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ABSTRACT

Run-time management of modern Web-based services redo&es
integration of several algorithms and mechanisms for jepatich-
ing, load sharing, admission control, overload detectidihthese
algorithms should take decisions on the basis of preserbahd
ture load conditions of the system resources. In particularad-
dress the issue of predicting future resource loads undéitinee
constraints in the context of Internet-based systems. ignsitua-
tion, it is extremely difficult to deduce a representativewiof a
system resource from collected raw measures that show aegg |
variability even at different time scales. For this reaseapropose
a two-step approach that first aims to get a representatdve of
the load trend from measured raw data, and then applies ptead
diction algorithm to load trends. This approach is suitablsup-
port different decision systems even for highly variabletegats
and is characterized by a computational complexity thabis-c
patible to run-time decisions. The proposed models ardeapd
a multi-tier Web-based system, but the results can be estbtal
other Internet-based contexts where the systems are tédrad
by similar workloads and resource behaviors.

1. INTRODUCTION

The most critical Internet-based services are providediby d
tributed infrastructures that have to satisfy scalabditg availabil-
ity requirements, and have to avoid performance degrauaiiol
system overload. Managing these systems requires a largé se
algorithms, for load balancing and load sharing [2, 8, 32grtmad
and admission control [14, 20, 28], job dispatching and resdi
tion even at a geographical scale [9]. The advent of selftda
systems and autonomic computing [21, 25, 39] will furtheré@ase
the necessity for management algorithms requiring a me-gval-
uation of the load conditions of hardware and software syste
sources, and the possibility of predicting future load ealof the
system components. Almost all algorithms and mechanisials-ev
ate the load conditions of a system resource through thedieri
sampling of raw data that we calksource measures. While a
measure offers an instantaneous view of the load conditibras
resource, it is of little help for distinguishing overloadnlitions
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from transient peaks, for understanding load trends andrftic-
ipating future conditions, that are of utmost importancetédking
correct decisions.

In this paper, we address the important issue of predictingé
load conditions of a resource, that is at the basis of seugnaiime

management tasks. We will see that the direct use of measured

raw data does not allow us to solve this problem, becausenmeso
measures obtained from load monitors of Internet-basegseare
extremely variable even at different time scales, and tehétome
obsolete rather quickly [16]. Consequently, long time nieasient
intervals reduce the effectiveness of the resource measlaeuit-
able indicator of the real load conditions. Moreover, theklmad
reaching the Internet-based systems that we considerspéger
is typically characterized by heavy-tailed distributigds11, 15]
and by flash crowds [23] that contribute to augment the skesne
of the raw data. These characteristics of load resource uresas
in Internet-based systems make really difficult, if not irsgible,
to forecast the behavior of future resource measures bechey
appear as unrelated to the previous sample, and to dedueara cl
trend about the load behavior of a resource, for example doofira
whether a resource is offloading, overloading or stabijzin

We have verified that, in a heavy-tailed context, it is ofdittalue
to let a load predictor work directly on resource measuresabse
they give only a limited and instantaneous view of the reseand
do not capture its behavioral trend that is of major intefesspre-
diction. Hence, we can anticipate that in Web-based systeiss
not convenient to base load prediction directly on resounea-
sures, as done in different contexts [1, 5, 12], but it is gnadble
to operate on a “representation” of the load behavior ofesyste-
sources. To this purpose, we propose and compare diffarant f
tions, calledoad trackers, that may offer a representative view of
the load conditions to the load predictors, thus achieviregtivo-
step approach shown in Figure 1. In this paper, we considee th
classes of load trackers that are suitable to support diftedeci-
sion systems and are characterized by a computational eaitypl
that is compatible to run-time decisions: two of them aresdamn
linear models §mple andexponential moving average), and one is
based on a non-linear modeupic spline). We compare the effi-
cacy of the proposed load trackers for the support of loadigtien
goals. To this purpose, we define also metrics for evaludtiegf-
ficacy of a load tracker that suppoftsad prediction, according to
the accuracy of the load tracker to represent the real |loattcthe
error between the real and predicted load values. Our seshitiw
that the precision of the predictor depends largely on tloécehof
the load tracker. Smoother load trackers typically lead beter
prediction because of their small prediction error and lempu-
tational costs. Thanks to the two-step approach, and aruatkeq
load tracker, even simple linear-based predictor modelshle to
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Figure 1. A framework for supporting run-time decisions in
Web-based systems

achieve good predictions.

