
Load prediction models in Web-based systems

Mauro Andreolini
Department of Information Engineering
University of Modena and Reggio Emilia

andreolini.mauro@unimore.it

Sara Casolari
Department of Information Engineering
University of Modena and Reggio Emilia

casolari.sara@unimore.it

ABSTRACT
Run-time management of modern Web-based services requiresthe
integration of several algorithms and mechanisms for job dispatch-
ing, load sharing, admission control, overload detection.All these
algorithms should take decisions on the basis of present and/or fu-
ture load conditions of the system resources. In particular, we ad-
dress the issue of predicting future resource loads under real-time
constraints in the context of Internet-based systems. In this situa-
tion, it is extremely difficult to deduce a representative view of a
system resource from collected raw measures that show very large
variability even at different time scales. For this reason,we propose
a two-step approach that first aims to get a representative view of
the load trend from measured raw data, and then applies a loadpre-
diction algorithm to load trends. This approach is suitableto sup-
port different decision systems even for highly variable contexts
and is characterized by a computational complexity that is com-
patible to run-time decisions. The proposed models are applied to
a multi-tier Web-based system, but the results can be extended to
other Internet-based contexts where the systems are characterized
by similar workloads and resource behaviors.

1. INTRODUCTION
The most critical Internet-based services are provided by dis-

tributed infrastructures that have to satisfy scalabilityand availabil-
ity requirements, and have to avoid performance degradation and
system overload. Managing these systems requires a large set of
algorithms, for load balancing and load sharing [2,8,32], overload
and admission control [14, 20, 28], job dispatching and redirec-
tion even at a geographical scale [9]. The advent of self-adaptive
systems and autonomic computing [21,25,39] will further increase
the necessity for management algorithms requiring a run-time eval-
uation of the load conditions of hardware and software system re-
sources, and the possibility of predicting future load values of the
system components. Almost all algorithms and mechanisms evalu-
ate the load conditions of a system resource through the periodic
sampling of raw data that we callresource measures. While a
measure offers an instantaneous view of the load conditionsof a
resource, it is of little help for distinguishing overload conditions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools’06, October 11-13, 2006, Pisa, Italy
Copyright 2006 ACM 1-59593-504-5 ...$5.00.

from transient peaks, for understanding load trends and forantic-
ipating future conditions, that are of utmost importance for taking
correct decisions.

In this paper, we address the important issue of predicting future
load conditions of a resource, that is at the basis of severalrun-time
management tasks. We will see that the direct use of measured
raw data does not allow us to solve this problem, because resource
measures obtained from load monitors of Internet-based servers are
extremely variable even at different time scales, and tend to become
obsolete rather quickly [16]. Consequently, long time measurement
intervals reduce the effectiveness of the resource measureas a suit-
able indicator of the real load conditions. Moreover, the workload
reaching the Internet-based systems that we consider in this paper
is typically characterized by heavy-tailed distributions[4, 11, 15]
and by flash crowds [23] that contribute to augment the skewness
of the raw data. These characteristics of load resource measures
in Internet-based systems make really difficult, if not impossible,
to forecast the behavior of future resource measures because they
appear as unrelated to the previous sample, and to deduce a clear
trend about the load behavior of a resource, for example to find out
whether a resource is offloading, overloading or stabilizing.
We have verified that, in a heavy-tailed context, it is of little value
to let a load predictor work directly on resource measures, because
they give only a limited and instantaneous view of the resource and
do not capture its behavioral trend that is of major interestfor pre-
diction. Hence, we can anticipate that in Web-based systemsit is
not convenient to base load prediction directly on resourcemea-
sures, as done in different contexts [1, 5, 12], but it is preferable
to operate on a “representation” of the load behavior of system re-
sources. To this purpose, we propose and compare different func-
tions, calledload trackers, that may offer a representative view of
the load conditions to the load predictors, thus achieving the two-
step approach shown in Figure 1. In this paper, we consider three
classes of load trackers that are suitable to support different deci-
sion systems and are characterized by a computational complexity
that is compatible to run-time decisions: two of them are based on
linear models (simple andexponential moving average), and one is
based on a non-linear model (cubic spline). We compare the effi-
cacy of the proposed load trackers for the support of load prediction
goals. To this purpose, we define also metrics for evaluatingthe ef-
ficacy of a load tracker that supportsload prediction, according to
the accuracy of the load tracker to represent the real load, and to the
error between the real and predicted load values. Our results show
that the precision of the predictor depends largely on the choice of
the load tracker. Smoother load trackers typically lead to abetter
prediction because of their small prediction error and low compu-
tational costs. Thanks to the two-step approach, and an adequate
load tracker, even simple linear-based predictor models are able to

Figure 1: A framework for supporting run-time decisions in
Web-based systems

achieve good predictions.
Previous literature [5, 12, 17, 38] uses linear models to predict real
resource load measures. However, we should consider that linear
models have various drawbacks in the context of highly variable
Web-based systems where decisions should be taken in real-time.
For example, linear (auto)regression works well provided that the
resource measures are highly correlated, which is not always the
case in heavy-tailed systems. Furthermore, linear (auto)regressive
models require a training period to compute the parameters that
may not be available to decision systems subject to run-timecon-
straints.
The experimental results are based on realistic scenarios in the con-
text of a multi-tier Web-based system, but the proposed methodol-
ogy is not tied to specific application contexts (such as in [12, 13])
and can be applied to other Internet-based systems as well.
The paper is organized as follows. Section 2 gives a motivation for
this paper by showing the extreme variability of resource measures
at different time scales and under different Web related workload
scenarios. It also describes the test-bed architecture andworkload
models that we use in this paper. Section 3 proposes the load track-
ers and their properties for load prediction goals that are detailed
in Section 4. Section 5 shows the experimental results. Section 6
compares the results of this paper with respect to the state of the
art. Section 7 concludes the paper with some final remarks.

