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Abstract

Architectures consisting of multiple cache servers are a popular solution to deal
with performance and network resource utilization issues related to the growth of the
Web request. Cache cooperation is often carried out through purely hierarchical and
flat schemes that suffer from scalability problems when the number of servers increases.

We propose, implement and compare the performance of three novel distributed
cooperation models based on a two-tier organization of the cache servers. The experi-
mental results show that the proposed architectures are effective in supporting cooper-
ative document lookup and downloading. They guarantee cache hit rates comparable
to those of the most performing protocols with a significatively reduced cooperation
overhead. Moreover, in the case of congested network, they reduce the 90-percentile of
the system response time up to nearly 30% with respect to the best pure cooperation
mechanisms.

*This Report has been submitted for publication and will be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. No part of its text nor any
illustration can be reproduced without written permission of the Authors.



1 Introduction

Web caching has evolved as the first way to address Web server and network utilization
issues related to the growth of HTTP requests. The basic idea of using one proxy server
does not work well because of very low cache hit rates. Better performance can be achieved
through interactions among various proxies. Global caching or cooperative caching architec-
tures are used by public organizations (e.g., IRCache [8]), Internet Service Providers (e.g.,
AT&T [2]), third party companies, such as Content Delivery Networks (e.g., Akamai [1],
Digital Island [4]). For some recent surveys, see [18, 11] or [10, 19].

The two most popular approaches for cooperative lookup refer to a hierarchy of cooper-
ating caches (hierarchical architecture) or to a flat cooperation topology (distributed archi-
tectures). In hierarchical architectures a cache miss will result in looking for the resource to
an upper level cache [22]. In distributed architectures every cache is supposed to be at the
same level, and missed resources at one proxy are looked for in all cooperating cache servers.
Hybrid architectures have been studied as well, for example in [11] and [14]. This latter
work proposes and evaluates through a trace-driven simulator a new distributed architecture
based on two-tier cooperation. The idea is to split the cooperative lookup process in two
less expensive processes that involve subsets of the whole group of cooperating caches and
different protocols.

In this paper, we give various contributions.

e We present and extensively test a prototype based on Squid [20] that implements a

two-tier cooperation scheme similar to that described in [14].

e We also evidence the main differences among the simulation results and the experi-
mental results obtained here. This different behavior is important because it motivates

the search for novel cooperative architectures based on hybrid schemes.

e We describe the model and implementation of two novel two-tier schemes that address

the issues raised from the experimental results of the first prototype.

e We evaluate the performance of the three prototypes and compare it against that of

other protocols available in Squid, such as ICP [21] and Cache Digest [12].



The rest of this paper is organized as following. Section 2 describes the basic two-
tier architecture and its implementation. Section 3 discusses some limitations of the basic
approach and proposes two alternative hybrid schemes for cooperation.

The experiments described in Section 4 aim to verify that the novel protocols are a viable
solution for cooperative Web caching. In particular, they offer high hit rates and limited
network overhead even when the cooperation involves many nodes. This demonstrates that
both novel architectures address in an effective way the scalability issues related to cooper-
ative Web caching. Moreover they are a viable solution to cooperation in a heterogeneous
environment, such as that of a wide area network. In Section 5 we discuss related work in
distributed strategies for cooperative caching.

Finally, Section 6 presents some conclusions.

2 Two-tier Web caching architectures

Two-tier architectures are based on a partition of the cache servers into clusters that are
mainly based on the structure and performance of the available network connections. As de-
scribed in [14], two-tier cooperation combines informed-based and query-based protocols [10]
to create a two-step, two-tier cooperative lookup. A client request reaching a cache server
of a cooperative architecture using a two-tier organization of the servers may experiment
different effects. Before proceeding further with the prototype description, we introduce
some concepts related to the possible scenarios occurring in a two-tier lookup process. A
client request can result in a local hit when a valid copy of the requested resource is found
in the first contacted cache server: the document is sent to the client and no cooperation
is activated. A first-tier hit occurs when the requested resource is found inside a subset
of cache servers through the 1-st tier cooperation scheme, without activating the 2-nd tier
lookup process.