Previous literature [5, 12, 17, 38] uses linear models tdiptaeal
resource load measures. However, we should consider tiar li
models have various drawbacks in the context of highly tégia
Web-based systems where decisions should be taken inmeal-t
For example, linear (auto)regression works well provideat the
resource measures are highly correlated, which is not ahtlasy
case in heavy-tailed systems. Furthermore, linear (agmssive
models require a training period to compute the paramelets t
may not be available to decision systems subject to run-tiome
straints.

The experimental results are based on realistic scenartbs icon-
text of a multi-tier Web-based system, but the proposed odeth
ogy is not tied to specific application contexts (such as &) 1B])
and can be applied to other Internet-based systems as well.
The paper is organized as follows. Section 2 gives a mobindtr
this paper by showing the extreme variability of resourcasnees
at different time scales and under different Web relateckivad
scenarios. It also describes the test-bed architecturevaridoad
models that we use in this paper. Section 3 proposes theraeid t
ers and their properties for load prediction goals that @taikkd
in Section 4. Section 5 shows the experimental results.i@e6t
compares the results of this paper with respect to the sfateeo
art. Section 7 concludes the paper with some final remarks.

2. RESOURCE MEASURES

In this section, we consider the behavior of measured resour
loads in the context of a dynamic Web-based system from which
we can see that the view of a resource load obtained by menitor
is extremely oscillatory at different time scales and fdfedent
workload scenarios. The considered test-bed refers toiaalyp
multi-tier logical architecture (Figure 2) that is basedtbe im-
plementation presented in [7]. The workload refers to th€-W

model [37] that is becoming a de facto standard for the pevamce
analysis of Web-based systems (e.g., [7,10,18]). The fock @x-
ecutes the HTTP server and the application server that isykegh
through the Tomcat [36] servlet container; the second nods r
the MySQL [29] database server. Requests are generatedjtheo
set ofemulated browsers, where each browser is implemented as a
Java thread that emulates an entire user session. We ued th@e

W like workload mixes that represent different scenariasaghin
Figure 3.

e Step scenario.This scenario describes a sudden load incre-
ment from a relatively unloaded to a more loaded system.
The population is kept at 300 emulated browsers for 5 min-
utes, then suddenly increased to 700 emulated browsers for
other 5 minutes.

e Staircase scenarioThis scenario represents a gradual incre-
ment in the population up to 600 emulated browsers, that is
followed by a similar decrease.

e Alternating scenario. This scenario describes an alternat-
ing increment and decrease of the load between 300 and 600
emulated browsers, every two minutes.

There are many critical resources in each server node thabea
measured through several system monitors [22, 31, 34].€Tioets
yield instantaneous resource measures at regular timngatge We
have carried out a very large set of experiments for analyttie
typical behavior of commonly measured resources, such & CP
utilization, disk and network throughput, number of opeonksts,
number of open files, UNIX load, amount of used main memory,
for different resource measure intervals and workload @ies
Here, we report a subset of results that are representdtitree o
main observations and conclusions about the behavior ofires
measures. In the Figures 4 we describe the CPU and disk mea-
sures of the back-end node of the multi-tier architectumwshin
Figure 2. In particular, we report:

e two rates for resource measurement: 1 second and 5 seconds
(Figure 4 (a) and (b), respectively);

e two resource metrics: disk throughput (blocks/sec.) and CP
utilization (Figure 4 (c) and (d), respectively);

e three user scenarios: step, staircase, alternating @-#(a),
(e) and (f)).