2. RESOURCE MEASURES
In this section, we consider the behavior of measured resource

loads in the context of a dynamic Web-based system from which
we can see that the view of a resource load obtained by monitors
is extremely oscillatory at different time scales and for different
workload scenarios. The considered test-bed refers to a typical
multi-tier logical architecture (Figure 2) that is based onthe im-
plementation presented in [7]. The workload refers to the TPC-W

model [37] that is becoming a de facto standard for the performance
analysis of Web-based systems (e.g., [7,10,18]). The first node ex-
ecutes the HTTP server and the application server that is deployed
through the Tomcat [36] servlet container; the second node runs
the MySQL [29] database server. Requests are generated through a
set ofemulated browsers, where each browser is implemented as a
Java thread that emulates an entire user session. We use three TPC-
W like workload mixes that represent different scenarios shown in
Figure 3.

• Step scenario.This scenario describes a sudden load incre-
ment from a relatively unloaded to a more loaded system.
The population is kept at 300 emulated browsers for 5 min-
utes, then suddenly increased to 700 emulated browsers for
other 5 minutes.

• Staircase scenario.This scenario represents a gradual incre-
ment in the population up to 600 emulated browsers, that is
followed by a similar decrease.

• Alternating scenario. This scenario describes an alternat-
ing increment and decrease of the load between 300 and 600
emulated browsers, every two minutes.

There are many critical resources in each server node that can be
measured through several system monitors [22,31,34]. These tools
yield instantaneous resource measures at regular time intervals. We
have carried out a very large set of experiments for analyzing the
typical behavior of commonly measured resources, such as CPU
utilization, disk and network throughput, number of open sockets,
number of open files, UNIX load, amount of used main memory,
for different resource measure intervals and workload scenarios.
Here, we report a subset of results that are representative of the
main observations and conclusions about the behavior of resource
measures. In the Figures 4 we describe the CPU and disk mea-
sures of the back-end node of the multi-tier architecture shown in
Figure 2. In particular, we report:

• two rates for resource measurement: 1 second and 5 seconds
(Figure 4 (a) and (b), respectively);

• two resource metrics: disk throughput (blocks/sec.) and CPU
utilization (Figure 4 (c) and (d), respectively);

• three user scenarios: step, staircase, alternating (Figure 4 (c),
(e) and (f)).

Figure 2: Architecture of a multi-tier Web-based system

(a) Step scenario (b) Staircase scenario (c) Alternating scenario

Figure 3: Considered workload scenarios

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

D
is

k
th

ro
ug

hp
ut

Time [s]

Disk throughput/DB/Staircase scenario/1s

(a) Sample rate: 1s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

CPU utilization/DB/Step scenario/1s

(c) Resource: CPU

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

CPU utilization/DB/Staircase scenario/1s

(e) Scenario: prediction

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

D
is

k
th

ro
ug

hp
ut

Time [s]

Disk throughput/DB/Staircase scenario/5s

(b) Sample rate: 5s

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

D
is

k
th

ro
ug

hp
ut

Time [s]

Disk throughput/DB/Step scenario/1s

(d) Resource: disk

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

CPU utilization/DB/Alternating scenario/1s

(f) Scenario: trend

Figure 4: Resource measurements

All these figures share the common trait that the view of a re-
source obtained from monitored measures is extremely variable to
the extent that run-time decisions based on these values maybe
risky when not completely wrong. Even if a load predictor is able
to guess precisely a load value in the future, is this value really
useful for taking a correct decision? For example, let us suppose
that a load predictor evaluates a future CPU utilization measure
with high precision, and this predicted value is used by an admis-
sion controller to decide about the acceptance/refusal of requests
for the satisfaction of some service level agreements. Actually, a
predicted value is a single point in the space, and no one in a highly
variable context would have faith in it for taking critical decisions.
If we do not figure out the behavioral trend from a sequence of
measures, even accurate predicted values share the same charac-
teristics of the resource measures: instability, variability, low auto-

correlation. This variability is critical even for some performance
control mechanisms [1, 24] that follow a feedback control theory
approach, where the major risk is represented by the instability and
self-induced oscillations.
Another question arises about the computational complexity of the
load predictor models. In some literature, the high skewness of load
measurements is addressed by sophisticated load predictormodels
that may require training periods and/or off-line analyses. These
models are not suitable to support the run-time decision systems
considered in this paper. In other words, we should not look for the
most precise load predictor, but for the best predictor thatis able to
work subject to real time constraints.

