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Abstract

E-commerce sites are still a reference for the Web tech-
nology in terms of complexity and performance require-
ments, including availability and scalability. In this pa-
per we show that a coarse grain analysis, that is used
in most performance studies, may lead to incomplete
or false deductions about the behavior of the hard-
ware and software components supporting e-commerce
sites. Through a fine grain performance evaluation of a
medium size e-commerce site, we find some interesting
results that demonstrate the importance of an analysis
approach that is carried out at the software function level
with the combination of distribution oriented metrics in-
stead of average values.

1 Introduction

E-commerce sites have become the de-facto standard
for offering business-oriented services through the Web.
They are characterized by services and flows of infor-
mation that in the large majority of cases are created
on the fly and often are personalized for each customer.
The need for such complex (and often critical) services
has led to the deployment of specific Web-based tech-
nologies, which have evolved into todays’ e-commerce
systems. There is a large variety of open source and
proprietary components to build these systems, but all
of them are nowadays based on a multi-tier software ar-
chitecture that tends to separate the presentation, the
business and the information layers.

The front end layer is the interface of the e-commerce
system. It accepts HT'TP connection requests from the
clients, serves static content from the file system, and
offers an interface towards the business logic running on
the second layer. The most popular software for the front
end layer is the Apache Web server, although others ex-
ists (e.g., MS Internet Information Services, Sun Java
System Web Server, Zeus). The application server layer
is at the heart of an e-commerce system: it handles all
the business logic and computes the information which
will be used to construct HTTP documents. There is
a huge number of technologies for deploying a business
logic on the middle layer, for example CGI, ASP, JSP,

PHP, EJB, Java Servlets. The back end layer typically
consists of a database server and storage of critical infor-
mation that is the basis for generating dynamic content.
Database servers have a long history and there are many
possible choices. The most common for e-commerce sys-
tems are Oracle, IBM DB2, MS SQL Server on the pro-
prietary side, and MySQL and PostgreSQL on the open
source side.

The complexity of hardware and software components
and of their interactions, the heavy-tail characteristics
of the Web workload, the burst arrivals that cause sud-
den peaks make the performance evaluation of an e-
commerce system a quite difficult task. Most perfor-
mance studies use coarse grain load monitors and av-
erage performance metrics that are useful just to give
a first idea about the system behavior at the level of
hardware resources, such as disk, CPU, network inter-
face. They are also helpful for a preliminary bottleneck
analysis. The limits of this coarse grain approach arise
when it is necessary to understand the real motivations
that are behind poor performance or a bottleneck in an
e-commerce system, where there are literally hundreds
of processes/threads cooperating and conflicting for the
same few resources.

In these cases, a coarse grain view of the system resources
may lead to incomplete or false deductions. Hence, we
found necessary to pass to a fine grain performance anal-
ysis that has a twofold consequence: to look the system
at the function level instead of the node level; to con-
sider distribution-oriented metrics instead of the often
misused average-oriented metrics. Understanding which
fine grain functions are having the biggest impact on the
performance of a system resource and considering more
accurate metrics, such as cumulative distributions and
percentiles, are also the necessary basis to settle SLA-
based e-services.

We apply this approach to the analysis of a medium size
e-commerce site, that is built through open source soft-
ware and runs on PC-like hardware. Although the per-
formance results of this study cannot be immediately
extended to consider the complexity of an e-commerce
site built through sophisticated proprietary suites, such
as Oracle and IBM Web Sphere, the spirit of the ap-
proach and main conclusions are quite representative for



the large majority of medium-size dynamic Web sites re-
ceiving something in the order of hundreds of requests
per minute.

It is interesting to observe that the proposed fine grain
level approach is suitable not only to indicate which soft-
ware component(s) is(are) likely to be behind a system
bottleneck, but it also helps to evidence other interesting
results. For example, this study allow us to understand
the impact that the continuous improvement of hard-
ware components even at the entry level may have on
the present and future performance of medium-size e-
commerce sites. It evidences the consequences of WAN
effects even on the performance of the middle and back
end layers; it shows the impact on system performance of
token-based resources (e.g., file and socket descriptors)
that do not degrade gracefully as the CPU does.

This paper has many contributions that in part confirm
other results in literature and in part are original with re-
spect to multi-tier e-commerce systems. There are a lot
of interesting fine grain performance studies concerning
the HTTP servers, especially Apache Web server, such
as [18, 10]. However, we are not aware of other analyses
based on low-level kernel profiling oriented to the per-
formance evaluation of e-commerce systems. The WAN
effects on Web server performance has been considered
in [16], however this paper is limited to a platform con-
sisting of one Web server hosting static contents. None
of the previous studies seems to take into account the
impact of the Internet to the performance of the internal
layers of an e-commerce systems. The identification of
the indexes and metrics which result critical for the per-
formance evaluation of e-commerce systems have been
considered in many contexts, but not with the goal of
analyze the consequences of the different granularities.
For example, Dahlin [4] addresses the issue of using stale
server load information in the context of a distributed
system. The proposed algorithms may improve the per-
formance of distributed e-commerce systems.

