, 15, 13, 24, 29, 1, 28, 4]. On
the other hand, as in [3], the proposed Web switch uses a
one-way architecture where just the client-to-server requests
flow through the Web switch, while the larger server-to-client
responses use another way.

e All content-aware dispatching features are implemented and
integrated at the kernel level of a Linux operating system.

e The design and implementation avoid the most serious inef-
ficiencies existing in other known implementations.

e The Web switch can operate on a single processor architec-
ture or even SMP architectures (most experiments refer to a
dual Pentium architecture). In particular, we exploited the
spinlock primitives [26] to guarantee the most efficient mu-
tual access to different CPUs to data structures.

e Transfers of TCP connections between the Web switch and
the server are based on the so called TCP Handoff proto-
col that has been proposed by Aron et al. for the FreeBSD
Unix [3]. Our version is the first that has been specifically de-
signed and implemented for Linux operating systems. (The
FreeBSD and Linux kernels are so different in the choices
about the network-based operations that very few ideas could
be taken from the previous TCP Handoff implementation,
not to say about the optimizations that work only for Linux-
based systems.)

e The Web switch design is highly modular from the point of
view of request dispatching policies: we have experimented
content-blind, content-aware, server load-aware, and combi-
nations of content- and server load-aware dispatching poli-
cies, even if a subset of results can be reported in the paper.

e The content-aware distribution mechanism has been designed
to be compliant with both the HTTP/1.0 and HTTP/1.1 pro-
tocols.

e The Web servers do not need specific configurations to com-
municate with the switch node. Hence, it would be possible
to change the switch node role without reconfigurations of
the entire cluster. This augments the availability of the sys-
tem.

The implemented Web switch has been subject to a large variety
of performance tests. All results confirm that the proposed layer-7
Web switch has a low overhead, even when the Web servers tend

to be saturated. Moreover, we show that the Web switch scales
pretty well across multiple server nodes. Finally, we also evaluate
the performance of the Web cluster under realistic workload con-
ditions. Again, we show that the switch is able to handle several
thousands of connections per second without being the bottleneck
of the whole system. We can conclude that the proposed one-way
architecture is extremely scalable, thus making content-aware rout-
ing a viable solution to the requirements of the majority of network
services provided by cluster-based architectures.

The rest of this paper is organized as following. In Section 2, we
describe main requirements, major issues and our solutions for an
efficient design of the layer-7 one-way Web switch. Section 3 out-
lines two content-aware dispatching policies that we use for the ex-
periments. Section 4 presents the implementation details, with ma-
jor focuses on the techniques to obtain the best performance from
single- and dual-based processor architectures. Section 5 contains
the performance study. Section 6 concludes the paper with some
final remarks.

2. DESIGNOFASCALABLELAYER-7WEB
SWITCH

This section provides a detailed design of the Web switch ar-
chitecture. We identify the main requirements that any efficient
kernel-level implementation should satisfy. We also point out sev-
eral design choices which lead to the optimization of core compo-
nents.

2.1 One-way architecture

The first important design choice concerns the flow of the packet
traffic to and from the Web cluster. All client requests reach the
Web switch, so the most important difference is how the responses
go to the clients. In so called two-way architectures, server re-
sponses are directed towards the Web switch, which directs them to
clients. In one-way architectures, responses are sent by the servers
directly to the clients, thus bypassing the Web switch. One-way
architectures limit the risks of system bottleneck at the Web switch
due to forward and backward handling of each packet. The problem
is that a layer-7 one-way architecture is much harder to be imple-
mented than a two-way switch because the distributed architecture
must remain transparent to both the user and the client application.
Hence, each Web server must be able to change the response pack-
ets in such a way that they seem coming from the Web switch which
is the only official interface for the clients.

Our one-way solution is based on the TCP Handoff mechanism
that has been implemented on Linux operating system. We point
out the problems we had in designing efficient core components of
the TCP Handoff mechanisms, and give also some hints on how
to address issues in SMP practice. To describe the operations per-
formed by the nodes of a Web cluster, we detail the sequence of
events activated by a client request. To this purpose, we refer to the
time diagram in Figure 1.

A client process connects to the Web switch through the standard
TCP/IP protocol. The switch tries to establish a TCP connection
with the client through a three-way handshake. Next, the client
sends a request. The switch parses the request and extracts the
application-level information, such as URL, cookies or SSL iden-
tifiers. Next, the switch chooses a Web server among those which
are able to serve the requested content. The switch then transfers
the TCP connection to the chosen Web server, along with the client
request. The Web server re-creates the TCP connection in the same
state it was before being transferred. We refer to the connection
state as to the set of necessary information for cloning the connec-

client switch server

Request parsing
Server choice
Connection transfer

Connecy;
ion
a Statel

ient reques
/ Respo\'\se

%‘
Packet forwarding %‘
e

I

A CK Packet forwarding

%‘
%_‘

/ AC

FIN Packet forwarding

Figure 1: High level view of the TCP Handoff mechanism.

tion on a different node.

Once the connection has been transferred, the client request is in-
serted into the server process queues. The server builds a response
and sends it directly to the client, thus acting as if it was the Web
switch.