3. LOAD TRACKER FUNCTIONS
In this section, we describe the first phase of the two-step ap-

proach that aims to get a representative view of the load trend from
measured raw data instead of letting a load predictor work onraw
measures of resource loads. To this purpose, we propose a new
function, calledload tracker, that filters out the noises presented
by a sequence of uncorrelated resource measures and yields amore
regular view about the load trend of a resource.
We consider a resource measuresi sampled at timeti, and a set of
previously collectedn measures, that is,

−→
Sn(ti) = (si−n, . . . , si).

We defineload tracker a functionLT (
−→
Sn(ti)) : R

n → R that

takes as its input
−→
Sn(ti) and gives a “representation” of the re-

source load conditionsli at timeti. Multiple applications of the
load tracker give a sequence of load values that should exclude out-
of-scale resource measures and yield a regular trend of the resource
load conditions. For the purposes of this paper, we considerand
compare two linear and one non-linear load trackers as supports
for load predictors.

3.1 Linear load trackers
We consider the class ofmoving averages as linear load trackers.

Indeed, moving averages smooth out resource measures, reduce the
effect of out-of-scale values, are fairly easy to compute atrun-time,
and are commonly used as trend indicators [26]. We focus on two
classes of moving average: theSimple Moving Average (SMA) and
theExponential Moving Average (EMA) that use uniform and non-
uniform weighted distributions of the past measures, respectively.
We do not consider other popular linear auto regressive models,
such as ARMA and ARIMA [17, 38], because they would require
frequent updates of their parameters in the case of highly variable
systems. For these reasons, the auto regressive models are typically
created offline after examination of all available data, or applied
to workloads characterized by smaller variability and highauto-
correlation of load measures. These operations are computationally
too expensive and inadequate to support run-time decision systems,
especially in a context where auto-correlation values are low.

Simple Moving Average(SMA). It is the unweighted mean of
then resource measures of the vector

−→
Sn(ti), evaluated at timeti:

SMA(
−→
Sn(ti)) =

P

i−n≤j≤i

sj

n
(1)

A SMA-based load tracker evaluatesSMA(
−→
Sn(ti)) for each con-

sidered samplesi during the entire observation period. As SMAs
assign an equal weight to every resource measure, they have to
solve a clear trade-off. Load trackers based on short-term moving
averages (that is, working on a small set of load measures

−→
Sn(ti))

are more responsive to variations of the load conditions, but at the
expense of increased oscillations. On the other hand, long-term
moving averages are able to smooth out all minor fluctuations, and
tend to show only long-term trends [3]. Typically, the SMA mod-
els tend to introduce a significant delay in the trend representation
when the size of the set|

−→
Sn(ti)| increases. The EMA models are

often proposed to limit this delay effect, without incurring in oscil-
lation risks characterizing short-term moving averages.

Exponential Moving Average (EMA). It is the weighted mean
of the n resource measures of the set

−→
Sn(ti), where the weights

decrease exponentially. A EMA-based load trackerLT (
−→
Sn(ti)),

for each timeti wherei > n, is equal to:

EMA(
−→
Sn(ti)) = α ∗ si + (1 − α) ∗ EMA(

−→
Sn(ti−1)) (2)

where the constantα = 2
n+1

is thesmoothing factor. The initial

EMA(
−→
Sn(tn)) value is initialized to the arithmetical mean of the

first n measures:

EMA(
−→
Sn(tn)) =

P

0≤j≤n

sj

n
(3)

As the last resource measures give a contribution higher than the
first measures of the set

−→
Sn(ti), a load tracker based on a EMA

model is able to react rather quickly to changes in the resource load
conditions similarly to a short-term SMA, with the advantage that
EMA is subject to less oscillations than a short-term SMA.

3.2 Non-linear load trackers
The necessity to consider a non-linear tracker depends on some

limits shown by the linear load descriptors. We will see thatthe
simple SMA and EMA models introduce a delay in load trend de-
scription when|

−→
Sn(ti)| increases. Even the more sophisticated

ARMA and ARIMA models are not a valid alternative because
they are strongly dependent on the considered resource metrics and
workload characteristics.
In this paper, we consider thecubic spline function [33] as a rep-
resentative example of a non-linear tracker. Lower-order curves
(with a degree less than 3) do not react quickly to load changes,
while higher-order curves (with a degree higher than 3) are con-
sidered unnecessary complex, introduce undesired wigglesand are
computationally too expensive for a run-time context. For the defi-
nition of the cubic spline, let us choose somecontrol points (tj , sj)
in the set of measured load values, wheretj is the time of measure-
ment ofsj . A cubic spline functionCSJ (t), based onJ control
points, is a set ofJ − 1 piecewise third-order polynomialspj(t),
wherej ∈ [1, J − 1], that satisfy the following properties.