Web server node

Figure 2: Architecture of a multi-tier Web-based system
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Figure 4: Resource measurements

All these figures share the common trait that the view of a re- correlation. This variability is critical even for some fmmance

source obtained from monitored measures is extremelyblarta

the extent that run-time decisions based on these valuesbmay

risky when not completely wrong. Even if a load predictor liea
to guess precisely a load value in the future, is this valadiyre
useful for taking a correct decision? For example, let upesp

that a load predictor evaluates a future CPU utilization snea
with high precision, and this predicted value is used by anisd
sion controller to decide about the acceptance/refusa¢giests
for the satisfaction of some service level agreements. algiua

predicted value is a single point in the space, and no oneiighdyh
variable context would have faith in it for taking criticaécisions.

control mechanisms [1, 24] that follow a feedback contrelotty

approach, where the major risk is represented by the inisyedond

self-induced oscillations.

Another question arises about the computational complefithe

load predictor models. In some literature, the high skewonékad
measurements is addressed by sophisticated load prediotigls
that may require training periods and/or off-line analyséhese
models are not suitable to support the run-time decisiotesys
considered in this paper. In other words, we should not looltfe
most precise load predictor, but for the best predictorithable to
work subject to real time constraints.

If we do not figure out the behavioral trend from a sequence of
measures, even accurate predicted values share the sarae-cha
teristics of the resource measures: instability, varigbibw auto-



3. LOAD TRACKER FUNCTIONS

where the constant = —2-

) is thesmoothing factor. The initial

In this section, we describe the first phase of the two-step ap EM A(S,(t.)) value is initialized to the arithmetical mean of the

proach that aims to get a representative view of the load! tirem
measured raw data instead of letting a load predictor wortaan

measures of resource loads. To this purpose, we propose a new

function, calledload tracker, that filters out the noises presented
by a sequence of uncorrelated resource measures and yielga
regular view about the load trend of a resource.

We consider a resource measuresampled at time;, and a set of

previously collectech measures, that i§—>n(tz-) = (Si—ny -5 8i)-
—
We defineload tracker a function LT'(S,(t:)) : R™ — R that

takes as its inpuS_,Z(tz-) and gives a “representation” of the re-
source load conditiong at timet;. Multiple applications of the
load tracker give a sequence of load values that should @éxdut-
of-scale resource measures and yield a regular trend oésoeirce
load conditions. For the purposes of this paper, we considdr
compare two linear and one non-linear load trackers as stgppo
for load predictors.

3.1 Linear load trackers

We consider the class afoving averages as linear load trackers.
Indeed, moving averages smooth out resource measuresergiu
effect of out-of-scale values, are fairly easy to computeiaitime,
and are commonly used as trend indicators [26]. We focus on tw
classes of moving average: tBenple Moving Average (SMA) and
the Exponential Moving Average (EMA) that use uniform and non-
uniform weighted distributions of the past measures, resysy.
We do not consider other popular linear auto regressive lepde
such as ARMA and ARIMA [17, 38], because they would require
frequent updates of their parameters in the case of highighle
systems. For these reasons, the auto regressive modelpiasdly
created offline after examination of all available data, ppled
to workloads characterized by smaller variability and hagho-
correlation of load measures. These operations are cotignaty
too expensive and inadequate to support run-time deciggirms,
especially in a context where auto-correlation values@se |

Simple Moving Average (SMA). It is the unweighted mean of

then resource measures of the vec@(ti), evaluated at time;:

D s
SMA(Sa (1)) = === €

A SMA-based load tracker evaluatSMA(S_)n(ti)) for each con-
sidered sample; during the entire observation period. As SMAs

first n measures:

> S
0<j<n

EMA(S, (t)) = = ®)

As the last resource measures give a contribution higher ttne
first measures of the sét_,,Z(ti), a load tracker based on a EMA
model is able to react rather quickly to changes in the resdoad
conditions similarly to a short-term SMA, with the advargafat
EMA is subject to less oscillations than a short-term SMA.