A global hit occurs when the resource is found in a cache server by means of both co-
operation tiers. Finally, we have a global miss if the resource has to be retrieved from the
origin server, because both cooperation tiers fail in finding a valid copy of the resource in
any cache server.

The first prototype implementing this cooperation mechanism is called Summary-Query

because it uses a summary-based (1-st tier of cooperation) and a query-based protocol (2-nd
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Figure 1: Summary-Query architecture

tier) as the mechanism for intra-cluster and intra-cluster cooperation, respectively. A more
detailed description of the various types of cooperation protocols is given in Section 5. There
are some differences between the architecture described in [14] and the prototype proposed
here. We use Squid 2.4 as a software basis and the most popular cooperation mechanisms
implemented there. In particular, we use Cache Digests [12] (instead of Summary Cache as
suggested in [14]) as the informed-based protocol and ICP [21] as the query-based protocol.
In the Summary-Query scheme, for each cluster we select one server, called master, that
typically is the node of the cluster offering superior computing power and better connections
to other clusters. The master, as described in greater detail later on, acts as a gateway for
second tier cooperation: each query message directed to other clusters must pass through
the cluster master, as well as every resource coming from other clusters.

An example of the Summary-Query organization is described in Figure 1(a). We consider
nine cache servers organized in three clusters, namely C}, C5 and C3. Cluster C consists of
three nodes: P;, P, and P3, where P; is the cluster master. Other clusters are built in a
similar way, that is Cy = {Py, Ps, P} and C3 = {P;, Ps, Py}. The three nodes {Py, P;, P;}
compose the set of cluster masters in which the second tier cooperation is carried out through
a query-based protocol.

Figure 1(b) shows how a document can be found through the Summary-Query mech-



anism. To show all possible scenarios, this figure includes a new cluster (C;) which was
missing in the architecture in Figure 1(a). Moreover, to better evidence the cluster masters,
we added the labels M;, M,, M3 and M, to the nodes P, P;, P; and Pyo, respectively.
Let us assume that P, executed a summary-based lookup and that the requested resource
has not been found neither in the local cache nor inside the cluster (first-tier miss case).
The second-tier cooperation is then activated: a query, through the CMP protocol (a novel
protocol similar to ICP but simpler and lighter, described later), is sent back to the cluster
master M; (step 1) that, in its turn, sends ICP queries to all the other cache masters (step
2). Each of them executes a summary-based lookup to check whether the resource is in its
cache or inside its cluster. The responses are then sent to the cache master M; through a
slightly modified ICP message (step 3). Packet losses are detected by means of a time-out
mechanism (as for the case of the response coming from My). If any of the responses reports
a hit (e.g., from M), a CMP_HIT message containing the address of the cache server Ps
is sent back to the cache server P, (step 4). P, retrieves the requested resource from P
through an HTTP connection (step 5), and forwards it to the client.

To implement the Summary-Query cooperation protocol the main modifications to Squid
are localized in the modules called peer selection and neighbors [20]. The peer selection
module contains the routines to select a cache server that may hold the requested resource.
It is activated when a client request results in a local miss or in a local hit with a stale file.
This phase is called cooperation in Figure 2.

The peer selection module uses other modules that implement some cooperation proto-
cols, such as ICP and Cache-to-Master (CMP). The latter is a new protocol that has been
created to support the Summary-Query scheme. It is based on ICP, even though it is lighter
and simpler than the original ICP protocol, and, unlike ICP, it is able to report a hit in a
third cache server not involved in the actual CMP message exchange. In our example the
CMP response flows from M; to P,, but the protocol has to indicate a hit occurring on Ps:
without proper extensions, ICP can only indicate a hit or a miss in M;.

The neighbors module contains the data-structure definitions and the routines to manage
the database of cooperating proxies and the statistics about their state. A CMP hit is
referred to a cache that does not belong to the original cluster and that is unknown to

the cache that received the user request. The default Squid behavior is to reject hits from
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Figure 2: Service of a client request by Squid.

unknown caches for security reasons. Instead, a CMP_HIT message coming from the cluster
master must override this behavior. As a consequence, to allow the resource retrieval even
when such a message is received, the unknown peer is dynamically added to the list of known
caches.

Figure 2 shows how Squid works when servicing a request from a client: a client request
resulting in a local miss or in a local hit with a stale file forces the proxy server to retrieve
the resource. Before contacting the origin server, some cooperative operations are activated

in the cooperation phase described in Figure 2.