Property 1. The control points are connected through third-order
polynomials:

(

CSJ (tj) = sj j = 1, . . . , J,

CSJ (t) = pj(t) tj < t < tj+1, j = 1, . . . , J
(4)

Property 2. To guarantee aC2 behavior at each control point, the
first order and second order derivatives ofpj(t) andpj+1(t) are set
equal at timetj+1:

(

dpj(tj+1)

dt
=

dpj+1(tj+1)

dt
,

d2pj(tj+1)

dt2
=

d2pj+1(tj+1)

dt2

(5)

If we apply both properties, we obtain the following definition of
CSJ (t):

CS
J (t) =

zj+1(t − tj)
3 + zj(tj+1 − t)3

6hi

+ (
sj+1

hi

−
hj

6
zj+1)(t − tj)

+ (
sj

hj

−
hj

6
zj)(tj+1 − t)

(6)

wherehj = tj+1 − tj . Thezj coefficients are solved by the fol-
lowing system of equations:
8

>

<

>

:

z0 = 0

hj−1zj−1 + 2(hj−1 + hj)zj + hjzj+1 = 6(
sj+1−sj

hj
−

sj−sj−1

hj−1
)

zn = 0
(7)

The spline-based load trackerLT (
−→
Sn(ti)), at timeti is defined as

the cubic splineCSJ
n(ti) that is obtained through a subset ofJ

control points from the vector of the load measures
−→
Sn(ti), having

dimensionn.
While the cubic spline is more expensive to compute than the SMA
and EMA models, it is commonly used in approximation and smooth-
ing contexts [19, 33, 40], because its computational complexity is
compatible to support run-time decision systems. Indeed, load
trackers based on moving average models compute a load tracker
value at each resource measure, while the proposed load tracker
based on the cubic spline functionCSJ

n returns a new value aftern
resource measures. Moreover, the cubic spline has the advantage of
being reactive to load changes and independent of resource metrics
and workload characteristics.

3.3 Accuracy of load trackers
All the considered load trackers have the common goal of repre-

senting the trend of a set of resource measures obtained fromsome
load monitor. A load tracker is accurate if it is able to perfectly fol-
low the ideal trend. For the purposes of this paper, we consider as
the ideal trend the indicator of thecentral tendency of the resource
measures in specificintervals of the experiment where the load is
subject to significant changes. If you do not control the loadgen-
erators, the choice of the most suitable intervals where to evaluate
the central tendency is a problem by itself. Here, we consider as
a reference interval the period of time during which we generate
the same number of users (i.e., emulated browsers). For example,
in the step scenario, we have two reference intervals ([0,300] and
[301, 600]); in the staircase scenario, we have five reference inter-
vals ([0,120], [121,240], [241, 360], [361,480] and [481,600]), and
similarly for the alternating scenario.
The simple mean is a good indicator of the central tendency ofa
set of data [26], and we use this value as theideal trend. In Fig-
ures 5, we plot the ideal trends for the three considered scenar-
ios, where the monitored resource is the CPU utilization of the DB
server measured every second. We define the accuracy of a load
tracker in representing the trend of the resource measures as the
sum of thedistances between each load tracker valueli computed
at timeti and the corresponding value of the ideal trendidi at the
same instant, that is:

∆LT =
X

i

|li − idi| (8)

wherei spans over the load tracker values computed during the ob-
servation period. Load trackers with small distance valuesfollow
the ideal trend with high accuracy. On the other hand, high dis-
tances from the ideal trend values are due to representationdelays
or oscillations. These behaviors lead to load trackers thatare less
accurate and even less suitable to support load predictors.

4. LOAD PREDICTION
A load predictor is a functionLPk(

−→
Lq(ti)) : R

q → R that takes

as its input the set ofq values
−→
Lq(ti) = (li−q , . . . , li), and returns

a real number that is the predicted value at timeti+k, wherek > 0.
In previous studies, the vector

−→
Lq(ti) consists of a set of real re-

source measures and the load predictors aim to forecast the future
resource measure, at timeti+k. On the other hand, we propose
that our load predictor takes as its input a set of load tracker val-
ues and returns a future load tracker value. In a context, where the
resource measures obtained from the load monitors of the Internet-
based servers are extremely variable, there are two reasonsthat jus-
tify our choice.

• The behavior of a measured resource appears extremely vari-
able to the extent that run-time decisions based on these val-

ues may be risky when not completely wrong; hence, in our
context we think that the prediction of real resource measures
is not really useful for taking correct decisions.

• Many proposed load predictors working on real measures are
not suitable to support a run-time decision system because of
their computational complexity.

We confirm our hypothesis through a study of the auto-correlation
function of the CPU utilization measures. The accuracy of a pre-
diction algorithm depends on the correlation between consecutive
resource measures, and when the auto-correlation functions of the
set of analyzed data rapidly fall, it is more difficult to havean
accurate prediction [5, 38]. In these scenarios, even an attractive
approach for statistical modeling and forecasting of complex tem-
poral series, such as the Box-Jankins’s ARIMA (Auto-regressive
Integrated Moving Average) method [6], tends to produce models
that do not adapt well to highly variable changes in the workloads.
In Figure 6(a), we analyze the auto-correlation function (ACF) of
the CPU utilization for the three considered scenarios during an
observation period of 600 seconds. A point(k, y) in this graph
represents the correlation valuey between the resource measuresi