3.2 Non-linear load trackers

The necessity to consider a non-linear tracker dependsroe so
limits shown by the linear load descriptors. We will see tthegt
simple SMA and EMA models introduce a delay in load trend de-

scription when|S_7:(tz-)| increases. Even the more sophisticated
ARMA and ARIMA models are not a valid alternative because
they are strongly dependent on the considered resourcesand
workload characteristics.
In this paper, we consider thaibic spline function [33] as a rep-
resentative example of a non-linear tracker. Lower-ordeves
(with a degree less than 3) do not react quickly to load chenge
while higher-order curves (with a degree higher than 3) are c
sidered unnecessary complex, introduce undesired wigglésire
computationally too expensive for a run-time context. Ferdefi-
nition of the cubic spline, let us choose soooetrol points (¢, s;)
in the set of measured load values, wheris the time of measure-
ment ofs;. A cubic spline functionC'S”7(t), based on/ control
points, is a set off — 1 piecewise third-order polynomiajs; (¢),
wherej € [1, J — 1], that satisfy the following properties.

Property 1. The control points are connected through third-order
polynomials:

{CSJ(tj):Sj j:l,..47J,

4
CS/(t)=p;(t) t;<t<tjyr,j=1,...,J @

Property 2. To guarantee & behavior at each control point, the
first order and second order derivativegft) andp;+1(¢) are set
equal at time ;4 1:

{dpj(tj+1) _ dpjra(tivn)

5 dt 5 dt ?
d Pj(t2j+1) _ dTpjipi (i)
dt

®)

dt2

If we apply both properties, we obtain the following defiaitiof

assign an equal weight to every resource measure, they bave t CSs(b):

solve a clear trade-off. Load trackers based on short-teowing
averages (that is, working on a small set of load measﬁe&))
are more responsive to variations of the load conditionsabthe
expense of increased oscillations. On the other hand, tiemg-
moving averages are able to smooth out all minor fluctuatiang
tend to show only long-term trends [3]. Typically, the SMA dro
els tend to introduce a significant delay in the trend reprasen
when the size of the sq-;s'_,:(ti)| increases. The EMA models are
often proposed to limit this delay effect, without incugim oscil-
lation risks characterizing short-term moving averages.
Exponential Moving Average (EMA). It is the weighted mean
of the n resource measures of the éﬁ(ti), where the weights

decrease exponentially. A EMA-based load trackat(S,, (t:)),
for each timet; wherei > n, is equal to:

EMA(S,(t:) = a*si+ (1 — a)* EMA(S,(ti-1))  (2)

Zia(t = )° + 2 (tj1 — t)°

T
Cs7(t) = 6h;
S, h;
+( Jhﬂ - gjzj+1)(t—tj) (6)
S h;
+ (h_]j - 5 @)t =)

whereh; = t;41 — t;. Thez; coefficients are solved by the fol-
lowing system of equations:

zZ0 = 0
hj-1zj-1 4 2(hj—1 + hy)z; + hyzjpn = 6(=5— — 2=t
Zn =0
. @)
The spline-based load trackefl’(S, (¢;)), at timet; is defined as
the cubic splineC'S; (¢;) that is obtained through a subset .bf



control points from the vector of the load measuﬁ_é$ti), having
dimensionn.

While the cubic spline is more expensive to compute than A S
and EMA models, itis commonly used in approximation and stmoo
ing contexts [19, 33, 40], because its computational conxitylés
compatible to support run-time decision systems. Indeedd |
trackers based on moving average models compute a loagtrack
value at each resource measure, while the proposed lodctrac
based on the cubic spline functiéiS;’ returns a new value after
resource measures. Moreover, the cubic spline has thetadeaof
being reactive to load changes and independent of resoletrteem
and workload characteristics.