3 Novel schemes for hybrid cooperation

When we evaluated the performance of the Summary-Query scheme through a real prototype,
we found that it can achieve high cache hit rates, but it places a significant amount of work on
the cluster masters. Each master has to serve client requests and has to work as a gateway
for query-based cooperation. Especially when cluster masters do not have computational
capacity higher than that of the other cache servers, we found that this twofold role can
easily congest these nodes to the extent that the entire cooperation system tends to have
high response time. It is worth to observe that this risk was not evidenced by the simulation
results reported in [14], but only by an experimental evaluation of which we outline the
results in Section 4.2. Network researchers using simulation as a main evaluation tool should
be aware of the risks of not considering the computational cost of network-based operations
at the server side. For example, a misuse of the popular ns-2 simulator [16] not including

realistic server delays may lead to similar mistakes.
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Figure 3: Query-Summary architecture

The rather poor performance results achieved by the Summary-Query scheme motivated
the search for novel architectures based on hybrid cooperation that avoid congestion of the

cluster master node. They are described in the following subsections.

3.1 SummaryMaster-Query cooperation

The risk of bottleneck is due to the twofold role of the cluster master. Hence, the simplest so-
lution is to use dedicated masters, even though the price is a reduced number of cache servers
available for caching operations. This approach denotes a different cooperation architecture,
called SummaryMaster-Query, that works similarly to the previous Summary-Query scheme.
The main difference is that now each master cache acts as a gateway for its cluster and as
a directory for the other clusters, but it cannot be directly contacted by clients. It is in-
teresting to note that this scheme can be considered as a representative of informed-based
architectures that use one or multiple directories managed by dedicated servers.

The prototype of the SummaryMaster-Query scheme is fully interoperable with the
Summary-Query scheme. Hence, it is easy to think to a mixed scheme, where some cache
masters are dedicated, while others can accept client requests, depending on the expected

level of congestion.



3.2 Query-Summary cooperation

Query-Summary is a quite different alternative to avoid poor performance of Summary-
Query. It activates first-tier cooperation among clusters through a summary-based protocol
and, if necessary, second-tier cooperation in a cluster through a query-based protocol. The
motivation for Query-Summary with respect to Summary-Query is twofold: achieving better
load balancing by eliminating cluster masters and driving the large majority of traffic to the
best performing links. Indeed, Query-Summary scheme uses multiple representatives of
each cluster for the requests to avoid the risk of poor performance caused by overloaded
cluster masters. Moreover, the need of a fairer network resource utilization arises from the
observation that in the Summary-Query schemes the large majority of traffic for cooperation
(due to ICP messages) transits through the inter-cluster links, that are potentially slower
and more expensive (for the ISPs) than intra-cluster links. Hence, in Query-Summary, inter-
cluster cooperation is carried out through the Cache Digests protocol that generates a minor
traffic, while communications inside a cluster, where nodes are connected through faster and
less expensive links, are based on (enhanced) ICP messages.

Figure 3 shows an example of this cooperation scheme by considering the same architec-
ture shown in Figure 1(a). The three clusters are Cy = {Py, P», P3}, Cy = {Py, Ps Ps},
and C3 = {P;, P3, Py}. We also define the following sets for query-based cooperation:
S1 = {P,P, P}, Sy = {P,, Ps,P3s} and S3 = {P3, P;, P,}. Each set must contain at
least one member of each cluster. In this version of Query-Summary cooperation, we require
that clusters C; and sets S; denote a partition of the initial set of nodes. This leads to the
conclusion that the maximum number of sets is equal to the minimum cardinality of the
clusters. Additionally, the minimum number of nodes inside a set S; is equal to the number
of clusters in the system, because at least a member of each cluster must belong to a set.

A local miss in a cache server (for example, P;) triggers the lookup process on the digests
that can lead to a hit inside the set S; to which P; belongs (the hit could be on Py or Pr).
Alternatively, in the case of a first-tier miss, the cooperation is activated inside the cluster
C1. A query is sent to every member of the cluster that is, to P, and P; in the example of
Figure 3. The cache server receiving the ICP request can reply with a hit, a miss or a pointer
message when a digest lookup locates a hit inside its set. In our prototype, this last message

is sent through the flag ICP_MISS_POINTER, as documented in [19]. In our example, P,



can reply with a hit, if it owns the requested resource or with a pointer to P5 or P, if it
finds a hit on those nodes, otherwise it sends a miss message. Similar behavior is expected

from P;.