The client receives the response packet and sends an acknowl-
edgement (but also future requests, if the HTTP/1.1 or persistent
TCP connections are used) to the Web switch. Those packets can-
not be sent directly to the server because the client continues to
have the impression that the connection is established with the \Web
switch. Thus, the switch must keep forwarding client and ACK
packets until the TCP connection is closed.

2.2 Efficiency requirements

The TCP connection transfer is one of the most critical phases
because it must satisfy a rather complicated set of requirements. We
identify also the other main issues for an efficient implementation
of the one-way Web cluster.

TCP connection transfer. The whole handoff process requires
that established TCP connections be transferred from one node
(specifically, the switch) to another (a chosen Web server). To com-
plete this operation, the internal state of a TCP connection, identi-
fied by the Transmission Control Block (TCB) [23], must be com-
municated to a Web server node, in order to be able to recreate that
connection in the same state it was before being transferred. Be-
sides this, the Web server node must also receive the application-
level information (usually, a client request) that started the connec-
tion transfer process. Both information (TCP connection state and
client request) may be logically chained in an entity which we call
TCP Handoff request. The name is justified by the following ob-
servation: a TCP Handoff request contains the minimum amount
of information which is needed to shift the request serving process

from one node to another. Upon the receipt of a TCP Handoff re-
quest, the Web server extracts the TCB and recreates the TCP con-
nection. Next, it obtains the application-layer information which is
tailed into the server process receive queues.

Request parsing. The Web server which must serve a client re-

quest is chosen according to (a well-defined portion of) the application-

level information contained in the request. Hence, it is necessary
to provide a means for parsing the client request, with the goal of
extracting the required information which will be used by the dis-
patching policy. It is worth noting that the parsing functionality is
strictly related to the dispatching policy. Different policies may re-
quire different portions of a client request, such as parts of an URL,
cookies, or even SSL identifiers.

Dispatching mechanism. This is the second most critical phase
after the TCP connection transfer. The distribution of client re-
quests across cluster nodes requires an algorithm to take decisions
and a mechanism to execute assignment decisions. In this paper,
we consider content-aware request scheduling, so the dispatching
policy (generally) uses some information extracted by the request
parsing mechanism to identify the cluster node which is able to ful-
fill the request.

Evaluation of Web server load conditions. Many dispatching
policies use some information related to the Web server load status
to perform a sub-optimal assignment or, at least, to minimize the
risks of load unbalance. It has been widely shown that the intro-
duction of state-awareness leads to smarter assignments than those
performed by state-blind policies. However, a state-aware algo-
rithm requires a mechanism for evaluating the conditions of a Web
server node, which we call load monitor. The load monitor may
be centralized or distributed. A centralized monitor runs entirely
on the switch and treats the Web server nodes as "black boxes”. A
distributed monitor collects state information directly on the \Web
server node, which is then communicated to the switch. The for-
mer approach is typically easier to implement, since it does not re-
quire a communication mechanism. However, it does not estimate
the server load as well as the distributed approach, that is able to
access directly to the operating system internals. Server load infor-
mation tends to become obsolete quickly [10]; thus, it is preferable
to avoid time-synchronous updates every n seconds. A better alter-
native is to update the server load coefficients synchronously with
events, like the successful transfer of a connection and the closure
of a transferred connection.

Forwarding mechanism. Client packets subsequent to the re-
ceived response segments cannot be handled anymore by the switch;
they must be handled by the appropriate Web server. For this rea-
son, the switch must be enriched with a mechanism for intercepting
client packets and for delivering them to the Web server to which
the TCP connection has been transferred. This operation requires
a modification of some fields of the TCP/IP header, such as the IP
and MAC destination addresses which have to be set to those of the
real Web server. Such modifications imply the (re)computation of
the IP and TCP checksums hefore the delivery of the packet to the
Web server. It is of crucial importance that the forwarding mecha-
nism be as fast as possible, otherwise the traffic between the client
and the server is seriously slowed down. Typically, the operations
involved in the forwarding module are CPU-bound, because of the
TCP and IP checksum computation. Due to the large number of
simultaneous open connections handled by a switch, the design of
a forwarding mechanism which scales well in an SMP architecture
is mandatory.

Transparency. The whole TCP Handoff mechanism must be
transparent to the clients. In other words, the responses and the end-
to-end semantics of all TCP/IP operations must remain the same as

if the client was connected to one Web server. This implies that
response packets must look as if they were sent by the Web switch.
Typically, this requires at least the modification of the following
fields of a TCP/IP packet: source IP address, and TCP timestamp
option [17].

Making the entire mechanism transparent also to the server pro-
cesses is an important plus, as the Web server applications must be
portable and should not require modifications to work in one-way
Web clusters.

2.3 Design solutions for efficiency

In this section, we summarize the main design choices that aim
to improve the operations of the Web cluster components. Other
minor optimizations are possible during the implementation phase,
and will be discussed in Section 4.

Cluster architecture. The first important choice for an efficient
content-aware distributor concerns the architecture of the cluster.
We considered the TCP Handoff mechanism because it is a kernel-
based one-way solution, which is intrinsically faster than two-way
solutions, and makes up for a better scalability. We paid attention
to optimizing most of the software components. To this purpose,
we have chosen the Linux operating system kernel (version 2.4.18)
as the implementation platform, also because of its efficiency and
stability on SMP architectures. In particular, we exploited the spin-
lock primitives [26] to guarantee mutual access of different CPUs
to kernel data structures.

