Cooperative Architectures and Algorithms
for Discovery and Transcoding of Multi-version Content

Claudia Candli
University of Parma
claudia@weblab.ing.unimo.it

Riccardo Lancellotti
University of Roma “Tor Vergata”
riccardo@weblab.ing.unimo.it

Abstract

A clear trend of the Web is that a variety of hew consumer de-
vices with diverse computing powers, display capabilities, and
wired/wireless network connections is gaining access to the In-
ternet. Tailoring Web content to match the device characteris-
tics requires functionalities for content transformation, namely
transcoding, that are typically carried out by the content Web
server or by an edge proxy server. In this paper, we explore
how to improve the user response time by considering systems
of cooperative edge servers which collaborate in discovering,
transcoding, and delivering multiple versions of Web objects.
The transcoding functionality opens an entirely new space of
investigation in the research area of distributed cache coop-
eration, because it transforms the proxy servers from content
repositories along the client-server path into pro-active net-
work elements providing computation and adaptive delivery.
We propose and investigate different algorithms for coopera-
tive discovery, delivery, and transcoding in the context of edge
servers organized in hierarchical and flat peer-to-peer topolo-
gies. We compare the performance of the proposed schemes
through ColTrES (Collaborative Transcoder Edge Services),
a flexible prototype testbed that implements all considered
mechanisms.

1 Introduction

The Web is rapidly evolving towards a highly heterogeneous
accessed environment, due to the variety of new consumer de-
vices that are increasingly gaining access to the Internet. The
emerging Web-connected devices, such as handheld comput-
ers, personal digital assistants (PDAs), mobile phones, and
other pervasive computing devices, that will be the predom-
inant fraction of Internet clients in a few years, differ con-
siderably in network connectivity, processing power, storage,

Valeria Cardellini
University of Roma “Tor Vergata”
cardellini@ing.uniroma2.it

Michele Colganni
University of Modena and Reggio Emilia
colajanni@unimo.it

Philip S. Yu
IBM T.J. Watson Research Center
psyu@us.ibm.com

display, and format handling capabilities. Hence, there is a
growing demand for solutions that enable the transformation
of Web content for adapting and delivering it to diverse desti-
nation devices.

The process of converting a multimedia resource from one
form to another is called transcoding. It can be applied to
transformations within media types (e.g., reducing the image
size, transforming from high-fidelity JPEG to low-fidelity GIF
format), across media types (e.g., speech to text, video item
to image set) or to both of them. The use of XML and XSL,
that allow the same content to be presented on a variety of
Web-connected devices through structured XML documents
(with the appropriate XSL style-sheets) facilitates the presen-
tation of multiple versions of a Web site content. However, it
does not eliminate the need for content transcoding. The ex-
isting approaches to deploy Web content adaptation fall into
three broad categories depending on the entity that performs
the adaptation process [1, 10, 12]: client-based, edge-based
(also called proxy-based), and server-based adaptation.

In both edge- and server-based adaptation, specific informa-
tion about the delivery context can be associated with the client
request, such as device capabilities, network constraints, user
preferences [1]. The server-based approach [14] is designed
to add content adaptation by extending the functionalities of a
traditional Web server. The edge-based approach [8, 9, 13, 17]
uses the proxy server, that is typically required by the client
device to access the Web, to analyze and transcode the con-
tent on-the-fly, before delivering the result to the user. This
component is often called edge server because in the deliv-
ery chain between the client device and the content server it is
typically located close to the client. The edge server has also
another important role. It can cache the results of transcoding,
thus avoiding some round-trips to the content server and sub-
sequent transcoding operations when transcodable content can
be served from the cache [8, 13, 17]. Moreover, intermediate
adaptation can shift load from content-providing Web servers

and simplify their design, as it offloads the transcoding task
to the intermediary infrastructure. The edge-based approach is
also typically used to address dynamic variations in network
traffic and to reduce end-to-end response time, especially for
mobile devices which have reduced last-hop bandwidths [9].
A transcoding service located at intermediary points of the
network infrastructure can also tailor contents coming from
different content servers. So far, the edge-based approach to
content adaptation is typically carried out by some edge server
that directly connects to the clients.

As the transcoding operations may be computationally ex-
pensive, the edge solution based on single servers may be sub-
ject to a limited scalability [12]. A possible solution is to
replace the edge server with a cluster of locally distributed
servers [8]. Although this approach may solve the CPU-
resource constraint, it does not exploit the potential benefits
deriving from an increased cache hit rate and may move the
bottleneck from the CPU of the edge server to the interconnec-
tion of the cluster. In this paper, we explore a different alter-
native that considers a distributed system of cooperative edge
servers which collaborate in discovering, transcoding, and de-
livering Web content. The goals are to reduce the user response
time and bound its variability. The motivation for a coopera-
tive architecture is that the cost of transcoding can be notably
reduced by discovering the desired resource in other servers
and also by involving some other servers to perform the (pos-
sibly expensive) task of content adaptation.

Although the cooperative transcoding is based on dis-
tributed schemes, it is not a simple extension to cooperative
caching. The following issues should be addressed in order to
achieve a suitable solution.

e The presence of differentiated client device types requires
to address various issues related to recognize, discover,
and cache the multiple variants of the same resource that
are obtained by transcoding operations.

e The transcoding process is expensive in terms of com-
puting resources. Issues related to workload distribution,
which are not usually considered in Web caching, can be-
come of fundamental importance in the case of coopera-
tive transcoding.

In this paper, we propose and investigate some architec-
tures and algorithms for cooperative discovery, transcoding,
and delivery, including servers organized in hierarchical and
flat topologies. All considered schemes can be implemented
on the existing Web infrastructure. \We compare their per-
formance through a prototype called ColTrES (Collaborative
Transcoder Edge Services), which is a flexible testbed based
on Squid. The ColTrES prototype implements all considered
mechanisms by extending the traditional cooperative caching
systems to an environment characterized by heterogeneous
client devices. The first extension enhances the capabilities

of a traditional cache server, and transforms it into an active
intermediary server that not only caches Web objects but also
transcodes them and stores the results [13, 17]. The second
novel extension allows the cooperation of the active interme-
diaries. We take advantage of the scalability opportunities pro-
vided by cooperation to reduce the response time experienced
by the users of a heterogeneous client environment.

