
Data Acquisition in Social Networks: Issues and Proposals

Claudia Canali, Michele Colajanni, Riccardo Lancellotti

Department of Information Engineering

University of Modena and Reggio Emilia

{claudia.canali, michele.colajanni, riccardo.lancellotti}@unimore.it

Abstract. The amount of information that is possible to gather from social net-

works may be useful to different contexts ranging from marketing to intelligence.

In this paper, we describe the three main techniques for data acquisition in social

networks, the conditions under which they can be applied, and the open problems.

We then focus on the main issues that crawlers have to address for getting data from

social networks, and we propose a novel solution that exploits the cloud computing

paradigm for crawling. The proposed crawler is modular by design and relies on a

large number of distributed nodes and on the MapReduce framework to speedup the

data collection process from large social networks.

1 Introduction

An unprecedented explosion of user generated content is available on social networks that,

thanks to their growing popularity, are gaining top importance as sources of valuable information.

Two thirds of the world’s Internet population visit a social network site weekly, and the time spent

on these sites accounts for more than 10% of all Internet time, with this percentage growing three

times faster than the rate of the overall Internet growth [NielsenWire (2009); Canali et al. (2009)].

The growth in terms of registered users motivates the increasing interest of academic and indus-

trial researchers in social networks for different goals including workload characterization, market-

ing purposes, understanding and forecasting Internet use, identifying main challenges to support

future Internet-based services. Unfortunately, collecting data from social networks is a real chal-

lenge with respect to other Internet-based sources, such as Web pages, blogs, peer-to-peer systems.

Some problems are related to the size and the intrinsic complexity of a social network. Other prob-

lems are related to the heterogeneity of the target. Indeed, we have to consider that the term social

network identifies a broad category of applications that may differ in many ways, ranging from

user communication styles, types of exchanged contents, privacy settings, etc. Hence, the one-

size-fits-all approach to data acquisition is unfeasible. The state of the art of academic research

includes three main techniques for data acquisition from social networks: network traffic sniff-

ing [Gill et al. (2007); Nazir et al. (2009)]; implementation of specific applications for each social

network [Nazir et al. (2008)]; crawling of the user social graph. The last method is the most popu-

lar approach for social networks where user data are publicly available, such as MySpace. Traffic

sniffing and specific applications are limited to specific contexts where crawling is unfeasible. For

example, traffic analysis of dormitory networks was adopted to characterize the access patterns of

college students in Facebook [Nazir et al. (2009)]. Throughout this paper we initially present the

three main techniques adopted for data acquisition in social networks and we identify the main



open issues of each of them. We then focus on social network crawling, and identify the limits of

current crawlers through analysis and experimental results. This study induced us to propose an

innovative solution that exploits the potential of cloud computing to support data collection in the

context of social networks. The novel framework is based on a crawling algorithm that exploits

the MapReduce computing paradigm [Dean and Ghemawat (2008)]. This proposal has several ad-

vantages: it allows us to speed up the data collection process by distributing the operations on a

large number of nodes performing parallel crawling; it reduces the risk of triggering the counter-

measures adopted by social network operators against extensive and automatic crawling; it favors

the implementation of a modular and easily customizable crawler that is able to acquire data from

different social networks.

The remainder of this paper is structured as follows. Section 2 describes the main issues af-

fecting data acquisition from social networks with a special focus on crawling. Section 3 presents

the proposed architecture for crawling social networks based on the cloud computing paradigm.

Section 4 discusses the related work. Section 5 concludes the paper with some final remarks.

2 Data acquisition in social networks

The social network term includes a broad category of applications. In this paper, we define

social network any Web-based site that offers the user the possibility to register, to interact with

other users, to share contents of any nature through any sort of social links. Similar sites include

the most traditional Facebook, LinkedIn, MySpace, and Orkut, but also the sites that have added a

lot of social network facilities, such as YouTube, Flickr, Digg, and Twitter.

Acquiring data from a social network requires an exploration of the user population with the

goal of collecting different kinds of information, such as the network links among the users, up-

loaded and downloaded contents, rating, comments [Khrishanmurthy (2009)]. In this paper we are

interested to the data collection process only, hence we do not delve into details of which data can

be acquired from a social network and which analyses can be carried out on these data. In a similar

way, we do not consider typical data anonymization techniques that typically are carried out only

after the data collection process.