Forwarding mechanism. As already observed, the design of
the forwarding mechanism is a crucial issue, as the speed of packet
forwarding operations is one of the factors that can limit the per-
formance of the entire cluster architecture. In particular, two oper-
ations must be performed really fast: discovery of transferred con-
nections; checksum re-computation.

To quickly determine whether a connection has been transferred
or not, we choose to store information about transferred TCP con-
nections in a hash table. Each entry in this table stores IP addresses
and TCP ports characterizing a TCP connection. Figure 2 shows
the idea for efficient lookup. Basically, the access to the hash table
is carried out through a key, consisting of the source IP address and
the source TCP port. The key is mapped by a hash function into the
index of a list (better said, a bucket) of structures identifying trans-
ferred connections. If the hash function spreads uniformly different
keys (i.e., different connections) into different buckets, then the ac-
cesses are usually carried out into several smaller lists. Hence, the
usage of a hash table makes access operations (particularly, lookup
operations) much more efficient than alternative implementations
based on a single chained list. We add the following solution: each
bucket is protected by a lock, so that different CPUs can access
the table concurrently without incurring in mutual exclusion prob-
lems. The hash function is implemented through the 32-bit XOR
operator, since it maps different client port numbers into different
buckets (if the source IP is fixed):

key = (src IP) & (src TCP port). 1)

With this design choice, successive requests from the same client
are mapped into different buckets and may be handled in parallel
on a multi-node switch.

Another critical issue is the re-computation of the IP and TCP
checksums when a packet has to be forwarded to a Web server. We
use the incremental checksum update described in [25] to avoid the
re-computation of both checksums.

Switch detection at runtime. In our design, the server does not
need any a-priori configuration of the switch IP address. Indeed,
this address is obtained from the Handoff request and is stored as

dest. TCP port dest. TCP port
source |IP I - source IP
= fa—— -~
key Pointer to list [«—— dest. IP dest. IP

lock source TCP port source TCP port
Pointer to list

lock

hash function

Pointer to list

lock

sclP,
src port

Client
Packet

Figure 2: Effi cient lookup through a hash table.

in the socket structure pertaining to the connection. In such a way,
the server is not tied to a single switch, but it may handle Handoff
requests from multiple switches. Using many switches may incre-
ment the scalability and the fault-tolerance of the cluster.

3. DISPATCHING POLICIES

In this section, we present the subset of the content-aware dis-
patching algorithms that are available in our Web switch and are
used for the experimental results.

The Client Aware Palicy [7] is oriented to Web sites provid-
ing heterogeneous services with different computational impact on
system resources. The set of static and dynamic services provided
by the Web site is divided in classes, each one stressing the system
components in different ways. The CAP algorithm works as fol-
lows. A list of circular pointers to servers is maintained (one for
each service class). As soon as a client request is received at the
switch, the parser module extracts the embedded URL and identi-
fies the associated service class. Then, a round robin assignment
on the given service class is performed, by using the appropriate
pointer. The basic observation of CAP is that when the Web site
provides heterogeneous services, each client request could stress a
different Web system resource. Although the Web switch cannot
estimate the service time of a static or dynamic request accurately,
it can distinguish the class of the request from the URL and es-
timate its main impact on each Web system resource. A feasible
classification for CAP is to consider disk bound, CPU bound, and
network bound services, but other choices are possible depending
on the content and services provided by the Web site.

We also implemented the Locality-Aware Request Distribution [2,
22], which tends to maximize cache hit rates of static resources. As
soon as the Web switch receives an HTTP request, the parser mod-
ule extracts the URL. Next, it checks whether the requested URL
has already been handled by any Web server node. If this is the
case, the request is forwarded to that node, unless it is overloaded.
To avoid potentially unfair assignments, the server load is estimated
through a centralized load monitor that counts the number of ac-
tive connections for a given request class (static, dynamic). A Web
server is considered overloaded if the number of opened connec-
tions exceeds a given threshold. If the chosen server is overloaded,
the least loaded node is chosen. If the URL has not yet been as-
signed to a Web server, the least loaded node is chosen as well.
The rationale behind LARD is that assigning the same Web object
to the same Web server, the requested object is more likely to be
found into the disk cache of the server node.

4. IMPLEMENTATION DETAILS

We describe the architectural design and the implementation of
the one-way layer-7 Web switch based on the TCP Handoff ap-
proach, called ClubWeb-1w. The switch software has been con-
ceived as an extension of the TCP/IP stack under the Linux oper-
ating system, kernel version 2.4.18. Particular care has been taken
in avoiding slow and inefficient constructs, and in implementing
thread-safe code. The implementation takes full advantages of the
Linux multi-threaded TCP/IP stack and results particularly efficient
on SMP nodes. The cluster operations are implemented through the
following software modules: dispatcher, forwarder, THOP com-
munication protocol, load monitor. We describe them by showing
how they fulfill the design requirements in Section 2.2.

4.1 Dispatcher module

The dispatcher module handles a list of structures representing
the pool of Web servers in the cluster. Each structure stores per-
server information, such as the destination IP address (or addresses,
in case of multiple network interfaces) and a representation of the
server load status, that is defined by the dispatching policy. This
is necessary, as different dispatching algorithms generally use dif-
ferent parameters for the estimation of server load. The dispatcher
module is also responsible for parsing the client request and choos-
ing an appropriate Web server according to a content-aware schedul-
ing policy. In our architecture, it is organized as a set of hook func-
tions which can be customized on the basis of the chosen policy.
Each hook function handles a specific stage of the dispatching pro-
cess. We consider the following stages.