We are not aware of any other research work dealing with
the study and implementation of cooperative transcoding and
caching systems with both hierarchical and flat topologies.
The authors have obtained some preliminary results through
simulations of a cooperative hierarchical scheme in [4], and
some experimental results referring to one cooperative algo-
rithm on flat topologies, which demonstrate the reduction of
the user response times achievable with respect to a system
of non-cooperative servers [3]. New cooperative transcoding
algorithms and architectures are considered here. Through
our prototypes, we demonstrate that all proposed algorithms
and cooperative architecture are immediately applicable to the
Web infrastructure. The real test-beds allow us to evaluate the
reduction of the user response time achievable by different co-
operative discovery and transcoding schemes. Moreover, we
clearly demonstrate the advantages of cooperative transcoding
through flat topologies over hierarchical schemes.

The rest of this paper is organized as following. Section 2
discusses the requirements and the operation mechanisms of a
caching system for cooperative transcoding. Sections 3 and 4
explore different topologies and protocols for cooperative dis-
covery, transcoding, and delivery. Section 5 proposes some
transcoding algorithms applicable to flat topologies. Section 6
outlines the main characteristics of the ColTrES prototype.
Section 7 describes the workload model that we have used to
exercise the prototype. Section 8 presents the experimental re-
sults. Section 9 concludes the paper with some final remarks.

2 Edge server cooperative transcoding

In this paper, we consider that cooperation can be established
along a vertical direction, namely hierarchical Web caching,
descending from the Harvest project, or along an horizontal
direction, namely flat or distributed Web caching [15]. In this
section we describe the main operations involved in a system
of cooperative transcoding and caching servers, while the spe-
cific features of the cooperation topologies and protocols are
outlined in Sections 3 and 4.

Depending on the cooperation architecture, a server node
may have one or more functionalities that is, it can act as a
transcoder, a cache and/or an edge server. All nodes have
caching functionality and hence are cache servers. Edge
servers receive requests directly from the clients and deliver
the requested resources. Transcoder servers can perform con-
tent adaptation.

The organization we propose in this paper is an extension of
the traditional cooperative caching systems for multiple rea-
sons. First of all, multiple variants of the same resource can
be present at the same time in the edge servers. Moreover, the
server nodes are not only object repositories, but they can also
perform the transcoding process that is a typical computation-
ally intensive task.

The features of client devices vary widely in screen size and
colors, processing power, storage, user interface, software, and
network connections. The client may include the resource data
type it can consume as a meta-information in the HTTP re-
quest header. Recently, the WAP Forum and the W3C have
also proposed the compatible standards CC/PP and UAProf
for describing the client capabilities [1]. Hereafter, we will
refer to the information describing the capabilities of the re-
questing client as the requester-specific capability information
(RCI). An object which has been previously transcoded may
be further transcoded to yield a lower quality object. In par-
ticular, each version may be transcoded from a subset of the
higher quality versions. Different versions of the same object
(and the allowed transcoding operations among them) can be
represented through a transcoding relation graph [4].

In a cooperative transcoding scheme, we can identify three
main phases that may require some cooperation among the
server nodes, namely discovery, transcoding, and delivery
phases. Even the traditional phases differ from the correspond-
ing phases of a standard cooperative caching scheme. We de-
scribe the three phases in a reverse order.

Once an exact version of the requested object is found (or
generated), the delivery phase transfers the resource to the
client. Although for some applications it is acceptable to sat-
isfy a request with a lower-quality resource than that specified
by the client, we do not consider this possibility in this paper.
The final delivery is always carried out by the edge server that
is first contacted by the client. Hence, if the resource is found
in another node, the delivery phase includes its transmission to
the edge server.

The transcoding phase is specific to the problem here con-
sidered. In some algorithm, it includes the execution of some
transcoding operations carried out in a cooperative way. We
assume that any server of the considered cooperative system is
equipped with software that can perform the transcoding oper-
ations required by any type of client device.

During the discovery phase, the servers may cooperate to
search for the version of the Web object requested by the client.
Since multiple versions of the same object typically exist in
the caches, in this phase it is necessary to carry out a multi-
version lookup process that may require cooperation among
the servers. The discovery phase includes a local lookup and
may include an external lookup. Once the edge server has de-
termined the client capabilities, it looks for a copy of the re-
quested resource in its cache. The local lookup may generate

one of the following three events.

(1) Local exact hit: the cache contains the exact version of
the requested object, that can be immediately delivered to the
client. (2) Local useful hit: the edge server cache contains a
more detailed and transcodable version of the requested object
that can be transformed to obtain a less detailed version that
meets the client request. Depending on the transcoding coop-
eration scheme, the edge server can decide either to perform
the transcoding task locally or to activate an external lookup,
which is carried out through some cooperative discovery pro-
tocol. (3) Local miss: the edge server cache does not contain
any valid copy of the requested object. This means that no
version of the object is found or a less detailed or untranscod-
able version is found, but it does not satisfy the RCI associated
with the client request. The edge server must activate an exter-
nal lookup to fulfill the request.

When exact and useful hits are both found in the local cache,
the former is preferred because it does not require any adapta-
tion task, and no external lookup is necessary. In the case of
local miss and sometimes of useful hit, the edge server may ac-
tivate some cooperative discovery mechanism to locate an ac-
ceptable version on other remote servers. The external lookup
may provide one of the following results. (1) Remote exact hit:
a remote server holds the exact version of the requested object,
which is transferred to the requesting server during the succes-
sive delivery phase. (2) Remote useful hit: a remote server
cache contains a more detailed and transcodable version of the
requested object that can be transformed to meet the client re-
quest. Depending on the transcoding cooperation scheme, the
cooperating server can decide either to perform the transcod-
ing task locally or to provide the useful version to the requiring
server, which will execute the transcoding process. (3) Remote
miss: no remote server contains any valid copy of the object,
that is, a global cache miss occurs. The client request needs to
be forwarded to the content server.