Other studies compare different technologies for imple-
menting the same e-commerce system [13, 8], evaluate
the performance characteristics of different e-commerce
sites [3], or focus on the TPC-W model [5]. In [11] the
authors present an overview of key factors affecting per-
formance of Web sites which may be using Web services
protocols.

The remainder of this paper is organized as following.
Section 2 outlines the main functions of the components
of a representative e-commerce site of medium size and
popularity. Section 3 focuses on the different levels of
granularity and resource metrics for the evaluation of the
performance of the considered e-commerce system. Sec-
tion 4 describes the experimental testbed and the work-
load model that we used for the experiments. Section 5
discusses the experimental results, confirms some previ-
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Figure 1: Temporal diagram of a request for a Web object
to an e-commerce site

ous conclusions, and outlines some novel results. Finally,
Section 6 concludes the paper with some final remark.

2 Coarse grain times in an e-commerce system

A user request for a Web resource is typically processed
by the browser in terms of multiple requests to the front
end server to get the HTML page container and its em-
bedded objects. Most of the embedded objects are static
files that can be served directly by the front end HTTP
server. Other objects are generated on the fly through
one or multiple interactions with the application layer
and the back end layer. Let us focus on these dynamic
requests that imply the most complex interactions.

The response time T, for a Web object consists of two
main components: the network contribution T),.; and
the e-commerce system contribution 7T%,s. This latter,
in its turn, may be composed by one or multiple sojourn
times in the three main system components: the front
end time Ty, the application server time Tqs, the back
end time Tpe. (For the sake of completeness we should
also consider the time spent by each node to interact
with the others, but we neglect it because it has always
been demonstrated irrelevant with respect to the other
components. )

Figure 1 shows the temporal diagram corresponding to a
request for a dynamically generated resource. It evidence
the main sojourn times caused by the three main soft-
ware components of the e-commerce system. The net-
work time is typically independent of the type of request
(unless it requires a secure channel), while the important



parameter is the dimension of the transmitted informa-
tion: when the client sends a request to the e-commerce
site, the request reaches the front end after the time T},
that is determined by the network conditions between the
client and the server hosts. After the e-commerce sys-
tem time Ty, it is necessary to consider an additional
network time Tet,.

When the request is for a dynamic object, the front end
activates the application server after a processing time
Tfe,. We can assume that the server at the application
layer handles the logic associated with the request with
a Tys, processing time. If the application server needs
some data from the back end layer, then it must issue
one or more queries to the database server. This server
receives the first query, processes it in a Tj., time, and
returns the result to the application server that processes
the received data (Tgs, time) and possibly issues other
n — 1 queries to the database server. When the appli-
cation server has gathered the results from the database
server (Tys, ., time), it passes all information to the Web
server that builds the HTTP response (T, processing
time) and sends it back to the client.

Hence, the response time for a dynamic resource may
be written as in Eq. 1, where n denotes the number of
queries to the database server.

Tp= Y Toetit Y, Tret D Tus+ Y Toe, (1)

i=1,2 i=1,2 i=0,n+1 i=0,n

The total response time does not give any clue about
possible system bottlenecks. But even the Thet, Tre, Thus,
Tpe times considered as separate terms give a false im-
pression of mutual independence. On the other hand,
the components of the e-commerce system are strictly
correlated. For example, the application server relies on
the back end to provide the necessary information for
building the application logic data. If the back end layer
fails or is slow, the performance of the application server
may be severely degraded and, as a domino effect, the
overall performance of the dynamic requests drops. The
above considerations give a first hint about the necessity
of considering performance indexes at a finer grain level.

It is important to observe that there is no one-to-one
mapping between the multi-tier logical layers and the
physical architectures. The software components (front
end, application and back end servers) may run on a sin-
gle physical node or on a cluster of nodes [2], or even
may be distributed over a geographical area. The best
choice depends on many factors, such as the adopted
technology, the size and popularity of the e-commerce
system, the security goals. If we refer to medium-size
e-commerce sites, the real choice is between two or three
physical nodes, because the common tendency is to map
the database server on a separate node. With present
technologies, we can say that a software such as J2EE

[12] would lead to a physical separation of the three log-
ical layers on three nodes. On the other hand, other
software such as ASP, JSP, PHP tends to concentrate
the front-end server and the application server on the
same machine.