3.3 Accuracy of load trackers

All the considered load trackers have the common goal ofrepr
senting the trend of a set of resource measures obtainedsrora
load monitor. A load tracker is accurate if it is able to petfigfol-
low theideal trend. For the purposes of this paper, we consider as
the ideal trend the indicator of theentral tendency of the resource
measures in specifiotervals of the experiment where the load is
subject to significant changes. If you do not control the Igad-
erators, the choice of the most suitable intervals wheredtuate
the central tendency is a problem by itself. Here, we conside
a reference interval the period of time during which we geteer
the same number of users (i.e., emulated browsers). Forptgam
in the step scenario, we have two reference intervals ((9,80d
[301, 600]); in the staircase scenario, we have five referémer-
vals ([0,120], [121,240], [241, 360], [361,480] and [4810§), and
similarly for the alternating scenario.

The simple mean is a good indicator of the central tendeny of
set of data [26], and we use this value asittel trend. In Fig-
ures 5, we plot the ideal trends for the three consideredascen
ios, where the monitored resource is the CPU utilizatiorhef®B

ues may be risky when not completely wrong; hence, in our
context we think that the prediction of real resource messur
is not really useful for taking correct decisions.

e Many proposed load predictors working on real measures are
not suitable to support a run-time decision system becduse o
their computational complexity.

We confirm our hypothesis through a study of the auto-cdiogla
function of the CPU utilization measures. The accuracy ofea p
diction algorithm depends on the correlation between conse
resource measures, and when the auto-correlation fusotibthe
set of analyzed data rapidly fall, it is more difficult to hazme
accurate prediction [5, 38]. In these scenarios, even aactitte
approach for statistical modeling and forecasting of caxpém-
poral series, such as the Box-Jankins's ARIMA (Auto-regines
Integrated Moving Average) method [6], tends to produce efod
that do not adapt well to highly variable changes in the waatk.
In Figure 6(a), we analyze the auto-correlation functio€E of
the CPU utilization for the three considered scenariosnguan
observation period of 600 seconds. A pofity) in this graph
represents the correlation valydetween the resource measure
at timet; and the measure; ;. at timet;.x. A high value of the
auto-correlation function means that the two resource oreasare
highly correlated, which suggests that the resource meaguime
t; may be used to predict the load at timeg,. On the other hand,
a low value of the auto-correlation function indicates teji be-
havior and an increased difficulty of prediction. From thgufe,
we can conclude that the resource measure are uncorretatealyf
scenario. In similar contexts, using an auto-regressivdainsuch
as ARIMA [38] to predict future resource samples may prova-co
putationally expensive, because the model parameters todeel
updated frequently, and are not suitable to support rue-tleci-

server measured every second. We define the accuracy of a loadsion systems.

tracker in representing the trend of the resource meassréisea
sum of thedistances between each load tracker vallyecomputed

at timet; and the corresponding value of the ideal tredgdat the

same instant, that is:

Arr = Z'lz — id;| (8)

wherei spans over the load tracker values computed during the ob-

servation period. Load trackers with small distance vafodew
the ideal trend with high accuracy. On the other hand, high di
tances from the ideal trend values are due to representitiays
or oscillations. These behaviors lead to load trackersateatess
accurate and even less suitable to support load predictors.

4. LOAD PREDICTION

A load predictor is afunctiorLPk(L—;(ti)) : R? — R that takes
as its input the set ojvaluesL-;(ti) = (li—q,--.,1;), and returns
a real number that is the predicted value at time,, wherek > 0.

In previous studies, the vectdz(ti) consists of a set of real re-
source measures and the load predictors aim to forecasitilne f
resource measure, at timg, .. On the other hand, we propose
that our load predictor takes as its input a set of load tnacak
ues and returns a future load tracker value. In a contextrentne
resource measures obtained from the load monitors of teenkit-
based servers are extremely variable, there are two retsatrjas-
tify our choice.