4 Experimental Results

All prototypes were extensively tested to verify their scalability and to compare their perfor-
mance with that of the pure query-based and summary-based protocols. We first compared
the various Two-tier architectures among each other to find out the best performing one.
Then, we compard it with other distributed cooperative architectures. We settled two ex-
perimental testbeds: one aims to measure the response times of client requests, hence the
servers are distributed over a geographic scenario; the second focuses on cache hit rates and

cooperation overheads, hence we can use cache servers placed on the same network segment.

4.1 Workload models

The difficulty of defining a “typical” workload model is a well known issue, because studies
on real traces show great differences. For the experiments, we prefer to use two synthetic
workload models generated by Web-Polygraph version 2.5 [13]. They intend to capture two
“realistic” Internet scenarios, that are based on the model proposed for the second cache-off
by IRCACHE |[8].

Workload 1 represents a set of heterogeneous users with different interests. This char-
acteristic, together with the document popularity model, leads to a high spatial locality.
Client requests also show some temporal locality, so that only 30% of the workload is active
at a given time. Requests are referred to a mix of content types consisting of images (65%),
HTML documents (15%), binary data (0.5%), others (19.5%). The workload model defines
a set of hot resources (1% of the working set) that receive about 10% of the requests. The
heterogeneity of the user interests is represented by the fact that only 50% of the requests is
taken from a “public” set of pages common to all clients, while the remaining 50% is taken
from a “private” set, different for each client. Each client is configured to visit more than
once only 80% of the URLs and the object cacheability is 80%. HTML resources typically

contain embedded objects.



Workload 2 is a modified version of Workload 1, where the client population is more
homogeneous. Here, clients share the same interests, so spatial locality is reduced, while
the overall access locality is augmented. Moreover, the popularity model is chosen so to
increase the size of the hot fraction of the workload. This workload takes less advantage
from local cache hit rates and puts more pressure on cooperation. The modified main
parameters of Workload 1 are indicated below. The hot set of the workload is larger (15%
of the access are referred to a hot set corresponding to 5% of the URL-space). This creates
a popularity distribution with a heavier tail. The working set size keeps growing trough the
whole experiment (there is no temporal locality). The fraction of public requests is 100%,
which means that every document in the trace may be requested by any client.

Every experiment was done twice and data measures were collected only in the second
run, so to emulate a steady state scenario. It is worth to observe that an increment of the
number of cache servers increases the global cache capacity, but also the size of the working
set, because the number of clients is incremented proportionally, so that five clients are
always connected to each cache server. Preliminary tests were done to tune some parameters
of Squid. For example, for summary-based cooperation we find more convenient to use a
digest rebuild period of 60 seconds to reduce the consistency miss effects that are due to

frequent cache object replacements (note that the Squid default value is 60 minutes).

4.2 Comparison of Two-tier architectures

With the first set of experiments we aimed at comparing the performance of different two-
tier architectures in terms of cache hit rate, cooperation overhead, and response time at the

client.

4.2.1 User response time

The first set of experiments refers to a geographic testbed consisting of two clusters of five
nodes each, connected through some links and a geographical backbone. Ten network hops
existed between the clusters. We also installed one Web server in each location. For these
experiments, we used Workload 1 and the response time as the performance metric. The
experiments were carried out for two network conditions: the first test was executed on

Sunday, with little other network traffic, while the second test was done in conditions of
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Figure 4: System Response Time

heavy network load during a working day. The observed mean round-trip time was 50 ms
and 300 ms, in the case of light and heavy traffic, respectively. We also monitored the network
resource usage on the worst performing links (one link of the geographic interconnection has
a capacity of 2 Mbit/s).