Here, we outline the three main techniques proposed in literature to acquire data from social

networks, and we then discuss in detail some issues we have experienced with crawling. The

considered techniques are:

– Network traffic analysis [Gill et al. (2007); Nazir et al. (2009)]

– Ad-hoc applications [Nazir et al. (2008)]

– Crawling the user graph [Mislove et al. (2007); Cha et al. (2008); Lerman (2007); Cha et al.

(2009)]

2.1 Network traffic analysis

This is a typical traffic sniffing and analysis technique that captures packet streams from a

network link and then analyzes request-response pairs from network traces involving user inter-

actions with a social network. From these request-response pairs it is possible to infer informa-

tion about social browsing through the network content that is, which users are visiting other

users pages. Furthermore, information about the users can be obtained by the analysis of the

response payload, that contains the Web pages. While from a theoretical point of view, this ap-

proach is always feasible, accurate sniffing of high volume traces presents technical and legal

issues [Crovella and Krishnamurthy (2006)].



– All countries impose restrictions on network traffic analysis to protect the privacy of citizens.

Collection of network traffic can be carried out only in private contexts and for limited

periods of time, such as university campuses or companies, where users are typically notified

about the experiments being carried out. As a consequence, the collected data may be not

representative of the entire social network user population.

– Traffic analysis in high speed links presents issues as it may overload the packet sniffing

mechanism. The resulting loss of data may hinder the detection of request-response links

and may reduce the amount of data that is viable for subsequent analyses. To address this

issue it is necessary to deploy the packet capture system on a parallel architecture that may

be difficult to deploy [Andreolini et al. (2007)].

– In order to extract the payload useful information from the payload of the responses it is

necessary to parse the supplied Web pages. As the structure of the Web pages is specific for

each social network, it is impossible to implement a general tool to collect data from different

social networks, and the support of each social network requires a significant development

effort.

2.2 Ad-hoc applications

Ad-hoc application are third-party applications that exploits a set of APIs, such as the Facebook

Developer Platform or OpenSocial, to provide services and games to the social network users. In

this architecture, a user does not interact directly with the application servers because the social

network infrastructure provides an interface layer between user and application. Developing ad-

hoc applications to acquire data from social networks allows to collect information about the users

in a twofold way. First, the APIs typically allow the application to access information about the

profile of users who are registered to the application. Furthermore, the analysis of the log on the

application servers allows to extract information about the dynamic user behavior. The analysis of

a social network through an ad-hoc application is not affected by the severe legal issues related to

traffic sniffing because users must explicitly register to the application and accept the possibility of

information disclosure, this technique is not free of issues.

First of all, it can be used only when the social network (e.g., Facebook [Nazir et al. (2008)])

provides third parties with specific APIs for adding new applications. Moreover, the size of the

dataset that may be collected depends on the popularity of the applications: if the applications

do not attract many subscribers, the available dataset is limited and useless for analysis purposes.

We have also to consider that this approach requires the implementation of novel applications that

are specifically designed for one targeted social network. This requires great efforts in software

investments that do not guarantee returns if the application is not successful.

2.3 Crawling

Crawling is the most popular solution for data acquisition in social networks and consists

on querying the social network for publicly available information about users. This approach

is viable for most social networks including YouTube, Flickr, Digg, Orkut, MySpace, and Twit-

ter [Mislove et al. (2007); Cha et al. (2008); Lerman (2007); Cha et al. (2009)]. Crawling may take

further advantage of the availability of public APIs that some social network operators provide.

Crawling exploits the typical structure of a social network, that can be modeled as a directed

graphG = (U,E), where U is the set of nodes (users) andE is the set of edges (social links among

users). Each node has outgoing links, and incoming links. For the goal of collecting information



FIG. 1 – Crawling iterative process

about the users of a social network, we are not interested in distinguishing between the different

types of social links among users (e.g., friends or followed/follower links) but only in devising a

way to visit each user in the network.

Crawling the social network graph is an iterative process that starts from a set of initial users

and proceeds by discovering new users at every step. The initial setup of the crawler is typically

composed by a list of randomly selected users, because starting from multiple random locations

is one way to improve the data collection process in terms of duration and data representative-

ness [Gjoka et al. (2010)].