It is worth to observe that we consider a generic infrastruc-
ture that does not involve the content provider in the transcod-
ing process. Hence, we assume that the Web server returns
always the original version of the requested resource. We rec-
ognize that our architectures opens many novel possibilities
for push caching and object replacement, that we do not ad-
dress in this paper more focused on the cooperative discovery
and transcoding phases. For example, we consider that any
server that transcodes a resource, stores in its cache both the
retrieved and the transcoded versions of the object, and uses
LRU as the cache replacement algorithm. More sophisticated
policies have been discussed in [6, 17]. Moreover, we do not
address issues related to end-to-end content semantics, such
as those considered by server-directed transcoding [11]. Co-
operative architectures for transcoding and caching can be in-
tegrated with content server decisions or not, without alter-
ing our performance considerations. Our main conclusions

are, then, not affected by the fact that our servers operate au-
tonomously, without being guided by the content server.

3 Cooperation in hierarchical topolo-
gies

In a hierarchical caching architecture [15, 20] the servers are
organized in a hierarchy, where only the bottom level nodes
(called leaf nodes) are edge servers and hence serve client re-
quests directly. Hierarchical architectures follow the idea of
hierarchical Internet organization, with local, regional, and in-
ternational network providers. This is one of the reasons to
have typically three levels in the server tree, from leaf nodes
to the root node. In this paper, we consider a pure hierarchical
architecture where sibling servers do not cooperate.

Some approaches for distributing the transcoding load
among the servers in a hierarchy have been described in [4]. In
this paper we consider two cooperation schemes, called Hier-
archical root and Hierarchical leaf. In root-transcoding, each
node is both a transcoder and a cache server. In the case of
local miss, the request is forwarded by the local edge server
up the hierarchy, until it is satisfied with either an exact or
useful hit. In the case of global miss (that is, no type of hit oc-
curs at any level), the root node retrieves the original resource
from the content server, adapts it if needed, and sends the exact
version of the object to the lower-level server. Each node ex-
periencing a local exact hit responds by sending the resource
to the requesting entity, which can be a client or a lower-level
server. In the case of useful hit, the contacted server performs
locally the content adaptation before sending the exact version
of the resource downwards the hierarchy. A copy of the object
is stored in the caches of all the nodes along the request path.

The hierarchical cooperation architecture can be easily im-
plemented once transcoding functionalities are added to the
server nodes. For the root transcoding scheme, in the case of
local miss, the traditional hierarchical lookup is activated that
is, the request is forwarded to the parent node. The root server
has no parents. In the case of miss on this node, the requested
resource is fetched from the content server and then adapted
by the root server itself. As the root node must perform the
transcoding service for every global miss and content adapta-
tion may involve computationally expensive operations, there
is a great risk of overloading this server. Indeed, different stud-
ies have shown that pure hierarchical architectures, even when
applied to traditional cooperative caching, may suffer from
scalability and coverage problems, especially when the num-
ber of nodes is large (e.g., [7, 19]). This situation can dramat-
ically worsen in the case of cooperative transcoding. For this
reason, we propose the leaf-transcoding scheme, that forces
the transcoding task to be performed only by the leaf nodes.
In this scheme, the behavior of the leaf nodes is different with

respect to the upper level nodes. A leaf node handles exact
and useful hits as in the root-transcoding scheme. However,
in the case of local miss, the upper level receives a request for
the original version of the requested resource, and the content
adaptation is then performed locally by the leaf node. Upper
levels of the hierarchy act as pure cache servers.

4 Cooperative discovery protocols for
flat topologies

An alternative to hierarchical topology is to organize the
servers in a flat topology where all nodes are peers. Unlike
hierarchical schemes, each node of this flat architecture has
all three functionalities of being a transcoder, a cache, and an
edge server. This flat organization allows us to explore vari-
ous algorithms for cooperative discovery, which are the topic
of this section, and for cooperative transcoding, which are dis-
cussed in Section 5.

The discovery phase in a flat distributed system can be based
on different protocols. We find it convenient to limit the re-
search space of alternatives to the most interesting and widely
used systems. It is important to remark that the cooperation
protocols for object discovery and delivery considered in this
section differ from traditional policies because multiple ver-
sions of the same object may be present in the caches of the
cooperative edge servers. Moreover, there are three possible
results of the external lookup process: miss, exact hit, and use-
ful hit.

Cooperative lookup among distributed servers requires a
protocol to exchange local state information. For coopera-
tive discovery, this information basically refers to the cache
content, although when we consider a CPU-bound task such
as transcoding, other data can be useful (e.g., server load
conditions). Cooperative resource discovery has been stud-
ied for a while and many mechanisms have been proposed to
address the related issues [15]. Most of those mechanisms
can be adapted to the lookup of multiple versions. The two
main and opposite approaches for disseminating state infor-
mation are well defined in the literature on distributed sys-
tems: query-based protocols in which exchanges of state in-
formation occur only in response to an explicit request by a
peer, and directory-based protocols in which state information
is exchanged among the peers in a periodic way or at the oc-
currence of a significant event, with many possible variants in
between. In the following, we consider a query-based proto-
col and a summary-based protocol (a simplified version of the
directory-based protocols).

4.1 Query-based protocols

Query-based protocols are conceptually simple. When an edge
server experiences a local miss or even a useful hit (depend-
ing on the cooperative transcoding algorithm), it sends a query
message to all the peers in order to discover whether one of
them caches a copy of the requested resource. In the positive
case, the recipient edge server replies with an exact hit mes-
sage or with a useful hit response, otherwise it may reply with
a miss message or not reply at all. In the case of a useful hit,
the response message should provide some information about
the available version of the resource, to allow its retrieval.

The most important query-based protocol is ICP, used in
NetCache and Squid [18]. For this reason, we used ICP as
the protocol for our query-based cooperation.

In our prototype we added the support for multi-version
lookup into the Squid version of ICP by including the version
identifier to the URL contained into the messages. Further-
more, it has been also necessary to introduce a new response
code to indicate a useful hit instead of an exact hit.

4.2 Summary-based protocols

Directory-based protocols are conceptually more complex
than query-based schemes, especially because they include a
large class of alternatives. The two most important ones are
the presence of one centralized directory vs. multiple directo-
ries disseminated over the peers, and the frequency for com-
municating a local change to the directoryl/ies. It is impossi-
ble to discuss here all the alternatives that have been the top-
ics of many studies. We consider distributed directory-based
schemes because it is a common view that in a geographically
distributed system any centralized solution does not scale, the
central directory server may represent a bottleneck and a single
point of failure, and it does not avoid the query delays during
the lookup process.