at timeti and the measuresi+k at timeti+k. A high value of the
auto-correlation function means that the two resource measures are
highly correlated, which suggests that the resource measure at time
ti may be used to predict the load at timeti+k. On the other hand,
a low value of the auto-correlation function indicates a jittery be-
havior and an increased difficulty of prediction. From this figure,
we can conclude that the resource measure are uncorrelated for any
scenario. In similar contexts, using an auto-regressive model such
as ARIMA [38] to predict future resource samples may prove com-
putationally expensive, because the model parameters needto be
updated frequently, and are not suitable to support run-time deci-
sion systems.
Hence, we propose the load tracker results as the basis for load
prediction. In Figures 6(b) and (c), we report the auto-correlation
diagram of the load tracker values. Let us suppose that the predic-
tion is carried at the instantti = 0, and that the prediction window
of interest for our study is an interval of 30 seconds. In the inter-
val [0 − 30], the ACF of resource measures decreases much more
abruptly than the ACFs of the two proposed load trackers. This re-
sult is important, because in a context of consecutive values show-
ing a high correlation degree, the accuracy of the load prediction
is more likely. Thanks to the use of a load tracker that provides
high auto-correlation among values, even simple linear predictors
should be sufficient to forecast the future behavior of resource load.
Indeed, previous studies [5,27,35] show that simple linearmodels,
such as the AR model or the linear interpolation, are adequate for
prediction when the correlation of consecutive resource measures
is high. For example, Dinda shows that the UNIX load average can
be predicted best through an auto-regressive model that takes into
account the last 16 measures (AR(16)), because of its good pre-
dictive power and low computational cost [17].
In this paper, we consider a set of load predictorsLPk(

−→
Lq(ti)) that

are based on the linear regression of two available load tracker val-
ues. Each predictor in this class is characterized by a couple of
values: the predicted windowk, that represents the size of the pre-
diction interval, and the past time windowq, whereq is the size
of load tracker vector

−→
Lq(ti), that is the distance between the first

and last load tracker value. Let us consider two load trackervalues:
the firstli−q and the lastli. The load predictorLPk(

−→
Lq(ti)) of the

load tracker is the line that intersects the two points(ti−q, li−q)

and(ti, li) and returnŝli+k that is the predicted value of the load

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

Ideal trend
CPU utilization

(a) Step scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

Ideal trend
CPU utilization

(b) Staircase scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

Ideal trend
CPU utilization

(c) Alternating scenario

Figure 5: Ideal trends for the three scenarios.

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
C

F

Lag

ACF step
ACF stair

ACF alternating

(a) ACF of the measured values

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
C

F

Lag

0.1
-0.1

ACF CS step (past 30 measures, J=3)
ACF CS stair (past 30 measures, J=3)

ACF CS alternating (past 30 measures, J=3)

(b) ACF of the CS 3
30 values

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
C

F

Lag

0.1
-0.1

ACF EMA step (past 30 measures)
ACF EMA stair (past 30 measures)

ACF EMA alternating (past 30 measures)

(c) ACF of the EMA 30 values

Figure 6: Autocorrelation function

trackerli+k at timeti+k:
8

>

<

>

:

LPk(
−→
Lq(ti)) = m ∗ (ti+k) + a

m =
li−li−q

q

a = li−q − m ∗ ti−q

(9)

The strength of a load predictor depends on its accuracy to evaluate
the future values of the load tracker. The common way to measure
the accuracy of a prediction is through the evaluation of therela-
tive error between a load tracker valueli+k and the corresponding
predicted valuêli+k. A load predictor characterized by a low pre-
diction error is able to evaluate future load tracker accurately.
Let us consider a load trackerLT (

−→
Sn(ti)) and a load predictor

LPk(
−→
Lq(ti)) that, at timeti, forecastsLT (

−→
Sn(ti+k)) wherek >

0. We define theprediction error ǫi+k at timeti+k as the relative
error between the actual load tracker valueli+k and the predicted
valuel̂i+k:

ǫi+k = |
li+k − l̂i+k

li+k

| (10)

Small values ofǫi+k indicate a good accordance betweenli+k and
l̂i+k. We will compare the accuracy of the load predictor in Equa-
tion (9) applied to the load trackers presented in Section 3 by eval-
uating the mean∆P of all prediction errors throughout the entire
observation period:

∆P =

P

i

ǫi+k

M
(11)

whereM is the length of the entire observation period.

5. RESULTS

5.1 Accuracy of the load trend representation
This section has the twofold goal of analyzing both the accuracy

of a load tracker in representing the load trend of a set of resource
measures, and the accuracy of the considered load predictorto fore-
cast the future load trend. To this purpose, we use the three classes
of load trackers proposed in Section 3 and the linear load predictor
proposed in Section 4.
Let us first evaluate which of the considered load trackers are rep-
resentative of the considered ideal trends. We are also interested
to find out the impact of the parameters of the load tracker func-
tions, that is, the sizen of the measurement vector

−→
Sn(ti), and the

number of control points for the cubic splines. To this purpose, in
Figures 7, we report the the distance∆LT (see Equation (8)) be-
tween each load tracker and the corresponding ideal trend for the
step, staircase and alternating scenarios. In the four Figures 8 we
give a graphical representation of the behavior of some loadtrack-
ers with respect to the ideal trend values for the staircase scenario.
We first consider in Figure 7(a) the non linear load trackers (CS)
that depend on the dimension of the vector of resource measures
(n) and on the number of control points (J). We carried out a large
set of experiments, and we report here some significant results for
n = 9, 30, 60 andJ = 3, 6, 10, 20 (shown between brackets in the
figure). In general, the ability of a cubic spline based load tracker
to represent the ideal trend, depends on the scenario that itneeds
to describe. A load tracker that represents perfectly the ideal trend
for only one specific scenario and that is inadequate to describe
different workloads, can not be considered the “best” load tracker.
For this reason, we analyze the distance∆LT for all the three con-
sidered workload scenarios. The best performing load tracker is
the cubic spline CS330, because it shows the smaller distance∆LT

for every considered workload mix. If we also consider the CS

 0

 2

 4

 6

 8

 10

AlternatingStaircaseStep

D
is

ta
nc

e

CS (past 9 measures, J=3)
CS (past 30 measures, J=10)
CS (past 60 measures, J=20)
CS (past 30 measures, J=3)
CS (past 60 measures, J=6)