Different methods can be used to proceed through the crawling graph. They differ in the order

through which they visit new users at every step: popular approaches include Breadth-Search-

First (BSF), Depth-First-Search (DFS), Forest Fire (FF) and Snowball Sampling (SBS). We adopt

the BSF algorithm because it is used extensively in literature for collecting data from social net-

works [Mislove et al. (2007); Ahn et al. (2007); Wilson et al. (2009)]. Figure 1 illustrates the it-

erative crawling process following a BSF approach. For the generic step n of the data collection

process the crawlers start from the set of previously discovered users (that have been identified at

the crawling step n − 1) and explore the outgoing links to not yet visited users. The set of newly

identified users represents the basis for the next crawling step n+ 1. The main reason for the pop-

ularity of this method is that an (even incomplete) BSF sample collects a full view (all nodes and

edges) of some region in the graph. However, BSF may lead to a bias because it tends to overesti-

mate the node degree by privileging users with high number of social links. However, this bias may

be removed by techniques that are able to collect the majority of users in the graph [Wilson et al.

(2009)].

To understand the pros and cons of crawling social networks, we implement two crawlers based

on the BSF algorithm and we apply them to collect data from YouTube and Digg Canali et al.

(2010). We choose YouTube and Digg as examples of popular Web sites that allow users to sub-

scribe, to create social links with other users and to share contents. According to data published by

the market research company comScore [comScore comScore (2010)], YouTube is the dominant

provider of online video, with a population of over 50 millions of users. In a similar way, Digg is

a highly popular bookmark sharing site with more than 15 millions monthly US unique visits in

2008 [Schonfeld (2008)]. Furthermore, YouTube and Digg offer a set of public APIs that allow a



crawler to simplify its access to data of registered users and their social links.

We implemented a crawler for each site because YouTube and Digg offer different API in-

terfaces and adopt different countermeasures to limit extensive crawling. For both crawlers our

exploitation of the YouTube and Digg APIs is fully compliant with the terms of use for non-

commercial purposes. The efforts for software development and the time required by the execu-

tion of the crawlers were significant. Each crawler exceeds 3 thousands lines of code in addition

to a DBMS that is used as data storage and for synchronization among different runs of the same

crawler. Each crawler was executed on a Pentium IV system with a processor clock of 2.3 GHz

and equipped with 2 GBytes of RAM. The YouTube and Digg sites were crawled in the second

half of 2009 for a period of 10 days. Table 1 reports the number of users visited and the number of

social links as they are the most relevant information for the navigation on the graph G = (U,E)
that describes the social network structure. (As anticipated in the Introduction, in this paper we are

not interested to the nature and size of collected information.)

TAB. 1 – Information from social network graph navigation

Parameter YouTube Digg

Period of crawling 20-30 Aug. 2009 15-25 Nov. 2009

Number of users 1,708,414 349,035

Number of social links 12,935,561 3,212,454

We collected data on nearly 2 million of Youtube users and more than 10 million social links,

that correspond nearly to 1% of the network. Moreover, we gathered data for almost 9% of the

Digg social network users. Although the data acquisition process lasted for 10 days, the crawler

reached a small percentage of the social network structure. Our experience evidenced that crawling

the entire user graph in this way may require months of work, thus making impossible to obtain a

continuously updated knowledge about the overall network. This problem is primarily caused by

the huge size of the user graph to explore. Moreover, the data collection process is further delayed

by the countermeasures deployed in the social network to hinder extensive crawling, such as:

– IP banning;

– restrictions on amounts of data results.

IP banning is a typical technique used by social network infrastructures as a protection against

Denial of Service (DoS) attacks. A limitation is imposed on the number of requests allowed within

a specific time interval (e.g., a few thousands of requests per day) coming from the same IP ad-

dress. If the amount of requests generated from the same IP address exceeds a security threshold,

the servers filter out subsequent requests from that IP for a period of time (e.g., 20 minutes for

YouTube). To cope with this problem, we use two network interfaces on the same machine to dis-

tribute the crawling traffic among multiple IPs. However, this solution is not sufficient to avoid the

risk of IP banning, hence we have to delay subsequent requests to avoid exceeding the limits im-

posed by the social network operators. In summary, this solution may avoid the risk of IP banning,

but it does not resolve the problem of an excessively slow crawling process.