In a distributed directory-based scheme, each edge server
keeps a directory of the resources that are cached in every other
peer, and uses the directory as a filter to reduce the number
of queries. Distributing the directory among all the cooper-
ating peers avoids the polling of multiple edge servers dur-
ing the discovery phase, and, in the ideal case, makes object
lookup extremely efficient. However, the ideal case is affected
by large traffic overheads to keep the directories up-to-date.
Hence, real implementations use multiple relaxations, such as
compressed directories (namely, summary) and less frequent
information exchanges for saving memory space and network
bandwidth, respectively. Examples of compression used to re-
duce the dimension of the transmitted messages are the Bloom
filters, used by Summary Cache [7] and Cache Digests [16],
that offer a form of lossy compression of the cache indexes in
which a certain amount of false hits is allowed.

For our experiments, we choose Cache Digests as a repre-
sentative of the summary-based architectures, because of its
popularity and its implementation in the Squid software. Sup-
port for caching and discovery of multiple versions has been
added to our prototype into the summary-based lookup process
through URL-encoding the resource version identifier. There-
fore, the basic mechanism of Cache Digests cooperation is pre-
served. However, the lookup process becomes more expensive
because it has to carry out a search for every possible useful
version.

5 Cooperative transcoding algorithms
for flat topologies

Cooperative transcoding is necessary only when a local or a
remote useful hit occurs. Misses and exact hits are handled
as described in Section 2, and they are unrelated to the coop-
erative transcoding algorithms. We can identify two alterna-
tives in the case of local and remote useful hits. For a local
useful hit, the edge server can either transcode locally the re-
source as soon as it retrieves the hit from its cache or it can
activate an external lookup process, with the possibility of re-
trieving a remote exact hit from some peer cache. The latter
choice aims to reduce the CPU load on the local edge server
(by avoiding some transcoding operation), at the expenses of
external lookup operations, which can increase the overall re-
sponse time, if the remote exact hit rate is low. In the case of
remote useful hit, the alternative regards the selection of the
server node which performs the adaptation of the transcodable
version, being the choice between the edge server which re-
ceived the client request and the peer that found the useful hit
in its cache.

Since transcoding a useful hit may be computationally ex-
pensive, several load-balancing algorithms can be used. In
particular, we distinguish between load-blind algorithms that
do not take into account any load state information and local
load-awar ealgorithms, that use load information about the lo-
cal server itself for deciding about the node that must perform
the transcoding task.

We propose two load-blind algorithms and a local load-
aware algorithm and we evaluate their performance with spe-
cial attention to the response time.

5.1 Load-blind algorithms

We propose two load-blind algorithms, called blind-lazy and
blind-active. The blind-lazy algorithm, whose flow diagram is
shown in Figure 1(a), tends to limit the computational costs of
transcoding by taking most advantage of the cooperative peers.
In the case of a local useful hit, the edge server continues the
discovery phase by activating an external lookup process to

look for an exact version of the requested object in some peer
proxy. In the case of a remote useful hit, the edge server always
delegates the transcoding task to the peer server that reported
the useful hit. The rational behind this approach is to exploit
as much as possible the remote exact hits and to distribute in
a nearly random way the transcoding process. The price of
the external lookup process is worth when the remote exact hit
is found and the network links are not saturated; otherwise, a
(guaranteed) local useful hit may be preferable to a (possible)
remote exact hit.

The blind-active algorithm, shown in Figure 1(b), follows
an approach opposite to its blind-lazy counterpart. Whenever
possible, it saves network usage for the external lookup at the
price of local computation. In the case of a local useful hit, the
edge server transcodes the useful version found in its cache
without continuing the discovery phase. In the case of a re-
mote useful hit, the resource is retrieved from the peer and
transcoded locally.

5.2 Load-awarealgorithm

The load-awar e algorithm we propose in this paper is based
on local load information, thus not requiring any load infor-
mation exchange among the peers. When a local or a remote
useful hit occurs, the edge server decides whether to perform
locally the transcoding operation or to continue the discovery
phase on the basis of its current load. Although this algorithm
seems somehow naive, we found that it can achieve a per-
formance increase when the distribution of the client requests
among the edge servers is unbalanced.

The basic idea of the load-aware algorithm is to follow for
each local useful hit one load-blind scheme or the other de-
pending on the CPU load. When the CPU utilization of the
edge server surpasses a certain threshold, it behaves in a lazy
mode, as the lazy approach tends to save local CPU resources.
Otherwise, the edge server adopts the active approach, be-
cause there is enough spare CPU power to perform transcod-
ing. The threshold value can range from 0.0 to 1.0. It is worth
to note that the extreme values correspond to the load-blind
algorithms. If the load threshold is set to 1.0, the edge server
applies the blind-active algorithm; when the threshold is set to
0.0, the server applies the blind-lazy algorithm.

6 Architecture of the ColTrES proto-
type Testbed

We have implemented a prototype called ColTrES (Collabo-
rative Transcoder Edge Services) that can support all the co-
operative transcoding architectures considered in this paper.
In this section we describe the features of the prototype that
transforms each server from a caching intermediary into an

active node that is able to adapt the Web content, to carry out
a local lookup of multiple versions of the objects, and to acti-
vate an external multi-version lookup. The peculiarities of the
cooperation mechanisms for each specific architecture have
been described in Sections 3 and 4 for the hierarchical and
flat schemes, respectively.

The basic software platform for the prototype is the Squid
Web proxy cache, version 2.4 [18]. We chose Squid as a plat-
form not only because of its popularity, robustness and open
source characteristics, but also because it supports different
cooperation mechanisms. Hence, we could implement the pro-
posed multi-version lookup and cooperative transcoding by
following the basic Squid concepts and modifying the exist-
ing code.

Important modifications to the original Squid software have
been introduced to support the management of multiple vari-
ants of the same object. Specifically, we alter the URL in some
data structures to insert a version identifier into the URL. This
modification entails also changes in the Squid lookup algo-
rithm, that has been modified to consider the possibilities of
both exact and useful hits.