3 Resource metrics at different levels of
granularity

We discuss some problems related to the choice of the
appropriate resource metrics for evaluating the perfor-
mance of an e-commerce system. This is a quite dif-
ficult task for several reasons. First, there is a multi-
tude of possible resource metrics (utilizations, through-
puts, response times) at each layer of the system. With
the advent of new, more sophisticated OS and software
technologies, this number is doomed to increase further.
Thus, it is important to determine which of the available
metrics should be used as explanatory variables that have
a major impact on system performance.

The task is further complicated by the modern software
components, that are designed to support hundreds or
even thousands of users at the same time. In this con-
text, common monitoring tools, such as the system ac-
tivity report [7], which should help in the identification
of potential explanatory variables, are beginning to show
the limits of sampling measures at a coarse granularity.
As an example, many database management systems (in-
cluding MySQL) support fast, asynchronous I/O opera-
tions and table buffering; preserving buffer consistence
under these conditions are transforming some 1/0 oper-
ations in computationally intensive tasks instead of disk-
bound operations.

Hence, depending on the performance study, we have
to find the most appropriate granularity level for each
resource metric. There exists many levels of granular-
ity: system, node, hardware resource, software compo-
nent, process, function. As a testbed example, we con-
sider the system described in Figure 2, that has been
implemented on two nodes by means of the PHP tech-
nology.

System-level metrics represent the overall behavior of the
system. An example is the response time T, in Figure 2.
More generally, the performance samples collected by the
clients are all at the system level. They are the easiest
metrics to collect, but from these indexes we can only
verify whether the system is providing or not services
at an acceptable level of performance. It is not possible
to draw any other conclusion by simply looking at these
coarse grain indexes.

Node-level metrics describe the behavior of a single,
physical machine. In the architecture of Figure 2, Tj,
and (Tye + T,s) are two examples of node-level metrics.



Tnet Tfe

PHP

PHP
ZEND
Engine

@Sq
|

|
T
|
|
|
|

MySQL
Connection
handler

Apache
Clients
HTTP protocol
| /\ handler
/_\ Apache
- Connection
handler
— T
— Disk 1/0
— (static content) Logger
=3

E-commerce Web Site

Figure 2: An example of PHP-based architecture of an e-commerce site

At this granularity level, unexpected behavior at the sin-
gle nodes can be spotted, but no clue is given about what
is slowing down that machine.

To delve a deeper analysis, we have to consider at least
the resource-level metrics, that are associated to the
hardware and operating system resources of a node.
Typical examples include: the utilization of the CPU,
disk and network interface that are gracefully degrading
resources; the number of available file and socket descrip-
tors, the amount of free memory that are token-based
resources that may cause a sudden performance degra-
dation. The vast majority of monitoring tools provide
performance samples at this level of granularity. Indeed,
they help find to the lacking node resource, but it is dif-
ficult or impossible to derive the motivation for sure by
simply looking at resource-level metrics. For example,
in a node hosting a database server, if the disk results
as the node bottleneck, we can easily assume that this
is due to some database operations, but we cannot know
which component is causing the heavy I/O operations
that are degrading the node performance. The problem
become even worse when more software components run
on the same node (which is usually the case with Apache
and PHP). In these case to separate the utilizations of
the different components is a difficult or impossible task,
and we have to pass to a finer granularity.

The component-level metrics reflect the behavior of a
software component, such as the HI'TP server, the ap-
plication server or the database server. The problem is
that they are quite difficult to sample. Some metrics,
such the response time, may even require modifications
to the source code. On the other hand, component-level
metrics usually give a detailed view of the system perfor-
mance and permit to identify the critical components.

Even after the identification of the most critical compo-
nent, when dealing with multiprocess or multithreaded
applications, it is not easy to understand the motivations
why this components is not performing according to the

expected specifications. Often, it is necessary to go down
to consider the process-level granularity. A typical ex-
amples include the response times of the single processes
composing the application. The process-level granular-
ity is of great help in spotting the critical areas, but the
related metrics are almost impossible to collect with or-
dinary monitoring tools that are typically limited to the
node-level granularity. The process-level metrics can be
gathered by modifying the appropriate source code or by
running more sophisticated performance analyzers, such
as node profilers.