Figures 4 show the cumulative probability of the response times of all requests. In
particular, Figure 4(a) and 4(b) refer to the light and heavy network traffic, respectively.
From Figure 4(a), it is interesting to note the hints of congestion in the Summary-Query
response time: the percentage of requests served within 1 second is 69% for Query-Summary,
65% for SummaryMaster-Query but only 59% for Summary-Query. This bad performance
is due to the cluster masters that become the system bottlenecks, as it typically occurs for
centralized components of distributed systems. Both alternative architectures proposed in
this paper can effectively avoid this problem. Query-Summary achieves lower response times
than those of Summary-Query, even if its object hit rate tends to be the worst, as shown in
next section. As expected, in the case of heavier traffic, the overall performance is reduced.
However, there are some noteworthy behaviors: the general link congestion reduces the
performance difference among the various protocols. Moreover, looking at the 90-percentile
of the response time, we can see that Query-Summary performance are worse than that of
SummaryMaster-Query (5.6 vs. 4.4 seconds). This can be explained by considering that in

Query-Summary even the 1-st tier lookup process tends to find hits in other physical clusters.

11



Table 1: Cache hit rates and overheads for Workload 2

Intra-Clust | Inter-Clust Total Relative
Number | Local | First-tier | Global Overhead Overhead Overhead Overhead
of Nodes HR HR HR per request | per request | per request | per node

[bxteS] [bxteS] [bxteS] [bxteS]
req. req. req. req.

Query-Summary

8 38.38% 45.69% 60.16% 284.25 7.32 291.58 36.44

15 25.89% 37.87% 55.66% 427.38 18.10 445.48 29.70

30 15.13% 30.42% 51.04% 543.05 49.10 642.14 21.40
SummaryMaster-Query

8 41.00% 52.50% 60.13% 62.05 41.67 104.72 13.09

15 23.63% 36.16% 60.96% 83.40 118.87 202.36 13.49

30 13.49% 26.71% 60.26% 116.61 249.58 366.19 12.21

Hence, the retrieval process is potentially more expensive, especially when the network is

overloaded.

4.2.2 Cache hit rates (HR) and overheads

The second set of experiments aims at comparing hit rate and coordination overhead of the
two-tier protocols. We choose not to perform our experiments on Summary-Query because
it is very similar to SummaryMaster-Query and because from the previous section we found
that it does not achieve acceptable user response times.

Table 1 shows the results of cache hit rate and cooperation overhead for Workload 2,
while Table 2 shows the same results for Workload 1. In each table, the first three columns
report the cache hit rates (local, first-tier and global), while the last columns report the
traffic overhead due to cooperation, that is indicated as additional bytes exchanged for each
client request.

Actually, the most interesting results for evaluating the cooperation schemes are obtained
for Workload 2. We derive the main conclusions from these experiments and use the results
obtained from Workload 1 to confirm or show some light differences. We have already
observed that increasing the number of cache servers leads to an increment of the working
set size and a consequent reduction of the percentage of documents that can be cached in
each node. For example, for Workload 2 these percentages decrease from 7.5% to 2% of the

working set when the cooperating nodes pass from 8 to 30. However, the most interesting
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Table 2: Cache hit rates (HR) and overheads for Workload 1

Intra-Clust | Inter-Clust Total Relative
Number | Local | First-tier | Global Overhead Overhead Overhead Overhead
of Nodes HR HR HR per request | per request | per request | per node

bytes bytes bytes bytes
[ req. ] [ req. ] [ req. ] [ req. ]
Query-Summary

8 55.01% 57.60% 63.84% 332.15 7.14 339.29 42.41

15 39.81% 43.82% 52.55% 317.66 10.88 328.54 21.90

30 35.80% 44.11% 54.38% 427.40 24.46 451.86 15.06
SummaryMaster-Query

8 48.24% 55.40% 62.56% 70.44 82.84 153.28 19.16

15 40.77% 50.53% 63.62% 65.54 95.09 160.64 10.71

30 31.65% 55.12% 64.06% 88.37 192.83 281.20 9.37

aspect of the Workload 2 characteristics is that a larger number of peers leads to a sensible
reduction of the local cache hit rates. From Table 1 we have that the local cache hit rates
go from about 40% to about 15%. A similar reduction can also be found for Workload 1
(Table 1), but this effect is less evident because of higher document locality.