As a further countermeasure, the social network providers limit the maximum number of re-

sults that may be returned by the APIs [Youtube Developer’s Guide (2010)]. Whenever the APIs

are used to download a list of data, such as the list of user outgoing links, the number of returned

results is limited to a maximum value. For example, the list of returned outgoing links for YouTube

is truncated to 100 entries for each user. This limitation is critical as the node degree distributions

within a social network typically determine the presence of hub users with several thousands of

links. Our crawlers address this issue by integrating pure crawling through APIs with the possibil-



ity of exploiting some information available on the user home page, that contains the complete list

of his/her outgoing links. Our crawlers are able to identify the users for whom the API returns an

incomplete list of outgoing links, and to integrate this list by parsing the HTML code of the user

home pages. This solution is inevitable but it contributes to lengthen the crawling process because

it requires separate requests to the user pages to avoid IP banning countermeasures.

To summarize, our experience evidenced that extensive crawling of graphs with millions of

users is a challenging task. Traditional crawlers, like the one used in our experiments, are not able

to collect a sufficiently large amount of data in reasonable periods of time due to three main issues.

– As the APIs and the structure of users Web pages are specific for every social network, each

crawler must be customized and it is not possible to develop a generic crawler common to

multiple social network.

– Due to huge network size (in the order of tens of millions of users) it is difficult to reach a

large part of the user population in reasonable periods of time.

– The amount of data that can be collected from social networks may be limited. For example,

the maximum number of user social links returned by APIs is limited in the order of one

hundred, the number of requests allowed within a specific time interval coming from the

same IP address is limited to a few thousand requests a day (otherwise IP banning occurs).

To overcome these limitations, the crawler my parse information available directly on the

user Web page. However, this approach is more complex from a programming point of view

(to to the complexity of parsing HTML text) and is more time consuming (multiple pages

must be accessed to collect the same types of information available through a single API

invocation.

These issues motivate our effort to explore innovative approaches for crawling of large social

networks.

3 Cloud-based crawling

In this section we describe an innovation solution for crawling, that exploits the cloud comput-

ing platform to improve data acquisition of social network data. There are three main goals behind

cloud-based crawling:

– to speed up the data collection process by parallelizing the user graph exploration;

– to avoid countermeasures, such as IP banning, introduced by some social network operators

to limit extensive crawling, in the respect of terms of use of provided APIs;

– to have a modular software that can guarantee data acquisition from different social networks

through the same easily customizable crawler.

The proposed crawling software exploits two main features available in cloud computing plat-

forms: the possibility of distributing the crawling processes over several virtual machines where

the exact number can be decided at runtime; a set of software functions for parallel programming

and management in the style of Platform as a Service (PaaS).

It is important to have the possibility of specifying at runtime the number and type of necessary

virtual machines because the necessary amount of RAM and computational power depends on the

size of the social network and on the number of users that are considered at each crawler itera-

tion. The PaaS libraries guarantee a set of software functions for creation/termination of virtual

machines, synchronization of parallel jobs, data exchange among jobs. We rely on theMapReduce

programming paradigm [Dean and Ghemawat (2008)] which is supported by some important cloud

computing providers, such as Amazon Elastic Compute Cloud (EC2) [Amazon Elastic Compute Cloud



(2010)]. Our design is compliant with the Hadoop framework [Hadoop MapReduce (2010)] that

is the platform for the deployment of our crawler.

The proposed crawler is designed according to a modular architecture with two main parts. The

first part contains the engine responsible for the coordination of parallel execution of crawlers. This

module is responsible for managing the crawling process, including the choice of the parameters

for the number and the characteristics of the virtual machines used for crawling, and the definition

of the map and reduce functions that are used to implement over the cloud platform the crawling

algorithm described in Section 3.1. The second part of the crawler software consists of specific

code for data acquisition related to each social network. This module contains a standard interface

with methods to retrieve information about a user and about his/her social links. However, each so-

cial network requires a different implementation of this module because the APIs, when provided,

are different, and even the code to parse user home pages and to navigate them cannot be general.

3.1 Crawling engine module

The module responsible for the coordination of parallel crawling tasks exploits the MapReduce

programming paradigm, that requires the definition of the map and reduce phases to model crawl-

ing operations. We iterate the map and reduce phases in order to support the Breadth-Search-First

approach for data collection within the social network graph, as described in Section 2.