Initialization. This hook gives an opportunity for executing op-
erations, such as allocation of system resources, which have to be
performed at cluster startup only.

Request parsing. This hook parses the client request and extracts
all information which is necessary for the choice of a \Web server.

Server selection. This hook takes the extracted client informa-
tion and, when necessary, the server load status. It has to choose
an appropriate server according to some dispatching algorithm. It
returns the structure associated to the Web server. The dispatching
hook is invoked during the processing of TCP segments containing
application-layer requests on a given, configurable, port.

Post request. This hook is called whenever a request has been
processed by a Web server and the switch is notified. It may be
used to update the server load status in a centralized load monitor.

Shutdown. This hook permits the execution of operations which
have to be performed only at cluster shutdown. Typically, these
operations release the resources allocated at the cluster startup.

The design through hooks is extremely flexible and modular. The
behavior of the switch may be extended and specialized by adding
more hooks. Each dispatching policy defines its own hook func-
tions, hence the other modules are unaffected.

4.2 Forwarder module

The forwarder module must intercept client segments belong-
ing to already transferred TCP connections and transmit them to
the appropriate Web server. To this purpose, we implemented an
efficient hash table of structures representing transferred TCP con-
nections, as described in Section 2.2. The TCP protocol allows
port reuse when a connection is in the TIME_WAIT state [23]. Un-
der very bursty traffic conditions, it may happen that a client wants
to reuse a TCP connection in the TIME_WAIT state, by sending a
SYN packet. In this case, the forwarder delivers the SYN directly to
the Web server, instead of performing the three-way handshake. As
a consequence, the following client request would have no chance
of being parsed by the Web switch. To address this issue, we have

implemented a further functionality in the forwarder module. We
check every client packet for a FIN or a RST flag, which indicates
an intention of closing the TCP connection. If a FIN or a RST is in-
tercepted, the matching element in the table of transferred connec-
tions is marked as "closed”. When the forwarder module receives
a subsequent SYN packet from the client, it checks whether the
matching element in the table of transferred connections is marked
as closed. This event means that a TCP port has been reused. As a
consequence, the element is removed from the hash table, to avoid
any forwarding towards the previous Web server. Furthermore, the
client SYN is passed to the upper layers of the TCP/IP stack. In
this way, a three-way handshake is performed and the request is
dispatched to another server with no problem.

The hash table of transferred connections is implemented through
a Linux slab cache [14] of pre-allocated structure elements. This
design choice allows for very fast allocation and release operations,
which are quite frequent under heavy traffic.

We have chosen to implement the forwarding mechanism just
under the IP level of the TCP/IP stack. In this way, client packets
towards the Web servers must not travel the TCP/IP stack of the
switch node, thus avoiding costly checksum (re)computation.

4.3 THOP communication protocol

The entire TCP connection transfer mechanism is synchronized
through control messages. To this purpose, we have implemented
a new communication protocol (THOP) in the standard TCP/IP
stack. The THOP protocol defines a small number of messages,
that are encapsulated into IP datagrams. Each message triggers an
appropriate action or notifies an event to the destination. Let us
describe its key role in the TCP handoff mechanism.

To minimize the processing overhead associated to communi-
cations, we chose to make the THOP protocol as light as possi-
ble. THOP has a (albeit very short) header, made up of two 16 bit
fields: the opcode identifies the message type, the checksumis used
to verify the message integrity. The message body depends on the
message type. The current implementation supports the following
messages.

The THOP_CREATE message encapsulates all information nec-
essary for transferring a socket to a Web server. It contains the
parameters of the tcp_opt structure (which stores the state of a TCP
connection) and information about the client, such as the IP source
address, the TCP source port and the content of the HTTP request.

The THOP_NOTIFYCLSmessage is sent from a Web server when
the corresponding TCP connection is closed. The Web switch does
have to know when a TCP connection is closed, because it must
delete the corresponding entry from the table of transferred connec-
tions. The only way a Web switch knows that a TCP connection is
closed without receiving an explicit message is through a TCP reset
from a client. The reset is forwarded to the server which takes care
of releasing the associated system resources.

The THOP_NOTIFYDROP message is sent from the Web server
to the Web switch when the duplication of a TCP connection has
not been possible for whatever reason (typically, the maximum
number of outstanding connection requests has been reached).

We have previously stated that the server does not require any
kind of configuration for communicating with a switch node. This
is possible because, at connection transfer time, the source IP ad-
dress in the IP header of the Handoff request is stored into a field
of the newly created socket, namely swaddr. The swaddr field in-
dicates whether a socket has been established through an Handoff
or through a three-way handshake. In the former case, it stores the
switch IP address; in the latter case, it stores an empty value.

It is worth observing that the THOP protocol provides a very

flexible communication mechanism among the nodes of the Web
cluster. For example, it is not only suitable to synchronize the con-
nection transferring process, but it may be also extended to imple-
ment a distributed load communication mechanism.

4.4 Architecture transparency

To make the distributed architecture and the THOP mechanism
transparent to the clients, it is necessary to modify the source IP ad-
dress and the TCP timestamp option of the server response packets
in such a way that they seem to be generated by the Web switch.