Hence, we propose the load tracker results as the basisddr lo
prediction. In Figures 6(b) and (c), we report the auto-@ation
diagram of the load tracker values. Let us suppose that #uigr
tion is carried at the instamf = 0, and that the prediction window
of interest for our study is an interval of 30 seconds. In titert
val [0 — 30], the ACF of resource measures decreases much more
abruptly than the ACFs of the two proposed load trackerss Tét
sult is important, because in a context of consecutive gadhew-
ing a high correlation degree, the accuracy of the load ptiedi

is more likely. Thanks to the use of a load tracker that presid
high auto-correlation among values, even simple lineadipters
should be sufficient to forecast the future behavior of resmload.
Indeed, previous studies [5, 27, 35] show that simple lineadels,
such as the AR model or the linear interpolation, are adegfaat
prediction when the correlation of consecutive resourcasues

is high. For example, Dinda shows that the UNIX load average c
be predicted best through an auto-regressive model thes iako
account the last 16 measure$K(16)), because of its good pre-
dictive power and low computational cost [17].

In this paper, we consider a set of load predictbr, (.[-/(;(ti)) that
are based on the linear regression of two available loa#idraal-
ues. Each predictor in this class is characterized by a eoofpl
values: the predicted windoly, that represents the size of the pre-
diction interval, and the past time windayy wheregq is the size
of load tracker vectoL? (t:), that is the distance between the first
and last load tracker value. Let us consider two load tracires:
the firstl;_, and the last;. The load predictol P, (L (t:)) of the

e The behavior of a measured resource appears extremely vari-load tracker is the line that intersects the two poifts.q, li—q)
able to the extent that run-time decisions based on these val and (¢;,1;) and returnd, ;. that is the predicted value of the load
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trackerl;  attimet;x:

LPy(Lq(t) = m * (tigx) +a
m = —liff;’q 9)

a = lifq — m *x tifq

The strength of a load predictor depends on its accuracyaioa&e
the future values of the load tracker. The common way to nreasu
the accuracy of a prediction is through the evaluation ofréia-
tive error between a load tracker valliyg, and the corresponding
predicted valud, .. A load predictor characterized by a low pre-

diction error is able to evaluate future load tracker adelya
—

Let us consider a load trackdrT’(S,(¢;)) and a load predictor
— —
LPy(Lg(ts)) that, at timet;, forecastsLT (S, (ti+x)) wherek >
0. We define theprediction error ¢; at timet; . as the relative
error between the actual load tracker valyg, and the predicted
valuel;;:
Livi — i

€ivh = '7%1- TR (10)
i+k
Small values ot,;, indicate a good accordance betwégn, and
li+x. We will compare the accuracy of the load predictor in Equa-
tion (9) applied to the load trackers presented in Section &/Al-
uating the meam\ p of all prediction errors throughout the entire

observation period:

Z€i+k
Ap= -

whereM is the length of the entire observation period.

1y

5. RESULTS

5.1 Accuracy of the load trend representation

This section has the twofold goal of analyzing both the aacyr
of a load tracker in representing the load trend of a set afuree
measures, and the accuracy of the considered load pretti¢tye-
cast the future load trend. To this purpose, we use the thasses
of load trackers proposed in Section 3 and the linear loadigher
proposed in Section 4.