Both two-tier architectures can compensate the reduction of the local hit rate by means of
the cooperation mechanism. However, the SummaryMaster-Query approach achieves higher
scalability: as the number of peers grows, the first-tier hit rate drops and the second-tier can
only partially compensate this decline (refer to columns 3 and 4 of Table 1 and 2). On the
other hand, Query-Summary seems to offer a greater hit rate, especially for higher numbers
of nodes.

The most interesting differences between the two cooperation approaches can be found
in their capacity to distribute overheads due to cooperation. Both schemes show a good
scalability because their overhead grows much slower than the number of nodes involved
in cooperation (as the last column of Table 1 and 2 shows). However, Query-Summary
overhead is almost the double of the SummaryMaster-Query overhead, as shown in column
7 of Table 1 and 2. It is worth to observe that inter-cluster overhead of Query-Summary is
much lower because of effectiveness of the summary-based cooperation scheme in reducing
the size of exchanged information. Hence, Query-Summary can be very useful in systems
where inter-cluster network resources must be spared, for example when many peering points

are involved.
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4.3 Comparison with other cooperation protocols

In this section, we aim to verify whether hybrid cooperation protocols based on a two-tier
topology can scale better than pure protocols. We start by illustrating the results of our
experiments on hit rate and cooperation overhead and then we will show how those data
are related with user requests service times. From the previous section we have found that
SummaryMaster-Query can achieve good performance that is, low response time and high
cache hit rate. Therefore, we use this cooperation mechanism as a representative for the

whole class of two-tier architectures.

4.3.1 Cache hit rates and overheads

Table 3: Cache hit rates (HR) and overheads for Workload 2

Total Relative
Number | Local | Global | Overhead | Overhead
of Nodes HR HR per request | per node
[ee] (]
req. req.
SummaryMaster-Query
8 41.00% | 60.13% 104.72 13.09
15 23.63% | 60.96% 202.36 13.49
30 13.49% | 60.26% 366.19 12.21
Cache Digest
8 38.00% | 53.05% 5.70 0.71
15 26.92% | 44.29% 6.32 0.42
30 16.28% | 33.77% 6.84 0.23
ICP
8 40.54% | 66.49% 780.84 97.60
15 27.07% | 66.15% 1882.64 125.51
30 16.19% | 65.20% 4500.42 150.14
No Cooperation
8 49.64% | 49.64%
15 27.84% | 27.84% n/a n/a
30 16.35% | 16.35%

To evaluate the scalability of the two-tier protocols, we compare cache hit rates and
cooperation overheads for an architecture with an increasing number of cache servers that
are subject to Workload 1 and Workload 2. As a comparison testbed, we also include results
for an architecture with the same number of nodes that do not cooperate for document

lookup (namely, No Cooperation). Table 3 and Table 4 summarize the results with respect
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Table 4: Cache hit rates (HR) and overheads for Workload 1

Total Relative
Number | Local | Global | Overhead | Overhead
of Nodes HR HR per request | per node
(2] (]
req. req.
SummaryMaster-Query
8 48.24% | 62.56% 153.28 19.16
15 40.77% | 63.62% 160.64 10.71
30 31.65% | 64.06% 281.20 9.37
Cache Digest
8 31.47% | 40.25% 3.67 0.46
15 30.52% | 37.82% 5.11 0.34
30 29.14% | 37.80% 5.48 0.18
ICP
8 57.22% | 69.46% 532.72 66.59
15 52.16% | 68.24% 1238.13 82.54
30 45.12% | 67.62% 2977.00 99.23
No Cooperation
8 57.30% | 57.30%
15 52.28% | 52.28% n/a n/a
30 45.45% | 45.45%

to Workload 2 and 1, respectively. The structure of those tables is similar to that of Table 1
and Table 2, even if values referring to the two-tier scheme have been removed). The first
two columns report the cache hit rates, while the last columns report the traffic overhead
due to cooperation, that is indicated as additional bytes exchanged for each client request.

The reduction in local hit rate for higher numbers of nodes occurs as in previous exper-
iments. Some differences dependent on the cooperation scheme were expected, because a
cache server belonging to a cooperative system receives requests from its clients as well as
from other cache servers. This alters the access patterns and in practice reduces the docu-
ment locality. Indeed, the best local hit rates are obtained by the No-Cooperation scheme
that preserves locality at most. Same behavior is shown in Table 4 referring to Workload 1,
although in this case the local hit rates remain higher than those observed for Workload 2.
The larger space of improvement for cooperation motivates our main interest for this latter
model.