The modification of the source IP address is obtained in the fol-
lowing way. Each time a TCP connection is cloned at the server,
a special field in the TCP control block, saddr, is filled with the
source IP address of the Web switch. On the other hand, ordinary
TCP connections leave this field empty. When the server sends
data over a TCP connection, it checks the value of the saddr field
in the corresponding TCP control block. If it is not empty, the
source IP address is changed with the value contained in the saddr
field because the TCP connection has been cloned through the TCP
Handoff mechanism.

Another critical issue to preserve architecture transparency con-
cerns the use of the TCP PAWS algorithm [17]. The use of a
timestamp encapsulated as a TCP option is very useful for the de-
tection of segments carrying wrapped sequence numbers. As a
consequence, the PAWS algorithm is adopted by many TCP im-
plementations, and must be taken into account when sending re-
sponses transparently to the clients. However, a key requirement of
the PAWS algorithm is that timestamps be always non decreasing.
This is not guaranteed in a clustered environment where switch and
server nodes have their own independent timestamps. It must be
guaranteed that the timestamp written in the response packets be
greater than the value stored at the client. In our Web switch, this
is achieved through the following approach. To preserve the se-
mantics of PAWS, the server uses its own timestamp. The server
can transform its timestamp into a value that is compatible with the
value expected by the client from the Web switch. This transforma-
tion is a two-stage process working as following. Let T be the
TCP timestamp value at the switch node, when the TCP connection
is transferred. Moreover, let T2°¢ be the TCP timestamp value at
the server when the TCP connection is accepted and T:7™ the TCP
timestamp value at the server when a packet is transmitted. As soon
as the server accepts a connection request, it computes the temporal
difference between the two timestamps:

§ = max(0, T, — T +1))

A non positive value of § implies that 727, < T2°¢; hence, the
client sees a non decreasing timestamp and there is no need for
spoofing it. A positive value of § indicates that T!" > T2°¢. The
use of the server TCP timestamps would confuse the PAWS algo-
rithm. For this reason, when the server transmits a packet, it writes
into the packet the following, augmented timestamp T's.*9:

Tsaeug =Tse + 90 (3)

Finally, when the server receives a client packet containing a
timestamp T%s.,, it must convert that value (which, we recall, is co-
herent with the switch) into its real value T, :

Tse =dsw — é (4)

If § = 0, there is no need of converting the timestamp at all. Oth-
erwise, if § > 0, the correct value is deduced.

4.5 Operations of the Web switch

Client Switch Server
Browser Web server

TCP | THOP

@

Figure 3: Inner operations of the Web switch.

To describe the operations of the proposed one-way Web cluster,
we refer to Figure 3, that for the sake of clarity does not show the
creation and closure of a TCP connection.

The first part of the HTTP request sent by the client (1) is in-
tercepted by the forwarder module on the Web switch (2). The
forwarder module delivers the request to the higher layers. The
TCP protocol issues a call to the dispatcher module upon the ar-
rival of the application-layer data. The dispatcher parses the HTTP
request and chooses a Web server according to some content-aware
dispatching policy (e.g., LARD, CAP, FLEX). The TCP protocol
builds a THOP_CREATE message and sends it to the chosen Web
server (3). The identifiers of the TCP connection, such as IP ad-
dresses and TCP ports, are packed into a structure and inserted into
the hash table containing (active) transferred connections. In such
a way, the Web switch is able to forward successive client pack-
ets referring to already established connections. The Web server
may reply with a THOP_NOTIFYDRORP, if it is not able to fulfill
the request for whatever reason. In such a case, the Web switch re-
moves the appropriate entry from the mapping table and aborts the
TCP connection. In most cases, the Web server accepts the TCP
connection, hence it builds the response and starts sending data di-
rectly to the client (4). Client ACKs sent to the Web switch are
intercepted by the forwarder module of the switch (5), which ana-
lyzes the IP and TCP headers to extract all information necessary
to perform the lookup in the mapping table. If an entry is found
in the table, the packet is forwarded to the previously chosen Web
server (6). As the server closes the TCP connection, it notifies this
event to the Web switch with a THOP_NOTIFYCLS message (7).
The Web switch removes the appropriate entry from the mapping
table of transferred connections.

The limit of the present implementation is that only one Web
switch may be active at a time in the Web cluster. However, for
availability purposes, it is possible to configure two machines in
the LAN as Web switches and let one behave as a backup in the
case of failures of the first machines.

4.6 Modification to the TCP finite state ma-
chine

The TCP Handoff mechanism implemented in our Web cluster
requires some modifications to the TCP/IP stack protocol. Figure 4
shows the modified finite state machine. For clarity reasons, this
figure does not include the SYN_SENT state that is not modified.

Let us first describe the modifications concerning the Web switch.
The scheme in Figure 4 applies to sockets which are subject to TCP

recv:SYN, send:SYN,ACK

recv:THOP_NOTIFYCLSRST
THOP_NOTIFYDROP, timeout

appl:close
send:FIN

appl:close
send:FIN

recv:FIN
FIN_WAIT1}

recv:ACK

send:THOP_NOTIFYCLS

recv:FIN,ACK
send:ACK

timeout (2*MSL)
send:THOP NOTIFYCLS

SYPEa recv:FIN
FIN_WAIT2
= send:ACK

TIME_WAIT

Figure 4: Modifi ed TCP fi nite state machine.

handoff. The other sockets are handled as usually. With respect
to the original TCP finite state machine, we have added two new
states: WAITHEADER and FORWARDING.