Let us first evaluate which of the considered load trackexsep-
resentative of the considered ideal trends. We are alsceBttsl
to find out the impact of the parameters of the load trackec-fun

tions, that is, the size of the measurement vectéTl;:(ti), and the
number of control points for the cubic splines. To this pwgan
Figures 7, we report the the distandg,r (see Equation (8)) be-
tween each load tracker and the corresponding ideal tranithéo
step, staircase and alternating scenarios. In the four&sgdiwe
give a graphical representation of the behavior of some ticauk-
ers with respect to the ideal trend values for the staircesessio.
We first consider in Figure 7(a) the non linear load track&@s)(
that depend on the dimension of the vector of resource messur
(n) and on the number of control pointg)( We carried out a large
set of experiments, and we report here some significanttseful

n =9,30,60 andJ = 3, 6, 10, 20 (shown between brackets in the
figure). In general, the ability of a cubic spline based laadker
to represent the ideal trend, depends on the scenario theeds
to describe. A load tracker that represents perfectly thalittend
for only one specific scenario and that is inadequate to iescr
different workloads, can not be considered the “best” loadker.
For this reason, we analyze the distarcer for all the three con-
sidered workload scenarios. The best performing load éraisk
the cubic spline C%, because it shows the smaller distadcer
for every considered workload mix. If we also consider the CS



10 T
CS (past 9 measures, J=3)
CS (past 30 measures, J=10)
mw CS (past 60 measures, J=20)
mzz CS (past 30 measures, J=3)
f TTT CS (past 60 measures, J=6)

Distance

Staircase

Step Alternating

(a) Cubic spline load trackers

10 T
mm EMA (past 30 measures)
mmm CS (past 30 measures, J=3)
mw SMA (past 30 measures)
mz= EMA (past 60 measures)
77 SMA (past 60 measures)

Distance

Staircase

Step

Alternating

(b) Linear load trackers and best cubic spline

Figure 7: Distances among the load tracker values and the idtrend points for the three scenarios

curves in Figures 8(c), we can observe that the behavioeafubic
splines for different sizes of the measure vector is simitawever,
when the number of resource measutds kept constant, the dis-
tanceArr increases with the number of control points With a
higher number of control points, the cubic spline is foragtbuch
more points; as these points are resource measures witlo$igh
lations, the resulting cubic curve presents more ripplesndd, we
conclude that it is better to work with a small nhumber of cohtr
points.

In Figure 7(b), we report the distances referring to thedimead
trackers (EMA and SMA) and the best performing cubic spline,
that is, the C%, load tracker working on a set of 30 load measures
and 3 control points. If we consider Figures 7(b) and 8, we ob-
serve a tradeoff between a reduced delay and a reduced d#gree
oscillations. We also notice that the distankger increases when
the linear load trackers use a wider resource measuremeturve
(Se0(ts)). This implies a reduced accuracy in representing the load
trend, which holds true for all the considered load trackérben a
larger vector of resource measures is used, the linear taakiers
introduce a delay. Similarly, a reduced number of resourea-m
sures reduces the delays, improves the reactivity to loadggs,
but it does not smooth out oscillations. Hence, for a gooderep
sentation of the load trend, it is necessary to find a value thiat
represents a good tradeoff between a reduced delay and @ecedu
degree of oscillations. The exponential moving average EM#
the load tracker that presents the smallest distakge and has
results comparable with those of the cubic splingj¢SFor ex-
ample, in the staircase scenario we haver (C'S5,) = 2.25 and
Arr(EMAsp) = 2.6. In the rest of this section, we evaluate the
accuracy of the linear load predictor that is based on thesédad
trackers.

5.2 Accuracy of the load predictor

The linear load predictor presented in Section 4 is actzathass
of load predictors that are based on the linear regressitwodbad
tracker values. Each predictor in this class is charaadrlzy a
couple of values: the predicted windowand the past time win-
dowgq.

First, we aim to choose a good value for thearameter of the load
predictor, because it drives the choice of the second paiad tio
compute the prediction line. To this purpose, in Figures)%(al
(b) we show the prediction error as a functiongdbr two predic-
tion windows equal td = 10 andk = 30 seconds, respectively.

These figures allow us to conclude that the load predictozdan
EMA 3, performs always better than &S The reason of its lower
prediction error lies in the reduced oscillations of theeéin load
tracker. When the prediction window is smaller, the acoyrafc
load predictor based on EM is considerably higher than that of
load predictor based on GS(almost 3 times when = 5).