As Squid supports various cooperation mechanisms, we
have introduced the multi-version lookup in cooperative
lookup by extensively modifying the modules responsible for
this process. Most of those modifications are related to the use
of modified URLSs that contain also a version identifier of the
resource.

To add the transcoding functionalities, we have imple-
mented a new module that handles the transcoding operations.
The transcoding task is performed by an external process,
called transcoder, and uses the freely available ImageMagick
library to adapt the resources to the client specifications. We
use an external process to allow multiple transcoding opera-
tions to be performed in parallel. Moreover, the use of mul-
tiple instances of the transcoder can increase the performance
in SMP systems (in our experiments, the speedup on dual pro-
cessor systems was up to 110% on 90-percentile of response
time with respect to an identical node with only one CPU). For
a more detailed description of the modification to the source
code of Squid, the reader can refer to [2].

7 Workload model

In this section we describe the client and workload models
used to test the performance of the cooperation mechanisms
and algorithms. We consider a classification of the client de-
vices on the basis of their capabilities of displaying differ-
ent objects and connecting to the assigned edge server [4, 6].
The classes of devices range from high-end workstations/PCs
which can consume every object in its original form, to cel-
lular phones with very limited bandwidth and display capabil-
ities. We introduced six classes of clients each with its own

Local lookup

Local exact hit Miss
Local lookup
Local
. useful
Local exact hit Miss or Delivery hit
local
useful
hit Transcoding
Delivery & delivery
Cooperative Cooperative
lookup lookup
Remote exact hit Miss Remote exact hit Miss
[1 [1
Retrieval Retrieval from orig. Retrieval Retrieval from orig.
& delivery server, transcoding & delivery server, transcoding
Remote & delivery Remote & delivery
useful useful
hit hit
Remote transcoding, Retrieval,
retrieval & local transcoding
delivery & delivery

(a) Blind-lazy agorithm.

(b) Blind-active agorithm.

Figure 1: Load-blind algorithms.

characteristics. The full description of the devices capabili-
ties and the values of their popularity that has been used in
our experiments can be found in [2]. In this paper, we con-
sider that most transcoding operations are applied to image ob-
jects (GIF, JPEG, and BMP formats), as more than 70% of the
files requested in the Web still belong to this class [5]. How-
ever, in our experiments we also consider scenarios where the
transcoding operations can have higher costs, such as the ones
that can be found in a near future of the Web characterized by
larger percentage of multimedia resources.

Our experiments aims at comparing different cooperative ar-
chitectures and algorithms, and in each set of experiments we
used different workloads.

The first workload, namely light trans-load, aims at captur-
ing a realistic Web scenario with a reduced transcoding load.
The set of resources used in this workload are based on proxy
traces belonging to the nodes of the IRCache infrastructure.
We downloaded the resources from their content servers and
placed them on Web servers. We performed some character-
ization on the images in the light workload, such as file size,
JPEG quality factor, and number of colors of GIF images, and
found that they are very close to the results reported in [5]. The
measured costs of transcoding operations required by this set
of resources on the machines used for our experiments gave
the following results: 0.04 and 0.22 seconds for the median
and the 90-percentile service time, respectively (the cumula-
tive distribution is shown in Figure 2).

We also consider a second workload model (called heavy
trans-load) that aims at denoting a scenario where the
transcoding process has a major cost. As the trend of the Web
is towards a growing demand for multimedia resources, this
workload can represent a situation with a large amount of mul-
timedia objects, such as video and audio. In this scenario, the
costs for transcoding operations are 0.27 and 1.72 seconds for
the median and the 90-percentile service time, respectively (as
for the previous working set, the cumulative distribution of the
transcoding time in shown in Figure 2).

09| I
084 / .
074 —
0.6 1 r
05 | I
0.4 { i

Cumulative distribution

03 | F

0.2 1 3
0.1 Light trans-load &
0 | Heavy trans-load ——

0 02 04 06 038 1 12 14 16 18 2
Transcoding time [s]

Figure 2: Cumulative distributions of transcoding time for the light
and heavy trans-load scenarios.

The size of the working set (including only the original re-
sources) for the light and heavy trans-load workloads is similar
and corresponds to 10% more than the sum of the cache size
used in our experiments. On the other hand, the mean file size
differs considerably, depending on the used set of resources.
Hence, the light workload determines higher cache hit rates
than the heavy one. We have also introduced a popularity re-
source distribution by defining a set of hot resources (corre-
sponding to 1% of the working set): 10% of the total number
of requests refers to this hot set.

From the file list of each workload model, we obtained 80
different traces that were used in parallel during the experi-
ments. Each trace consists of 1000 requests with a random
delay that elapses between two consecutive requests. For both
workloads, the number of traces assigned to the edge servers
is the same, so that each node receives the same number of
requests. However, the types of requests in each trace can dif-
fer substantially, because the file size follows a heavy-tailed
distribution, especially for the light trans-load working set.

To study the performance of the transcoding algorithms, it
has been necessary to consider a scenario with systems under
heavy stress. To this purpose, we created two workload models
(called uniform and bimodal) which are based on the previ-
ously described heavy trans-load workload, but are character-
ized by different client request distributions. In the uniform
scenario the request load distribution is even, with each node
receiving the same number of client requests. In the bimodal
scenario, instead, the distribution of client requests among the
edge servers is unbalanced, with 50% of the servers receiv-
ing 90% of the requests and the remaining half of the nodes
handling only 10% of the traffic.

8 Experimental results

We use three main metrics to evaluate the performance of the
proposed schemes for cooperative discovery and transcoding:
the CPU utilization of the servers, the cache hit rates (local,
global, exact, useful), and the system response time that corre-
sponds to the interval between the instant in which the client
sends a request to the edge server and the instant in which the
client receives all the response.

As our main target is to enable heterogeneous devices to ac-
cess Web content, the servers transcode the object to best fit the
client capabilities, while we do not explore object compression
to reduce transmission time as done in [9]. We also consider
only complete transcoding relation graphs, where each version
can be created starting from any higher quality version [4].
In our experiments we set up a system of 16 servers. The
servers are equipped with ColTrES and configured to coop-
erate through different architectures and discovery protocols.