The WAITHEADER state is equivalent to ESTABLISHED, with
the following differences. In the WAITHEADER state, the content
of the client request and not only the TCP header field is analyzed.
The WAITHEADER state is entered at the end of the three-way
handshake, if handoff is enabled for the specified socket; it is left
not only when the socket is closed, but also when TCP handoff
is carried out. In the last case, the TCP connection is moved to the
new state FORWARDING. The FORWARDING state is introduced
to inform the Web switch that TCP packets are being forwarded to
another server.

On the Web server operating system, the only difference with
respect to the original TCP protocol occurs at the establishment
of a new connection. Indeed, a new TCP connection may also be
created upon the receipt of a THOP_CREATE message from the
Web switch. In this case, there is a direct transition from the LIS-
TEN state to the ESTABLISHED state, thus bypassing the three-
way handshake procedure which has already carried out between
the client and the Web switch. The socket structures on the Web
servers contain a further information, namely the IP address of the
Web switch. This solution is necessary to implement the commu-
nications between the Web switch and the server.

5. EXPERIMENTAL RESULTS

This section includes the overhead analysis of the proposed TCP
Handoff mechanism, the scalability analysis of the content-aware
Web switch, and the evaluation of the Web cluster performance for
different dispatching policies.

5.1 Testbed architecture

The Web cluster consists of a Web switch node, and up to seven
Web servers. Each machine is a Dual PentiumlIl1-833Mhz PC with
512MB of memory. All nodes of the cluster use a 3Com 3C905C
100bTX network interface. They are all equipped with a Linux op-
erating system (kernel release 2.4.18). Apache 2.0 is used as the
Web server software. Dynamic pages are implemented by means
of PHP scripts which stress various system components, such as
the CPU or the disk. The clients and servers of the system are con-
nected through a switched 100Mbps Ethernet. We used a modified
version of the httperf tool [20] (version 0.8) as a benchmarking
tool.

5.2 Overheads of the Web switch

To stress at most the Web switch, it is important that the Web
servers of the cluster provide the fastest response possible. For this
reason, the overhead analysis is carried out in a special scenario
where the clients issue requests for one small-sized, static file that
is always served by the disk caches of the server.

We first measure the response time provided by a server that is
directly connected to the client without Web switch. We then per-
form the same experiments by interposing the proposed ClubWeb-
1w switch between the client and the server. Figures 5 and 6 show
the mean response time and the throughput, respectively, as a func-
tion of the requested file size. We can conclude that the ClubWeb-
1w overhead does not modify the throughput of the cluster, while it
has a low impact on the response time as long as the network does
not become the bottleneck of the whole system (that is, when the
file dimension is lower than 5Kb). On a dual-CPU Web switch the
maximum response time increases linearly up to 6.71% (at 3Kb).
It is worth to note that with small file sizes that can fit into one
IP packet, ClubWeb-1w does not show any overhead with respect
to the single server case. Other tests for file sizes greater than 5KB
saturated the network capacity of the FastEthernet, that was utilized
at a peak rate of 89.1 Mbps.

single server —+—
ClubWeb-1w (2 CPU),1 server --->--

Mean response time [ms]

0.6 T T T
1 2 3 4 5
File size [Kb]

Figure5: Responsetime of ClubWeb-1w vs. single server.

single server —+—
ClubWeb-1w (2 CPU),1 server ---x--

Cluster throughput [Mbps]
@
3
.

10 T T T
1 2 3 4 5
File size [Kb]

Figure6: Throughput of ClubWeb-1w vs. single server.

5.3 Scalability analysis

From the overhead analysis, we can conclude that the mecha-
nisms behind ClubWeb-1w are very efficient even when the net-

work is close to saturation. We now evaluate the scalability of the
proposed Web switch for increasing numbers of server nodes in
the Web cluster. We consider two architectures as a machine sup-
port for the Web switch (with one CPU, and with two SMP CPUs).
The client requests are for a small static file (ca. 1500 bytes, the
home page of the Apache site). We evaluate the performance of
ClubWeb-1w with one and two CPUs, and for the sake of com-
parison we consider also a two-way mechanism implemented at
application layer that is, TCP Gateway based on mod_rewrite [12]
running on same inexpensive PC/Linux machines. Performance
comparisons with dedicated (and expensive) commercial products
are beyond the scope of our academic research. Unfortunately, the
most interesting performance comparison against the other public
domain solution [3] was impossible because the version of FreeBSD
kernel on which the ScalaServer architecture was implemented is
quite incompatible with present PC architectures.