From Table 3 we can observe that the No-Cooperation scheme is not able to face the

reduction of the local cache hit rates, and also the Cache Digests scheme shows many limits,
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especially for higher numbers of peers. On the other hand, ICP and the hybrid cooperation
scheme compensate the effects of the local hit rate reduction with a global cache hit rate
that is stable and always over 50%. The cache hit rate of ICP is slightly higher (up to
5%) than that of hybrid schemes, but the price is an excessive cooperation overhead, as
shown in column 4 of Table 3 and 4. Moreover, the motivation for the better hit rate of
ICP is also related to the choice of the workload models that tend to penalize summary-
based cooperation. Indeed, an increment of the working set size rises the frequency of
object replacement, thus reducing the accuracy of the exchanged Cache Digests (there is an
increment of capacity and consistency misses). Cache Digests is particularly sensitive to this
and its hit rate (quite low even with only 8 cooperating nodes) is further reduced when the
working set size increases. The performance degradation of summary based-cooperation was
another unexpected result that the simulator described in [14] was unable to show. ICP is
not affected by the frequency of cache replacements and this explains its better hit rates. It
is remarkable how well the hybrid schemes are able to address the issues related to cache
replacement, even if the peculiarities of the workload model affect their summary cooperation
component occurring on the first-tier.

In results related to Workload 1, because of the higher spatial locality in request patterns,
the hit rates are generally higher than those shown in Table 3. The main contribution to these
results are due to the local hit rate (see No-Cooperation performance), which is increased
by the greater locality caused by the higher percentage of “private” requests, as explained
in the description of the workload models. Cooperation tends to reduce locality, and this
motivates the results of Cache Digest that are even poorer than those of No-Cooperation.

If we include the overheads due to cooperation in the analysis of scalability, we can
observe some interesting modifications in the position of the cooperation schemes. Once
again, we use Workload 2 (Table 3) as a main reference to explain our conclusions, and
report data for Workload 1 (Table 4) as a comparison testbed.

As expected, augmenting the number of cache servers increases the cooperation overhead,
but not every scheme is affected in the same way. In particular, ICP generates the highest
cooperation traffic even with 8 nodes, and continues to increase it with respect to the number
of peers in a much faster way than any other scheme does. It is interesting to note that the

ICP cooperation overhead (traffic generated only to cooperative lookup purposes) for 30
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Figure 5: System Response Time

nodes reaches 4.5 KByte per requests. With an average document size of about 10 KByte,
this means an increment of almost 50%. On the other hand, Cache Digests shows the lowest
cooperation overhead.

Hybrid schemes occupy an intermediate position, with a cooperation overhead higher
than that of Cache Digest, but significantly lower than that of ICP. The results observed for
Workload 2 are substantially confirmed by the experiments based on Workload 1, as shown
in the last columns of Table 4. For appreciating the scalability of the cooperation schemes,
we can also refer to the last column of Tables 3 and 4, showing the overhead traffic per
request relative to each node. It is important that for larger numbers of peers, the two-tier
architectures and Cache Digests relative overheads tend to diminish, whereas it increments

exponentially for ICP.

4.3.2 User response time

Experiments in the geographic scenario have also been carried out on traditional cooperation
mechanism to compare their response time with that offered by hybrid cooperation protocols.

Indeed, there is a big difference between client requests resulting in a hit (served usually
in very short time) and requests occurring in a global miss (that usually experience a much