We recall that crawling is an iterative approach where at each step a set of border users U

is explored for a twofold reason. First, data about the users are retrieved and added to the set

of collected information about the social network. Second, all the outgoing social links of the

users are scanned to identify the new set of users that will be explored in the next crawling step.

Both tasks are implemented using the second module of the crawler that is specific for each social

network.

The map phase algorithm starts from the set U that includes the users who are to be explored

during the current iteration of the MapReduce algorithm. Figure 2(a) shows an example where the

map phase is carried out by two mapper processes: mapper 1 gathers information about the set of

users {u1, u2, u3}, while mapper 2 crawls the users {u4, u5}: the distribution of the users in the

original set U is typically carried out by evenly splitting the original input file into chunks. During

the map phase, each user u is explored and data are collected about the user and his/her links. A

new set V contains the users that are connected to the user u through outgoing social links. In the

example, the mapper 1 returns as output the set {u4, u5, v1, . . . v4} (Figure 2(b)), while the mapper

2 returns the set {v4, . . . , v8} (Figure 2(c)). The output of the mapper process is in the format of

couples key-value, where the key is the ID of a new user.

The output of the mapper contains duplicate values (in our example v4) and values that do not

belong to the final output. In our example, u4 and u5 belong to the initial set of users U and should

be filtered out. During the reduce phase, duplicated and previously visited users are removed from

the list of users that will be explored in the next crawling iteration, as shown in Figure 2(d). The

duplicated users are automatically removed by the MapReduce framework as all the key-value

pairs with the same key in the output of the map phase are aggregated and sent to the same reducer

instance. The task that is carried out by the reduce phase is removed from the output the nodes that

were visited in the previous crawling iterations.



(a) (b)

(c) (d)

3.2 Data collection module

The crawling coordination engine interacts with the data collection module for the acquisition

of data from the social network. This latter module contains all the network specific functions of

the crawler and provides a standard interface to the mapper. This modular approach guarantees a

general purpose crawler that can be easily customized to cope with different social networks.

Figure 2 outlines the data collection module that is activated when the generic ith mapper

invokes the module functions to collect data about a user u. The data collection logic is provided by

the data manager that can gather information from the social network using two subsystems. First,

if the social network provides APIs to third parties, the data manager can use the API interface for

data collection because this action is much more efficient than Web page parsing. If APIs are not

supported or if data obtained through APIs are incomplete, theWeb parser is activated. It requests

the personal Web page(s) of the user u and parses their content. All gathered information is sent to

a data storage that in our implementation is a DMBS. Then, the list of social links for the user u is

sent back to the coordination engine for the successive phases of crawling.



FIG. 2 – Crawling iterative process

3.3 Advantages of cloud-based crawling

The proposed cloud-based crawler can address the main issues for large scale data collection

in social networks for several reasons.

Using a large number of virtual machines increases data collection speed because the crawling

process is distributed over multiple nodes. As data acquisition is a network-bound operation (as it

involves only a limited amount of CPU and I/O resources), virtualization provides a further benefit

supporting a large number of separated virtual machines, each with its own public IP, on a smaller

set of computers. The final effect is a reduction of the crawling time with respect to traditional

crawlers, or the crawling of a significantly larger part of the network in the same amount of time.

Moreover, since each crawling process runs from a different IP, the risk of IP banning is limited.

Furthermore, virtualization allows the fast restart of virtual machine from previously-saved images,

and the restart of a virtual machine may be exploited as a way to refresh the pool of IP addresses

used for crawling.

We recall that the BSF approach for crawling (described in Section 2.3) may be subject to bias

in the collected data when only a small portion of the social network is visited by the crawler.

Cloud-based crawling can address this issue because it allows us to collect a large amount of

information in a short time period.

It is also important to observe that the crawler modular architecture simplifies the adaptation

of the crawler to support data acquisition from multiple social networks because it separates the

functions for the coordination of parallel processes (common to any social network) from the

interface with the social network specific APIs, including parsing of user home pages, that are the

only part of the crawler that needs to be customized for every social network.

4 Related work

Three main techniques have been exploited in literature for data acquisition from social net-

works: network traffic sniffing and analysis, ad-hoc applications, and crawling the social network

graph.