Figures 7 and 8 show the system throughput as a function of
Mbps and connections per second, respectively. The first result
from all these experiments is that the layer-7 Web switch is not the
bottleneck of the cluster. The Web switch utilization never reached
a critical threshold. Figure 7 confirms that ClubWeb-1w is able
to saturate a 100Mbps LAN network even with requests for small
files (i.e., 1.5 KB). The scalability of ClubWeb-1w is almost lin-
ear without significant performance losses until the bottleneck of
the network. On the other hand, the TCP Gateway does not scale
over two nodes, serving up to 600 TCP connections per second.
These experiments and other not reported results because of space
limits should clarify that the common belief about the poor scala-
bility of content-aware Web switches concerns two-way architec-
tures. On the other hand, a careful kernel-based implementation of
a one-way system that can take advantage of a simple SMP archi-
tecture does not seem to have any performance problem to provide
content-aware functionality. Layer-4 solutions remain one-two or-
ders of magnitude faster, but the question is whether it is really
necessary to have a throughput higher than that shown here for a
locally distributed Web system. The conclusion is that when a Web
site has to manage more than ten thousands connections per second
it is better (even for availability reasons) to pass to a different archi-
tecture, such as two or more Web clusters distributed over different
network locations.

90

ClubWeb-1w,1 server,1 CPU —+— e
ClubWeb-1w,1 server,2 CPU --->-- L
80 - <
70 X
7 60 o ><
2 -
5 X
2 5041 ~
£
2 .
g o
£ 40 A
B .
3 x
S 30 P
20 X
10 4 X
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Number of server nodes

Figure7: Throughput in Mbps.

5.4 Performance results for realistic workload

In the last set of experiments we evaluate the performance of two
content-aware algorithms (CAP and LARD, described in Section 3)

6000
ClubWeb-1w,1 server,1 CPU —+—
ClubWeb-1w,1 server,2 CPU -----
TCP Gateway, 2 CPU ---3--- e
X

5000 - g
S X
a8 .
&
E 4000
8
o /’X
o
E
= 3000
2
S X
3 -
3
£
& 2000 4
3 X
o -

1000 + ’,X'

0 = ; ; ; ; ; ;
0 1 2 3 4 5 6 7

Number of server nodes

Figure 8: Throughput in connections per second.

that are integrated into the ClubWeb-1w switching mechanism.

Unlike the previous stress tests, we now consider a more realistic
workload which takes into account concepts like user sessions, user
think-time, embedded objects per Web page, reasonable file sizes
and popularity. The workload model consists of a mix of static and
dynamic documents. We used the httperf tool [20] (version 0.8)
as a basic benchmarking tool that we have modified to include the
features reported in Table 1. Another modification concerns the
possibility of measuring percentiles in addition to mean values. As
the workload model is characterized by heavy-tailed distributions,
the 90-percentile of the response time is a more precise measure of
the system and algorithm behavior.

The dynamic portion of the workload is implemented by means
of CGI executables. We consider the following two workload sce-
narios which stress the CPU and the disk, respectively.

CPU-bound model: it consists of 40% of static requests, 40% of
lightly dynamic requests, 20% of heavily dynamic requests
that stress especially the CPU. This scenario emulates CPU-
bound services, such as secure browsing.

Disk-bound model: it consists of 40% of static requests, 40% of
lightly dynamic requests, 20% of heavily dynamic requests
that stress especially the disk.

The request for a page includes the request for the base HTML
file and for a number of embedded objects that follow a Pareto dis-
tribution as in Table 1. There is a probability of 0.4 and 0.2 that
an embedded object corresponds to a lightly dynamic and a heavily
dynamic request, respectively.

The 90-percentile of page response times and the throughput in
Mbps for increasing offered load are reported in Figure 9 and Fig-
ure 10, respectively.

The first important observation is that in all tests the CPU uti-
lization of the Web switch was never higher than 0.5, hence the
limit of the capacity of the Web clusters for realistic load is due to
the servers and/or to the network. This is especially true for the
disk-bound workload model. If we compare the content-aware al-
gorithms, the CAP is clearly better than LARD for any workload
model and offered load. This result was partially expected because
LARD aims to maximize cache hit rates, and guarantees best re-
sults when the workload consists of requests for static files. On
the other hand, just 40% of requests are cacheable in the workload
models considered here, hence CAP confirms the simulation results
obtained in [7] that is the best when the load is highly heteroge-
neous.

90 Percentile of page response time [sec]

6.

Table 1. Workload modé for static requests.

[Category | Distribution | PMF | Range | Parameters |
A (z—p)?
Requests per session Inverse Gaussian ﬁa‘@ 2u%w >0 | p=386\=09.46
User think time Pareto akex—o~1 2>k |a=14k=1
Objects per page request | Pareto ak®x— 1T >k | a=133,k=2
—(nz—pm)?
i i 1 o = = 1.
HTML object size Lognormal Vst 2 2 >0 | up=7.630,0=1.001
Pareto ak®x— % >k | a=1k=10240
—(nz—pm)Z
A . 1 — —
Embedded object size Lognormal 53¢ >0 | p=282150=1.46
10 55
CAP/CPU-bound —+— CAP/CPU-bound —+—
LARD/CPU-bound --->¢--
CAP/DISK-bound ---3%--- -
LARD/DISK-bound =) LARD/DISK-bound
s ;
4
5 ;: S
ul >< ?_-E
z

’ 10 ;O 310 A‘O 5‘0 éO ‘)0 8‘0 9‘0 100
Page requests per second
Figure9: Mean response times.
CONCLUSIONS

In this paper, we have described the design and implementation
of an efficient, layer-7 switching mechanism for Web clusters. We
have demonstrated that a careful design and optimized implemen-
tation choices may lead to a Web switch with limited overheads,
even on SMP nodes. The experimental results have shown that the
proposed mechanism is extremely scalable, thus making a content-
aware Web switch a suitable solution to the performance require-
ments of the majority of cluster-based architectures.