(a) Cubic spline load trackers

 0

 2

 4

 6

 8

 10

AlternatingStaircaseStep

D
is

ta
nc

e

EMA (past 30 measures)
CS (past 30 measures, J=3)
SMA (past 30 measures)
EMA (past 60 measures)
SMA (past 60 measures)

(b) Linear load trackers and best cubic spline

Figure 7: Distances among the load tracker values and the ideal trend points for the three scenarios

curves in Figures 8(c), we can observe that the behavior of the cubic
splines for different sizes of the measure vector is similar. However,
when the number of resource measuresn is kept constant, the dis-
tance∆LT increases with the number of control pointsJ . With a
higher number of control points, the cubic spline is forced to touch
more points; as these points are resource measures with highoscil-
lations, the resulting cubic curve presents more ripples. Hence, we
conclude that it is better to work with a small number of control
points.
In Figure 7(b), we report the distances referring to the linear load
trackers (EMA and SMA) and the best performing cubic spline,
that is, the CS330 load tracker working on a set of 30 load measures
and 3 control points. If we consider Figures 7(b) and 8, we ob-
serve a tradeoff between a reduced delay and a reduced degreeof
oscillations. We also notice that the distance∆LT increases when
the linear load trackers use a wider resource measurement vector
(
−→
S60(ti)). This implies a reduced accuracy in representing the load

trend, which holds true for all the considered load trackers. When a
larger vector of resource measures is used, the linear load trackers
introduce a delay. Similarly, a reduced number of resource mea-
sures reduces the delays, improves the reactivity to load changes,
but it does not smooth out oscillations. Hence, for a good repre-
sentation of the load trend, it is necessary to find a value ofn that
represents a good tradeoff between a reduced delay and a reduced
degree of oscillations. The exponential moving average EMA30 is
the load tracker that presents the smallest distance∆LT and has
results comparable with those of the cubic spline CS3

30. For ex-
ample, in the staircase scenario we have∆LT (CS3

30) = 2.25 and
∆LT (EMA30) = 2.6. In the rest of this section, we evaluate the
accuracy of the linear load predictor that is based on these two load
trackers.

5.2 Accuracy of the load predictor
The linear load predictor presented in Section 4 is actuallya class

of load predictors that are based on the linear regression oftwo load
tracker values. Each predictor in this class is characterized by a
couple of values: the predicted windowk and the past time win-
dow q.
First, we aim to choose a good value for theq parameter of the load
predictor, because it drives the choice of the second point used to
compute the prediction line. To this purpose, in Figures 9 (a) and
(b) we show the prediction error as a function ofq for two predic-
tion windows equal tok = 10 andk = 30 seconds, respectively.

These figures allow us to conclude that the load predictor based on
EMA30 performs always better than CS3

30. The reason of its lower
prediction error lies in the reduced oscillations of the linear load
tracker. When the prediction window is smaller, the accuracy of
load predictor based on EMA30 is considerably higher than that of
load predictor based on CS3

30 (almost 3 times whenq = 5).
We also note that small values ofq (for example,q = 1) lead to
higher prediction errors∆P . The reason is that, with a small value
of q, the prediction line takes into account only the very recenttrend
of the load tracker. If the load tracker is not perfectly smoothed, the
prediction error augments. On the other hand, very high values of
q lead to prediction lines that weigh past history more than recent
history, thus causing another increased prediction error.It seems
that the optimal values ofq lie in the central area of the Figures 9.
Let us choose two values ofq that allow us to obtain a small pre-
diction error that is,q = 5 for a prediction window ofk = 10
seconds, andq = 15 for a prediction window ofk = 30 seconds.
Figures 8 show the load tracker values and the predicted values for
the two prediction windows. These figures confirm that the load
predictor based on an EMA model has a lower prediction error than
that based on the cubic spline. The difference is noteworthyfor a
small prediction window of 10 seconds that is,∆P = 0.065 and
∆P = 0.16 for the EMA-based and the CS-based predictors, re-
spectively.
On the other hand, the EMA-based predictor could suffer of higher
delays in representing the load trends with respect to the CSmodel.
These delays, that are measured as∆LT distances, may cause a
reduced reactivity to evidence variations in the load conditions.
Hence, we can conclude that the best choice for the load predic-
tor should depend on the context to which the decision systemis
applied. When the highest accuracy is more important than the re-
activity, the load predictor based on an EMA load tracker model is
preferable; otherwise, we are oriented to recommend a load predic-
tor based on a Cubic Spline load tracker model.