8.1 Comparison of the architectures

In this section we compare the performance of the hierarchical
and flat architectures of servers that collaborate in discovering,
transcoding, and delivering Web objects. We set up a scenario
where all servers are well connected among them and with the
clients. The content servers are placed in a remote location,
connected through a geographic link with 14 hops in between,
a mean round-trip time of 60 ms, and a maximum bandwidth
of 2Mb/sec. We verified that in this scenario the network path
to the content servers (reached in case of global miss) was one
of the possible system bottleneck. Hence, the global cache hit
rate may impact on the response time.

We consider the Hierarchical leaf and Hierarchical root
schemes for the hierarchical architecture, and the query-based
protocol (ICP), and the summary-based protocol (Cache Di-
gests) schemes for the flat architecture. For a fair comparison,
in this set of experiments flat schemes use the blind-active al-
gorithm.

Both hierarchical schemes are configured on the basis of
a three-level hierarchy with 12 leaves, 3 intermediate servers
(with a nodal out-degree of 4), and one root node. The client
are redistributed to let only the leaves receive their requests.
The workload size and the number of requests are not changed.
The configuration for ICP and Cache Digests is based on a
flat cooperation scheme, where all edge servers have sibling
relationships among them.

In these experiments we use both light trans-load and heavy
trans-load workloads. First, we evaluate the cache hit rates
of the various cooperation schemes. We then focus on the re-
sponse time, which is the crucial performance metric to the
end users.

Tables 1 and 2 show the cache hit rates for light trans-load
and heavy trans-load workloads, respectively. For each coop-
eration scheme, we report the local exact and useful hit rates
(columns 2 and 3, respectively) as well as the remote hit rates
(columns 4 and 5). The last column shows the global hit rate,
which is the sum of the various hit rates. For the hierarchical
leaf scheme, we do not report the remote useful hits, because
the requests to the parent nodes refer only to the original ver-
sion of the resources.

We will start describing Table 1, using data of Table 2 as a
comparison to confirm our observations or to identify differ-
ences. From the last column of Tables 1 we can observe that
there are some significant differences in the global hit rates,
depending on the used cooperation mechanism. In particular,
ICP provides the best results, while Cache Digests turns out
to be less effective in finding hits. Cache Digests becomes
imprecise (i.e., the accuracy of the exchanged cache digests
decreases) and its remote hit rates diminish. This is particu-
larly evident for the heavy trans-load workload (but it can be
also observed for the light one): the presence of larger objects
causes faster changes in the cache contents, having as a con-

Table 1: Cache hit rates (light trans-load).

Local Local Remote Remote Global

exact HR | useful HR | exact HR | useful HR HR
ICP 19.4% 16.9% 13.8% 19.3% 69.5%
Cache Digests 21.2% 11.9% 11.5% 11.5% 56.4%
Hierarchical root 17.9% 6.8% 7.1% 1.7% 39.7%
Hierarchical leaf 10.2% 8.2% 19.6% n/a 38.2%

Table 2; Cache hit rates (heavy trans-load).

Local Local Remote Remote Global

exact HR | useful HR | exact HR | useful HR HR
ICP 5.1% 4.7% 20.3% 22.1% 52.4%
Cache Digests 5.3% 4.6% 10.3% 8.9% 29.2%
Hierarchical root 6.3% 4.7% 52% 4.4 % 20.7%
Hierarchical leaf 6.1% 4.3% 11.6% n/a 22.1%

sequence a reduction of the accuracy of exchanged digests.
Columns 4 and 5 in Table 1 show that the reduction in the
global hit rate is caused by a reduction of the remote hit rate.

The two hierarchical schemes achieve similar global hit
rates (last column of Tables 1). However, their global hit rates
are lower than those of flat architectures. The most evident and
expected result observed from comparing Tables 1 and 2 is the
higher hit rates obtained under the light trans-load workload,
because the object sizes in the heavy trans-load workload are
larger than those in the light one. The lower hit rate of the
heavy trans-load workload increases the replacement activity,
thus reducing the hit rate of Cache Digests. For this reason, the
reduction in remote hit rate of this protocol observed for the
light trans-load workload is even more evident from columns
4 and 5 of Table 2.

We now pass to consider the response time. Figures 3 and 4
show the cumulative distribution of system response time for
the considered schemes under the light trans-load and heavy
trans-load workloads, respectively. Most of the curves show
several steps or jJumps as a consequence of the different kinds
of cache hit (i.e., remote vs local, and useful vs exact) at the
discovery phase. All the cooperation schemes present a first
step (located on the left side of each graph) due to local exact
hits that are nearly instantaneous with respect to other hits and
misses. Useful local hits have longer response times, which
are typically comparable to the ones of remote exact hits. Re-
mote useful hits are even longer response times, but, due to
the variance in response time, do not generate apparent steps
on the response time curve. Misses generate the highest re-
sponse times, hence are typically located in the right side of
each curve.

The two figures also show that the hierarchical leaf scheme
clearly outperforms the hierarchical root one. However, none
of the hierarchical schemes can compete with flat architectures
(ICP and Cache Digests). The expected bad performance of

the hierarchical root scheme is due to its poor load balance. We
observed that the higher levels of the hierarchy are often over-
loaded because they have to handle all misses from the lower
levels. Measurements on the CPU load show that the mean
load of the root node is nearly 0.90 and 0.99 for light trans-
load and heavy trans-load workloads, respectively, as this node
has to process every miss occurred in the lower levels. On the
other hand, leaf edge servers are often idle (the corresponding
mean CPU load is less than 0.02 for both workloads), waiting
for upper level nodes to process their requests.

The hierarchical leaf scheme achieves better performance:
the response times in Figures 3 and 4 are much lower than
those obtained by the hierarchical root. However, even the
hierarchical leaf scheme is penalized with respect to the flat
schemes. There are two reasons for this result. In hierarchical
leaf scheme, the upper hierarchy levels can only act as pure
cache servers (in our testbed prototypes, 4 nodes over 16 do
not contribute in transcoding operations). Moreover, as shown
in the Tables 1 and 2, the flat cooperation schemes achieve the
highest cache hit rates.