7.
(1]

(2]

(3]

(4]
(5]

REFERENCES

G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and
D. Saha. Design, implementation and performance of a
content-based switch. In Proceedings of the 19th IEEE
International Conference on Computer Communications
(INFOCOM 2000), pages 1117-1126, Tel-Aviv, Israel, Mar.
2000.

M. Aron, P. Druschel, and Z. Zwaenepoel. Efficient support
for P-HTTP in cluster-based Web servers. In Proceedings of
the 1999 USENIX Annual Technical Conference, pages
185-198, Monterey, CA, June 1999.

M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel.
Scalable content-aware request distribution in cluster-based
network servers. In Proceedings of the 2000 USENIX Annual
Technical Conference, San Diego, CA, June 2000.

Array Networks Inc.

http://ww. arraynet wor ks. net .

L. Aversa and A. Bestavros. Load balancing a cluster of Web
servers using Distributed Packet Rewriting. In Proceedings
of the 19th |EEE International Performance, Computing, and

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

5 T T T T T T T T
10 20 30 40 50 60 70 80 90 100
Page requests per second

Figure 10: Throughput in Mbps.

Communication Conference, pages 24-29, Phoenix, AZ,
Feb. 2000.

V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The
state of the art in locally distributed web-server system. ACM
Computing Surveys, 34(2), June 2002.

E. Casalicchio and M. Colajanni. A client-aware dispatching
algorithm for Web clusters providing multiple services. In
Proceedings of the 10th International World Wide Web
Conference, pages 535-544, Hong Kong, May 2001.

L. Cherkasova and M. Karlsson. Scalable Web server cluster
design with WARD. In Proceedings of the 3rd International
Wbrkshop on Advanced issues of E-Commerce and
Web-Based Information Systems, pages 212-221, San Jose,
CA, June 2001.

Cisco Systems Inc. ht t p: / / www. ci sco. com .

M. Dahlin. Interpreting stale load information. |EEE Trans.
Parallel and Distributed Systems, 11(10):1033-1047, Oct.
2000.

D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A
scalable and highly available Web server. In Proceedings of
the 41st IEEE Computer Society International Conference,
pages 85-92, San Jose, CA, Feb. 1996.

R. Engelschall. Load balancing your web site. Web
Techniques Magazine, 3, May 1998.

F5 Networks Inc. ht t p: / / www. f 51 abs. con .

B. Fitzgibbons. The linux slab allocator, Oct. 2000.
http://ww. cc. gat ech. edu/ peopl e/ hone/
bradf/cs7001/ proj 2/ .

Foundry Networks Inc. ht t p: / / www. f oundr ynet .

com product s/ webswi t ches/ serveriron/.

[16] IBM. IBM WebhSphere Edge Server. ht t p: / / www. i bm
com sof t war e/ webser ver s/ edgeserver/.

[17] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. RFC 1323, May 1992.

[18] E. Levy-Abegnoli, A. lyengar, J. Song, and D. Dias. Design
and performance of a Web server accelerator. In Proceedings
of the 18th |EEE International Conference on Computer
Communications (INFOCOM'’ 99), pages 135-143, New
York, NY, Mar. 1999.

[19] Lucent Technologies. Lucent Web Switch. ht t p:

/I ww. bel | -1 abs. cont proj ect/webswi tch/.

[20] D. Mosberger and T. Jin. httperf - A tool for measuring web
server performance. In Proceedings of Workshop on Internet
Server Performance, Madison, Wisconsin, 1998.

[21] Nortel Networks Ltd. Nortel Networks Web OS.
http://ww. nort el net wor ks. com product s/
01/ al teon/.

[22] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,

W. Zwaenepoel, and E. M. Nahum. Locality-aware request
distribution in cluster-based network servers. In Proceedings
of the 8th ACM Conference on Architectural Support for
Programming Languages and Operating Systems, pages
205-216, San Jose, CA, Oct. 1998.

[23] J. Postel. Transmission Control Protocol. RFC 793, Sept.
1981.

[24] Radware Inc. htt p: // www. r adwar e. cont .

[25] A. Rijsinghani. Computation of the Internet checksum via
incremental update. RFC 1624, May 1994,

[26] P. Russell. Unreliable guide to locking, 2000.
http://netfilter.gnunonks. org/
unr el i abl e- gui des/ ker nel -1 ocki ng. a4. ps.

[27] J. Song, A. lyengar, E. Levy-Abegnoli, and D. Dias.
Acrchitecture of a Web server accelerator. Computer
Networks, 38(1):75-97, Jan. 2002.

[28] C.-S. Yang and M.-Y. Luo. A content placement and
management system for distributed Web-server systems. In
Proceedings of the 20th |EEE International Conference on
Distributed Computing Systems, pages 691-698, Taipei,
Taiwan, Apr. 2000.

[29] Zeus Technologies Ltd. htt p: / / www. zeus. conT .

[30] X.Zhang, M. Barrientos, J. B. Chen, and M. Seltzer. HACC:
An architecture for cluster-based Web servers. In
Proceedings of the 3rd USENIX Windows NT Symposium,
pages 155-164, Seattle, WA, July 1999.