Capturing network data traffic has been exploited by the academic community to collect in-

formation about social network user behavior through the analysis of user request-response pat-



terns [Gill et al. (2007); Nazir et al. (2009)]. This technique is typically limited to restricted sce-

narios such as university campuses and company networks.

Implementing an ad-hoc application for social network analyses has been proposed by Nazir

et al. [Nazir et al. (2008)] that integrated three novel applications in Facebook to gather the dataset

of the subscribed users. This is an interesting and original idea that requires several implementa-

tion efforts and that does not guarantee return of investments if the proposed application does not

become popular. In any case, the gathered data refer only to the registered users with the high risk

of limited analyses and biased results.

In this paper, we focus on crawling that is the most flexible technique to gather data from social

networks as testified by many studies [Mislove et al. (2007); Cha et al. (2008); Lerman (2007);

Cha et al. (2009)]. We have seen that traditional crawling, although popular, arises many issues,

such as the limitations on the number of requests allowed in a specific time period imposed by

the social network operators. Many popular social networks offer public APIs that simplify the

extraction of data. However, when the data retrieved from APIs are not sufficient to explore the

social network structure (for example, because the returned data set is truncated), specific software

that gets and parses the user Web pages is required. Due to these and other difficulties that hinder

the implementation of a general purpose crawler suitable to multiple social networks, existing

studies have analyzed individual or small collections of sites, such as Flickr [Cha et al. (2008);

Lerman (2007); Cha et al. (2009)]. The results are limited to detailed views of one popular social

network, or provide some comparison between sites that are very similar. A significant exception

is the paper [Mislove et al. (2007)], that considers several social networks. However, the study is

limited only to the static properties of the network graph, for which data collection is very simple.

We propose to rely on the cloud computing paradigm to build a crawler that allows extensive

and complex data gathering and that can be easily customized thanks to its modular structure

consisting of a common engine for any social network and a software part specific for each site.

Other tools, such as Nutch [Bialecki (2009)], aiming to exploit parallel data collection and the

MapReduce paradigm were proposed initially for Web crawling. We should consider that these

tools are designed to navigate through Web pages and hyperlinks and are not designed to explore

the graph of social links. Furthermore, these tools cannot take advantage of the social networks

APIs to access information about the users, but they are specifically implemented to parse and

process Web pages.

A related idea to our proposal has exploited multiple geographically distributed nodes of the

Planet-lab network to collect data from a popular social network [Nazir et al. (2009)]. However,

the proposed solution as been applied only to one social network and is not designed to cope with

different networks with incompatible APIs. Furthermore, the Planet-lab architecture does not pro-

vide a flexible support to support the coordination of parallel crawlers, that must be implemented

without the facilities provided by the MapReduce approach proposed in our paper.

5 Conclusions

Social networks represent a novel and valuable source of information. In this paper we consider

data acquisition techniques and we leave to future work all issues (e.g., legal, privacy) and solutions

(e.g., anonymization, sampling) related to the analysis of the sources.

Literature presents three main techniques for data acquisition in social network: network traffic

analysis, ad-hoc applications and crawling. We analyze the main features and the limits of each

technique with a special focus on crawling that represents the main interest of this paper. In partic-



ular, we evidence that traditional crawling is limited by the large size and complexity of the social

network structure that requires excessive times to collect a significant portion of the available data.

Moreover, the social network operators tend to use countermeasures to limit excessive crawling

from the same IP sources. Finally, each social network provides its own APIs and is characterized

by peculiar Web pages and layouts, hence accessing data requires the implementation of a specific

crawler for each site.

We propose a novel approach that exploits the MapReduce programming paradigm and the

cloud computing platform for a new generation of social network crawlers. Our proposal allows

us to design a modular and easily customizable crawler that relies on a large number of distributed

nodes to speedup the data collection process and to address the other issues of traditional crawling

over social networks.

Acknowledgements

The authors acknowledge the support of FP7–SEC–2009-1 project VIRTUOSO "Versatile

InfoRmation Toolkit for end-Users oriented Open-Sources explOitation", Grant Agreement nr.

242352.

References

Ahn, Y.-Y., S. Han, H. Kwak, S. Moon, and H. Jeong (2007). Analysis of topological characteristics of

huge online social networking services. In Proc. of the 16th International Conference on World Wide Web

(WWW’07), Banff, Alberta, Canada.