We also note that small values gf(for example,q = 1) lead to
higher prediction error& p. The reason is that, with a small value
of ¢, the prediction line takes into account only the very retemtd

of the load tracker. If the load tracker is not perfectly sthed, the
prediction error augments. On the other hand, very highegabf

q lead to prediction lines that weigh past history more thaemne
history, thus causing another increased prediction eltseems
that the optimal values @f lie in the central area of the Figures 9.
Let us choose two values gfthat allow us to obtain a small pre-
diction error that isg = 5 for a prediction window oft = 10
seconds, and = 15 for a prediction window ok = 30 seconds.
Figures 8 show the load tracker values and the predicte@sdar
the two prediction windows. These figures confirm that thel loa
predictor based on an EMA model has a lower prediction eham t
that based on the cubic spline. The difference is notewdthg
small prediction window of 10 seconds that i = 0.065 and
Ap = 0.16 for the EMA-based and the CS-based predictors, re-
spectively.

On the other hand, the EMA-based predictor could suffer gtiéi
delays in representing the load trends with respect to thenQiil.
These delays, that are measured®gsr distances, may cause a
reduced reactivity to evidence variations in the load ctoiwi.
Hence, we can conclude that the best choice for the loadgredi
tor should depend on the context to which the decision syséem
applied. When the highest accuracy is more important thameth
activity, the load predictor based on an EMA load tracker ehdsl
preferable; otherwise, we are oriented to recommend a lcetig
tor based on a Cubic Spline load tracker model.

6. RELATED WORK

In this work we address the issue of predicting future resmur
loads under real-time constraints in the context of Intebzsed
systems, where the prediction is an important task for same r
time decision systems. Previous literature proposes akstate-
gies and algorithms for decision systems such load balgranial
load sharing [2, 8, 32], overload and admission control 20428],
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job dispatching [30] and redirection even at a geograpisicale [9],
that have the common trait of using the resource measurdweas t
indication of server load. Even the proposals that adoptrdrcb
theoretical approach to control the request rate of a syflepd]
with the intent to prevent possible overload and/or progdar-
anteed levels of performance, use direct resource mea@iges
the CPU utilization or the average Web object response tane)
feedback signal. In this paper, we show that in a context evties
resource measures are characterized by high instabildyvari-
ability, the decisions based on the direct use of these saluay

be risky when not completely wrong. In this paper we propose a
two-step approach that first aims to represent the load toérad
resource and then it uses this load trend descriptor as phe af

the load predictor model.

Other papers [5,17,27,35], in non heavy-tail contexts aréontext
where the correlation of subsequent resource measureghigdno-
pose a simple linear model to predict the resource load. Meryve
in the context of heavy-tailed systems such as the one cenesid
in this paper and when resource measures present low d¢mmela
more sophisticated approaches are needed to predict tharces
measures, such as ARIMA [38]. These models are more exgensiv
to compute and update, hence they are difficult to use in dirael
setting. Moreover, also the theoretical approach [1, 24} tises
the resource measures to prevent overload, may be inagequat
heavy-tail scenario where the resource measures haveramexy

noisy nature and oscillatory behavior. In this paper, wenstiat in
heavy-tailed systems, the decisions based on the direcf tisese
values may be risky when not completely wrong.

7. CONCLUSIONS

In this paper, we have investigated the properties that ineist
possessed by load predictors to support run-time decisiotise
context of a multi-tier Web-based system that is subjecte@vi-
tailed workloads. Our results show that a more regular ssia-
tion of the load conditions of a resource is necessary bectnes
measures deriving from load monitors show high oscillatiom
this context, even the most sophisticated time series madelin-
adequate for run-time decision systems, because they wequite
a frequent update of their parameters. For this reason, @@ope
a two-step approach that first evaluates the load trend ghreu
load tracker function, and then applies the load predicttiné load
trend results, instead of working on direct resource measur
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