higher latency). Hence higher hit rate means that higher percentages of requests can be
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served in a short time. ICP shows the best response times for hit documents, but poorest
results in case of global misses, because it has to wait for the response from the slowest peer
or the time-out expiry. In Figure 5(a) the ICP curve is the highest at the beginning, but it is
surpassed by that of Query-Summary (around 1.5 seconds, not shown), by SummaryMaster-
Query (after 2 seconds) and becomes the worst (after 4 seconds). These effects, even if
already shown by our experiments, became much more evident in other not reported curves
obtained for a workload model characterized by scarce locality and consequent lower hit
rates. The conclusions on response times can be better appreciated by evaluating the 90-
percentile of the request service time instead than looking at the curves that seem so close.
In the case of light load, the 90-percentile for ICP is 3.7 seconds (the highest value), while
for Query-Summary it is 3.2 seconds and for SummaryMaster-Query it is 3.6 seconds.
When heavy traffic is placed on the network (Figure 5(b)), congestion can occur in many
places on the mesh. The overall performance of the cooperative system is reduced. In
particular, the ratio of client requests serviced within 100 ms is reduced from 66%-56%,
depending on the cooperation model used, to 59%-47%. Also the cache hit rate decreases
from 68%-47% to 61%-36% when the network is heavily loaded. Clearly, the 90-percentile
of the user response time augments: ICP shows once again poor performance (6.2 seconds),
far higher than that of the best SummaryMaster-Query remaining below 4.5 seconds. Cache
Digests is the worst cooperation approach in terms of 90-percentile (7.3 seconds) when the
network is congested. The motivation is that its lower hit rate augments the use of congested

links to contact the Web servers.

5 Related work

Cooperation in distributed architectures can occur in many different ways. However, most
of the proposed solutions can be classified as query-based or informed-based cooperation
mechanism.

In query-based protocols each client request result in a query message sent to every
cooperating node (also called peer). The most important protocol belonging to this group
is ICP, described in [21]. HTCP [17] is an evolution of ICP studied to add support for the
complex caching semantic introduced with HTTP 1.1.

The main idea behind informed-based cooperation is that status information exchange
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(usually the cache index) occurs before client requests, hence remote lookup can be done using
locally stored information. This cooperation is more complex than query-based cooperation
because more choices are available. In particular, two main questions should be answered
when designing such protocols: when information are exchanged and how cache content is
coded. Information exchange can be synchronous (when every significative change in status
is notified to peers) or asynchronous (when data exchange occurs in a loosely periodic way).
Moreover status information can be the whole cache index or a summary of it, often obtained
using some sort of lossy compression such as Bloom filters [3]. The available possibility ranges
then from synchronous cache index exchange to asynchronous summary-based information
exchange. Cache Digests [12] is an important asynchronous summary-based cooperation
protocol that is available in Squid. Another well-known cooperation protocol is Summary-
Cache [5], that is similar to Cache Digests, but with a query mechanism used to check
potential hits to reduce the risk of false hits. Another popular informed-based protocol is
CRISP [7, 6], where a centralized directory is used to reduce the overhead related to less
compressed status information being exchanged.

All mechanisms using one pure cooperation protocol suffer from the lack of scalability,
especially in a geographic context, where some links can be congested or can offer very
different types of bandwidth. The limitation of ICP is mainly related to the high traffic
introduced for cooperation that grows quadratically as the number of peers increases [5].
Moreover, increasing the number of nodes augments the risk of packet loss or delay, hence
misses are detected more slowly, as suggested in [12] and as our experimental results confirm.

In summary-based cooperation, we observed a clear trade-off between information accu-
racy and cooperation overhead. In general, we found that Cache Digests is very effective
in reducing cooperation overhead, but the offered hit rate is quite low. On the other hand,
CRISP based on a centralized directory, is not suitable for a geographic environment where
a centralized information repository can become a bottleneck and a single point of failure,
as noted by the authors themselves [9].

A completely different approach in cooperation is CARP [15] where hashing is used to
partition the URL-space between the cache servers. However, this solution is not suitable
for a geographic environment where network status changes dynamically in a significative

way.
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6 Conclusions

This paper offers multiple contributions. We investigate the benefits in cache hit rate and
response time of a two-tier cooperation previously studied only by means of simulations.
An under evaluation of CPU costs at the cache servers for network operations caused some
differences between the previously obtained simulation results and the experimental results.
(Other network-oriented simulations could be affected by similar problems.) In particu-
lar, the prototype shows congestion problems at some servers that are solved by the two
novel two-tier mechanisms proposed in this paper. Our experiments show that the modified
two-tier prototypes offer higher hit rate with respect to Cache Digests and lower coopera-
tion overhead than ICP. The stability of the response time of two-tier architectures can be

appreciated also in a geographic environment with heterogeneous links.
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