Flat architectures offer the best results. A preliminary per-
formance comparison between ICP and Cache Digests is re-
ported in [3]. With the experiments carried out in this paper
we confirm the previous observations: the higher global hit
rates of ICP tend to reduce the response time of the found re-
sources. On the other hand, due to the faster lookup mecha-
nism of Cache Digests, remote hits are typically serviced faster
than those of ICP. For this reason, it seems interesting to ana-
lyze the cumulative distribution of the response time. Table 3
provides a summary of data in Figures 3 and 4. It shows the
median (50-percentile) and 90-percentile of the response time
for each cooperation scheme and both workload models.

Figure 3 shows that the difference between the two curves
of Cache Digests and ICP is slight, with ICP only slightly su-
perior to Cache Digests on the right side of the graph, even

Cumulative distribution

ICP ——

0.1 @& Cache Digest -—-©--- |
i Hierarchical leaf -

) Hierarchical‘root e

.
400 600
Response time [ms]

I
0 200 800 1000

Figure 3: Cumulative distributions of system re-
sponse times (light trans-load).

T T
IcP —e—

0.9 Cache Digest G-

Hierarchical leaf i

08 Hierarchical root e

Cumulative distribution

I I
1500 2000

.
1000
Response time [ms]

2500

Figure 4: Cumulative distributions of system re-
sponse times (heavy trans-load).

Table 3: Median and 90-percentile of system response times.

Cooperation Light trans-load Heavy trans-load
scheme median [sec] | 90-percentile[sec] | median [sec] | 90-percentile[sec]
ICP 0.11 0.64 0.62 2.24
Cache Digests 0.07 0.78 0.56 3.76
Hierarchical root 0.86 2.82 5.52 14.57
Hierarchical |eaf 0.30 1.74 1.07 5.11

if the global hit rate differs significantly (69.5% vs. 56.4%).
Moreover, if we analyze the median response time, we can see
that Cache Digests is faster than ICP (also shown in column
2 of Table 3). This can be explained by the high lookup time
required by ICP. On the other hand, under the heavy trans-load
workload (Figure 4) the curves of response times are more dif-
ferentiated with ICP outperforming Cache Digests, due to the
higher difference in cache hit rate (52.4% vs. 29.2%) that can-
not be compensated by the faster lookup. Even in this case,
however, the median response time is lower for Cache Digests.

Table 3 summarizes the results that can be get from the fig-
ures: the hierarchical root scheme is the slowest; flat archi-
tectures outperform hierarchical schemes; ICP is the fastest
scheme to serve the large majority of the requests, even if
Cache Digests can be faster than ICP to serve half of the re-
quests for both workloads.

8.2 Cooperativetranscoding algorithms

In this section we compare the performance of the coopera-
tive transcoding algorithms for flat architectures described in
Section 5. For this set of experiments we choose the ICP co-
operation scheme, because it typically offers the highest cache
hit rates and lowest response times.

ICP performs well with a wide range of workloads, at least
until the system is under heavy stress, as noted in [3]. Un-
der low and medium load, the difference between the various
transcoding algorithms is very small. Therefore, it is more

10

interesting to explore the performance gain achievable with
the proposed cooperative transcoding algorithms when server
CPUs are nearly always busy due to transcoding operations.
To this purpose, we used the bimodal and uniform workloads
described in Section 7.

Figure 5 shows the cumulative distribution of response time
for the load-blind and load-aware algorithms with the bimodal
workload, while Figure 6 refers to the uniform workload. It
is worth to note that the load-aware algorithm is a typical
threshold-based policy that uses the CPU utilization as ac-
tivation parameter. We performed experiments with differ-
ent thresholds ranging from 0.1 to 0.9 and found that for bi-
modal workload the typical common-sense value of 0.66 for
the threshold offers the most stable performance in terms of
90-percentile of response time. Therefore, Figure 5 shows
only the curve related to this threshold value. On the other
hand, for the uniform workload we found that no “best” thresh-
old value exists: the 90-percentile of the response time grows
monotonically as the threshold value decreases from 0.9t0 0.1.
In Figure 6 the curve of the load-aware algorithm corresponds
to the same load threshold value (0.66) used in Figure 5. For
the best threshold value (0.9) for this workload, the curve is in
between the one of the blind active algorithm and the curve for
threshold equal to 0.66.

Response time curves achieved by blind-active and load-
aware algorithms are similar, with the load-aware algorithm
providing better response times in the case of bimodal work-
load and the blind-active algorithm being faster in the case of

Cumulative distribution

Blind-active -0 |

Blind-lazy -3
& ‘ ‘ ‘ ‘ foad-aware —A—
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Response time [ms]

Figure 5: Cumulative distribution of system re-
sponse times (bimodal workload).

Cumulative distribution

li7}
0.2

b
0.1
.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Response time [ms]

Blind-active -—-©--- |
Blind-lazy -3
‘Load-av‘vare A

Figure 6: Cumulative distribution of system re-
sponse times (uniform workload).

Table 4: Response times for load-blind and load-aware algorithms.

Bimodal workload Uniform workload
Algorithm | median [sec] | 90-percentile[sec] | median [sec] | 90-percentile[sec]
Blind-active 1.03 4.88 0.36 1.56
Blind-lazy 0.25 121.12 0.07 239.79
Load-aware 0.89 3.98 0.46 1.90

uniform workload. On the other hand, the blind-lazy algorithm
shows a different behavior. It is able to reduce the response
time for most requests, but it becomes unacceptably slow for
up 30% of the requests, depending on the workload.

To better present the performance differences, in Table 4 we
report the median and the 90-percentile of the response time.

The blind-lazy algorithm bets on finding either a useful hit
or an exact remote hit on a less loaded peer. If it succeeds,
it can reduce the response time. However, if no remote hit is
found or, even worse, if the peer having a remote useful hit is
overloaded, the response time can increase significantly. This
explain why the blind-lazy algorithm can successfully reduce
the median response time (as shown in columns 2 and 4 of
Table 4), but it tends to have poor performance when consider-
ing 90-percentile due to the high number of pathological cases
(columns 3 and 5 of Table 4). The problem is more evident
when the load is evenly distributed (i.e., uniform workload,
column 5 of Table 4), because in this case there is a higher
probability of finding a peer with a heavier load.