6. RELATED WORK
In this work we address the issue of predicting future resource

loads under real-time constraints in the context of Internet-based
systems, where the prediction is an important task for some run-
time decision systems. Previous literature proposes several strate-
gies and algorithms for decision systems such load balancing and
load sharing [2,8,32], overload and admission control [14,20,28],

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

Ideal trend
SMA (past 30 measures)
SMA (past 60 measures)

(a) The SMA load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

Ideal trend
EMA (past 30 measures)
EMA (past 60 measures)

(b) The EMA load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

Ideal trend
CS (past 30 measures, J=10)
CS (past 60 measures, J=20)

(c) The CS load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

Ideal trend
CS (past 30 measures, J=10)
CS (past 30 measures, J=3)

(d) The CS3
30 load tracker

Figure 8: Load tracker behaviors with respect to the ideal trend values in the staircase scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

M
ea

n
pr

ed
ic

tio
n

er
ro

r

Past time window

Load predictor based on CS (past 30 measures, J=3)
Load predictor based on EMA (past 30 measures)

(a) Predicted window: 10 seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

M
ea

n
pr

ed
ic

tio
n

er
ro

r

Past time window

Load predictor based on CS (past 30 measures, J=3)
Load predictor based on EMA (past 30 measures)

(b) Prediction window: 30 seconds

Figure 9: Prediction errors in the staircase scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

EMA (past 30 measures)
Load predictor based on EMA (past 30 measures, q=5)

(a) Prediction, 10s in the future - EMA 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

CS (past 30 measures, J=3)
Load predictor based on CS (past 30 measures, q=5)

(b) Prediction, 10s in the future - CS 3
30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

EMA (past 30 measures)
Load predictor based on EMA (past 30 measures, q=15)

(c) Prediction, 30s in the future - EMA 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Lo
ad

 tr
ac

ke
r

Time [s]

CS (past 30 measures, J=3)
Load predictor based on CS (past 30 measures, q=15)

(d) Prediction, 30s in the future - CS 3
30

Figure 10: Load predictors

job dispatching [30] and redirection even at a geographicalscale [9],
that have the common trait of using the resource measures as the
indication of server load. Even the proposals that adopt a control
theoretical approach to control the request rate of a system[1, 24]
with the intent to prevent possible overload and/or provideguar-
anteed levels of performance, use direct resource measures(e.g.,
the CPU utilization or the average Web object response time)as a
feedback signal. In this paper, we show that in a context where the
resource measures are characterized by high instability and vari-
ability, the decisions based on the direct use of these values, may
be risky when not completely wrong. In this paper we propose a
two-step approach that first aims to represent the load trendof a
resource and then it uses this load trend descriptor as the input of
the load predictor model.
Other papers [5,17,27,35], in non heavy-tail contexts or ina context
where the correlation of subsequent resource measures is high, pro-
pose a simple linear model to predict the resource load. However,
in the context of heavy-tailed systems such as the one considered
in this paper and when resource measures present low correlation,
more sophisticated approaches are needed to predict the resource
measures, such as ARIMA [38]. These models are more expensive
to compute and update, hence they are difficult to use in a real-time
setting. Moreover, also the theoretical approach [1, 24] that uses
the resource measures to prevent overload, may be inadequate in a
heavy-tail scenario where the resource measures have an extremely

noisy nature and oscillatory behavior. In this paper, we show that in
heavy-tailed systems, the decisions based on the direct useof these
values may be risky when not completely wrong.

7. CONCLUSIONS
In this paper, we have investigated the properties that mustbe

possessed by load predictors to support run-time decisionsin the
context of a multi-tier Web-based system that is subject to heavy-
tailed workloads. Our results show that a more regular representa-
tion of the load conditions of a resource is necessary because the
measures deriving from load monitors show high oscillations. In
this context, even the most sophisticated time series models are in-
adequate for run-time decision systems, because they wouldrequire
a frequent update of their parameters. For this reason, we propose
a two-step approach that first evaluates the load trend through a
load tracker function, and then applies the load predictor to the load
trend results, instead of working on direct resource measures.

8. REFERENCES
[1] T. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for

Web server end-systems: A control-theoretical approach.IEEE
Trans. Parallel and Distributed Systems, 13(1):80–96, Jan. 2002.

[2] M. Andreolini, M. Colajanni, and M. Nuccio. Scalabilityof
content-aware server switches for cluster-based Web information
systems. InProc. of 12th Int’l World Wide Web Conf. (WWW2003),
Budapest, HU, May 2003.

[3] K. Arun, M. S. Squillante, L. Zhang, and J. Poirier. Analysis and
characterization of large-scale Web server access patterns and
performance.World Wide Web, 2(1-2):85–100, Mar. 1999.

[4] P. Barford and M. E. Crovella. Generating representative Web
workloads for network and server performance evaluation. In
Proceedings of the Joint International Conference on Measurement
and modeling of computer systems (ACM SIGMETRICS
1998/Performance 1998), pages 151–160, Madison, WI, July 1998.

[5] Y. Baryshnikov, E. Coffman, G. Pierre, D. Rubenstein, M.Squillante,
and T. Yimwadsana. Predictability of Web server traffic congestion.
In Proc. of 10th Int’l Workshop of Web Content Caching and
Distribution (WCW05), Sep. 2005.

[6] G. Box, G. Jenkins, and G. Reinsel.Time Series Analysis Forecasting
and Control. Prentice-Hall, 1994.

[7] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An
architectural evaluation of Java TPC-W. InProc. of the 7th Int.l
Symposium on High-Performance Computer Architecture
(HPCA2001), Nuovo Leone, ME, jan 2001.