Amazon Elastic Compute Cloud (2010). http://aws.amazon.com/ec2.

Andreolini, M., S. Casolari, M. Colajanni, and M. Marchetti (2007). Dynamic load balancing for network in-

trusion detection systems based on distributed architectures. In Proc. of 6th IEEE International Symposium

on Network Computing and Applications (NCA’07), Boston, MA, USA.

Bialecki, A. (2009). Web-scale search engine toolkit. In Proc. Of Apache Con 2009.

Canali, C., S. Casolari, and R. Lancellotti (2010). A quantitative methodology to identify relevant users in

social networks. In Proc. of the IEEE International Workshop on Business Applications of Social Network

Analysis (BASNA’10), Bangalore, India.

Canali, C., M. Colajanni, and R. Lancellotti (2009). Performance Evolution of Mobile Web-Based Services.

IEEE Internet Computing 13(2), 60 – 68.

Cha, M., A. Mislove, B. Adams, and K. P. Gummadi (2008). Characterizing social cascades in Flickr. In

Proc. of the 1st Workshop on Online Social Networks (WOSP’08), Seattle, WA, USA.

Cha, M., A. Mislove, and K. P. Gummadi (2009). A measurement-driven analysis of information propagation

in the Flickr social network. In Proc. of the 18th international conference on World Wide Web (WWW’09),

Madrid, Spain.

comScore comScore (2010). YouTube Streams All-Time High of 14.6 Billion Videos Viewed. comScore

Releases May 2010 U.S. Online Video Rankings.

Crovella, M. and B. Krishnamurthy (2006). Internet Measurement: Infrastructure, Traffic and Applications.

John Wiley and Sons, Inc.

Dean, J. and S. Ghemawat (2008). MapReduce: simplified data processing on large clusters. Communications

of the ACM 51(1), 107–113.

Gill, P., M. Arlitt, Z. Li, and A. Mahanti (2007). YouTube traffic characterization: A view from the edge. In

Proc. of Internet Measurement Conference (IMC’07), San Diego, CA.



Gjoka, M., M. Kurant, C. T. Butts, and A. Markopoulou (2010). Walking in Facebook: A Case Study of

Unbiased Sampling of OSNs. In Proc. of the IEEE International Conference on Computer Communications

(INFOCOM’10), San Diego, CA.

Hadoop MapReduce (2010). http://hadoop.apache.org/mapreduce/.

Khrishanmurthy, B. (2009). A measure of Online Social Networks. In Proc. of the 1st International Confer-

ence on COMmunication Systems and NETworkS (COMSNETS’09), Bangalore, India.

Lerman, K. (2007). Social Information Processing in News Aggregation. IEEE Internet Computing 11(6),

16–28.

Mislove, A., M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee (2007). Measurement and anal-

ysis of online social networks. In Proc. of the 7th ACM SIGCOMM conference on Internet measurement

(IMC’07), San Diego, California, USA.

Nazir, A., S. Raza, and C.-N. Chuah (2008). Unveiling Facebook: a Measurement Study of Social Network

Based Applications. In Proc. of the 8th ACM SIGCOMM Conference on Internet Measurement (IMC’08),

Vouliagmeni, Greece.

Nazir, A., S. Raza, D. Gupta, C.-N. Chuah, and B. Krishnamurthy (2009). Network level footprints of Face-

book applications. In Proc. of the 9th ACM SIGCOMM conference on Internet measurement conference

(IMC’09), Chicago, Illinois, USA.

NielsenWire (2009). Social Networking’s New Global Footpront. Nielsen Online Report.

Schonfeld, E. (2008). Digg Nearly Triples Registered Users In a Year, Says Sleuth Programmer. Research

Report TechCrunch, 2008.

Wilson, C., B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao (2009). User interactions in social networks

and their implications. In Proc. of the 4th ACM European conference on Computer systems (EuroSys’09),

Nuremberg, Germany.

Youtube Developer’s Guide (2010). Data API Protocol – API Query Parameters.

http://code.google.com/apis/youtube/2.0/developers_guide_protocol_api_query_parameters.html.


	Introduction
	Data acquisition in social networks
	Network traffic analysis
	Ad-hoc applications
	Crawling

	Cloud-based crawling
	Crawling engine module
	Data collection module
	Advantages of cloud-based crawling

	Related work
	Conclusions