On the other hand, the blind-active algorithm seems to offer
better performance because the transcoding load is only re-
lated to the client request being served and not to the request
directed to other peers. The response time has a more definite
upper bound, thus reducing the 90-percentile of the response
time. On the other hand, the median response is higher than
that of the blind-lazy algorithm.

The load-aware algorithm offers some performance gain
when the load is unevenly distributed (bimodal workload), be-

cause it can act smarter than the load-blind algorithms. In par-
ticular, it reduces of about 22% the 90-percentile (as shown in
column 3 of Table 4) and about 14% the median response time
(column 2 of Table 4) with respect to the blind-active algo-
rithm. On the other hand, in the case of uniform workload, the
load aware algorithm is ineffective in reducing the response
time, and there is a performance loss on both 90-percentile
and median response time. Indeed, when the skewness of the
workload is low, we need a more sophisticate algorithm, possi-
bly based on information on the load of a large (maybe whole)
set of edge servers.

9 Conclusions

In this paper, we have investigated practical schemes for co-
operative caching and transcoding that can be implemented in
the existing Web infrastructure and have compared their per-
formance through ColTrES, a real prototype testbed based on
Squid.

We evaluated different cooperation schemes that use both
hierarchical and flat architecture and found that hierarchical
schemes are always surclassed by flat topologies, due to the
risk of bottlenecks in the higher levels of the hierarchy as well
as reduced hit rates. Among the flat cooperation schemes, we
evaluated multi-version lookup extensions of Cache Digests
and ICP and found that, due to the lower hit rate of Cache
Digests, ICP tends to have better performances.

As a further experimental contribution of this paper, we ver-

11

ified that the proposed load-aware algorithm can achieve a per-
formance gain in case of unevenly distributed request load. On
the other hand, in case of uniform load distribution, the load-
aware algorithm fails to reduce response time.

A plethora of research issues can be studied for the topic of
active edge server systems that cooperate in multi-version con-
tent caching, discovery, and transcoding. A limited number of
issues have been investigated in this work, that to the best of
our knowledge represents the first implementation of coopera-
tive transcoding and caching systems for both hierarchical and
flat topologies. There are many research issues that this pa-
per opens up, such as cooperative cache replacement policies
that take into account multi-version content, transcoding poli-
cies based on global load information and network available
bandwidths, and the integration with server-direct transcoding
to preserve the end-to-end content semantics.

References

[1] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. Device inde-
pendence and the Web. |EEE Internet Computing, 6(5):81-86,
Sept./Oct. 2002.

[2] C. Canali, V. Cardellini, and R. Lancellotti. Squid-based
proxy server for content adaptation. Technical Report TR-
2003-03, Dept. of Computer Engineering, Univ. of Roma “Tor
Vergata”, Jan. 2003. http://webl ab.ing. unino.it/
research/trans_cachi ng. shtm .

[3] V. Cardellini, M. Colajanni, R. Lancellotti, and P. S. Yu. A
distributed architecture of edge proxy servers for cooperative
transcoding. In Proc. of 3rd IEEE Workshop on Internet Appli-
cations, June 2003.

[4] V. Cardellini, P. S. Yu, and Y. W. Huang. Collaborative proxy
system for distributed Web content transcoding. In Proc. of 9th
ACM Int’'l Conf. on Information and Knowledge Management,
pages 520-527, Nov. 2000.

[5] S. Chandra, A. Gehani, C. S. Ellis, and A. Vahdat. Transcoding
characteristics of Web images. In Proc. of Multimedia Comput-
ing and Networking Conf., Jan. 2001.

[6] C.-Y. Chang and M.-S. Chen. Exploring aggregate effect with
weigthed transcoding graphs for efficient cache replacement in
transcoding proxies. In Proc. of IEEE 18th Int’'| Conf. on Data
Engineering, Feb. 2002.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
A scalable wide-area Web cache sharing protocol. |[EEE/ACM
Trans. on Networking, 8(3):281-293, June 2000.

[8] A.Fox, S.D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gau-
thier. Cluster-based scalable network services. In Proc. of
16th ACM Symp. on Operating Systems Principles, pages 78—
91, Oct. 1997.

[9] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and
J. Rubas. Dynamic adaptation in an image transcoding proxy
for mobile Web browsing. |EEE Personal Communications,
5(6):8-17, Dec. 1998.

12

[10] A. Joshi. On proxy agents, mobility, and Web access. Mobhile
Networks and Applications, 5(4):233-241, 2000.

B. Knutsson, H. Lu, and J. Mogul. Architectures and pragmatics
of server-directed transcoding. In Proc. of 7th Int’'| Workshop on
Web Content Caching and Distribution, Aug. 2002.

W. Y. Lum and F. C. M. Lau. On balancing between transcod-
ing overhead and spatial consumption in content adaptation. In
Proc. of ACM Mobicom 2002, pages 239-250, Sept. 2002.

A. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy.
TransSquid: Transcoding and caching proxy for heterogeneous
e-commerce environments. In Proc. of 12th |EEE Int’'| Work-
shop on Research Issues in Data Engineering, pages 50-59,
Feb. 2002.

R. Mohan, J. R. Smith, and C.-S. Li. Adapting multimedia In-
ternet content for universal access. |EEE Trans. on Multimedia,
1(1):104-114, Mar. 1999.

M. Rabinovich and O. Spatscheck. Web Caching and Replica-
tion. Addison Wesley, 2002.

A. Rousskov and D. Wessels. Cache Digests. Computer Net-
works, 30(22-23):2155-2168, 1998.

A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy. PTC:
Proxies that transcode and cache in heterogeneous Web client
environments. In Proc. of 3rd Int’| Conf. on Web Information
Systems Engineering, Dec. 2002.

Squid Internet Object Cache.
squi d- cache. or g.

A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin,
and H. M. Levy. On the scale and performance of cooperative
Web proxy caching. In Proc. of 17th ACM Symp. On Operating
Systems Principles, Dec. 1999.

P. Yu and E. A. MacNair. Performance study of a collaborative
method for hierarchical caching in proxy servers. Computer
Networks, 30(1-7):215-224, 1998.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18] http://ww.

[19]

[20]