[8] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The state of
the art in locally distributed Web-server system.ACM Computing
Surveys, 2002.

[9] V. Cardellini, M. Colajanni, and P. Yu. Request redirection
algorithms for distributed Web systems.IEEE Trans. Parallel and
Distributed Systems, 14(5), May 2003.

[10] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. Performance comparison of middleware
architectures for generating dynamic Web content. InProc. of 4th
Middleware Conference, Jun 2003.

[11] J. Challenger, P. Dantzig, A. Iyengar, M. Squillante, and L. Zhang.
Efficiently serving dynamic data at highly accessed Web sites.
IEEE/ACM Transactions on Networking, 12(2):233+, 2004.

[12] X. Chen and J. Heidemann. Flash crowd mitigation via an adaptive
admission control based on application-level measurement. Technical
Report ISI-TR-557, USC/Information Sciences Institute, May 2002.

[13] L. Cherkasova and P. Phaal. Session based admission control: a
mechanism for improving performance of commercial Web sites. In
Proceedings of the International Workshop on Quality of Service,
London, June 1999.

[14] L. Cherkasova and P. Phaal. Session-based admission control: a
mechanism for peak load management of commercial web sites.
IEEE Transactions on Computers, 51(6), June 2002.

[15] M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed
probability distributions in the World Wide Web. InA Practical
Guide To Heavy Tails, pages 3–26. Chapman and Hall, New York,
1998.

[16] M. Dahlin. Interpreting stale load information.IEEE Trans. Parallel
and Distributed Systems, 11(10):1033–1047, Oct. 2000.

[17] P. Dinda and D. O’Hallaron. Host load prediction using linear
models.Cluster Computing, 3(4):265–280, december 2000.

[18] R. C. Dodge, D. A. Menascé, and D. Barbará. Testing e-commerce
site scalability with TPC-W . InProc. of 2001 Computer
Measurement Group Conference, Dec 2001.

[19] R. L. Eubank and E. Eubank.Non parametric regression and spline
smoothing. Marcel Dekker, 1999.

[20] D. Ferrari and S. Zhou. An empirical investigation of load indices for

load balancing applications. InProceedings of Performance 1987,
pages 515–528, North-Holland, The Netherlands, 1987.

[21] A. G. Ganek and T. Corbi. The dawning of the autonomic computing
era.IBM Systems Journal, 42(1):5–18, 2003.

[22] S. Godard. Sysstat: System performance tools for the Linux OS,
2004. http://perso.wanadoo.fr/sebastien.godard/.

[23] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and
denial of service attacks: characterization and implications for CDNs
and Web sites. InProc. of 11th Int’l World Wide Web Conference
(WWW2002), May 2002.

[24] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: a self-tuning
controller for managing the performance of 3-tiered sites.In
Proceedings of Twelfth International Workshop on Quality of Service
(IWQOS2004), pages 47–56, June 2004.

[25] J. O. Kephart and D. M. Chess. The vision of Autonomic Computing.
IEEE Computer, 36(1):41–50, Jan. 2003.

[26] D. J. Lilja. Measuring computer performance. A practitioner’s guide.
Cambridge University Press, 2000.

[27] Y. Lingyun, I. Foster, and J. M. Schopf. Homeostatic and
tendency-based CPU load predictions. InParallel and distributed
processing Symposium, 2003, pages 9–, 2003.

[28] M. Mitzenmacher. How useful is old information.IEEE Trans.
Parallel and Distributed Systems, 11(1):6–20, Jan. 2000.

[29] MySQL database server, 2005. – http://www.mysql.com/.
[30] Network Weather Service, 2005. – http://nws.cs.ucsb.edu/ewiki/.
[31] T. Oetiker. Rrdtool: a system for displaying time-series data, 2004.

http://oss.oetiker.ch/rrdtool/.
[32] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,

W. Zwaenepoel, and E. M. Nahum. Locality-aware request
distribution in cluster-based network servers. InProceedings of the
8th ACM Conference on Architectural Support for Programming
Languages and Operating Systems, pages 205–216, San Jose, CA,
Oct. 1998.

[33] D. J. Poirier. Piecewise regression using cubic spline. Journal of the
American Statistical Association, 68(343):515–524, Sep. 1973.

[34] procps - the /proc file system utilities, 2005.
http://procps.sourceforge.net/.

[35] A. Sang and S. Li. A predictability analysis of network traffic. In
Proceedings of Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM2000), pages
342–351, 2000.

[36] The Tomcat Servlet Engine, 2005. –
http://jakarta.apache.org/tomcat/.

[37] TPC-W transactional Web e-commerce benchmark, 2004. –
http://www.tpc.org/tpcw/.

[38] N. Tran and D. Reed. Automatic ARIMA time series modeling for
adaptive I/O prefetching.IEEE transaction on parallel and
distributed systems, 15(4):362–377, Apr. 2004.

[39] J. Wildstrom, P. Stone, E. Witchel, R. Mooney, and M. Dahlin.
Towards self-configuring hardware for distributed computer systems.
In Proc. of the Second International Conference on Autonomic
Computing (ICAC2005), June 2005.

[40] G. Wolber and I. Alfy. Monotonic cubic spline interpolation. In
Computer Graphics International, pages 188–195, Canmore, Alta.,
Canada, July 1999.