Some classes of software components, such as the
database server, are so complex that even after the indi-
viduation of the critical area, it is difficult to understand
ezactly the hot spots in the code. To this purpose, it
is necessary to resort to the finest granularity level, the
so called function level, which relates to the main func-
tions of each process (including the operating system).
This level of granularity requires special instrumentation
(node and kernel profilers [14]). They cause some over-
head on the system and yield data (call profile graphs)
that are quite expensive to analyze. For this reason, the
analysis of profiled data is usually performed off-line. On
the positive hand, the function-level metrics identify pre-
cisely the critical areas of the software component.

The analysis is not completed because, once a bottleneck
is identified, we have to remove it. These actions depend
on the particular type of bottleneck. We may have a mis-
configured system component that is under-performing,
where a simple reconfiguration may help boost its per-
formance. Typical examples of configuration bottlenecks
include the number of worker processes or the maximum
number of TCP connections. We may find that one phys-
ical resource at a node (CPU, disk, network interface) is
completely utilized. In this case, instead of reconfigur-
ing the system, its capacity must be upgraded. There
are two ways for improving the capacity of a component:
hardware upgrades which simply augment the system ca-
pacity with the same number of node(s), and hardware



replications which allow the system to distribute the
computation among additional nodes. A software bot-
tleneck may be removed through a better design. The
latter case is rather infrequent, because several appli-
cation servers and the major back end servers are not
shipped with the source code.

It is clear that the broadest picture is taken when sam-
pling all resource metrics at the function level. While
the collection in itself may be executed with relatively
low overhead through system kernel profilers, the real
problem is the off-line analysis of call-graphs for thou-
sands of different application-level and OS-level func-
tions. There is usually a tradeoff between the granularity
level of the resource metric and the completeness of the
obtained samples. There is no need for sampling at the
function-level when bottlenecks result obvious from the
component-level metrics. However, in most instances it
is rather easy to locate a bottleneck even at a higher
level, but when we need to understand the motivations
of that bottleneck we have to carry out the performance
analysis at the finest granularity of the previous scale.

After the choice of the resource metrics, it is necessary
to determine the most representative statistics for the
considered samples. We do not want to enter into many
details, but we should consider that average values are
still common choices for many performance studies, even
if the characteristics of the e-commerce systems (e.g.,
workload models characterized by quantities at different
orders of magnitude, heavy-tailed distributions, burst ar-
rivals, complex correlations between the software com-
ponents) would require higher moments. The choice of
cumulative distributions or percentiles instead of average
values becomes even more important when we consider
that e-commerce systems may be interested to provide
services based on some Service Level Agreement (SLA).
And it is quite obvious that the service levels of a com-
plex multi-tier system with large variances require statis-
tics that are more representative than simple average
values.

4 General experimental setting

4.1 Experimental testbed

Figure 3 shows the architecture of the prototype system.
The experiments are carried out in a clustered environ-
ment of nodes running the Linux operating system (ker-
nel version 2.6.8). Each node is equipped with a 2.4GHz
hyperthreaded Xeon, 1GB of main memory, 80GB ATA
disks (7200 rpm, transfer rate 55MB/s) and a Fast Eth-
ernet adapter. All nodes are connected through a Fast
Ethernet switch.

One node runs both the Apache [1] Web server (ver-
sion 2.0.52) and the PHP4 [17] engine, which is used
to implement the scripts at the application layer. The
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Figure 3: Architecture of the testbed for the experiments

Table 1: Composition of the workload scenarios.
| Scenario | Static requests | Dynamic requests

Browsing 60% 40%
Buying 5% 95%

database server MySQL [15] (version 4.0.20) runs on a
different node. To reflect a realistic workload scenario,
we enabled the support for table locking and two phase
commits. Data collection is performed through monitor-
ing tools at the node level (the system activity report [7])
and at the function level (oprofile [14]).

To take into account the effects of wide area networks,
we instrumented the netem packet scheduler [9] that cre-
ates a virtual link between th clients and the e-commerce
system with the following characteristics: maximum link
bandwidth 8Mbit/sec, packet delay normally distributed
with u = 200ms and o = 10ms, packet drop probability
of 1%.

4.2 Workload model

The choice of the workload model to test an e-commerce
system is a problem by itself. Unlike the workload mod-
els oriented to browsing where the interaction is basi-
cally with the Web server and the mix is mainly ori-
ented to define the number and size of embedded objects
together with the user think time, it is impossible to
define THE model for the e-commerce because of the
dozen of possible alternatives at any level of the multi-
tier architecture, often dependent also on the adopted
software technology. The research community is being
oriented to use the TPC-W benchmarking model that
is the only complete specification of an e-commerce site
(online book store). Even in this paper we use a TCP-W
like model. We implement two different scenarios, brows-
ing and buying, which capture client activities towards
the e-commerce system. The percentage of requests for
dynamic and static Web resources for both scenarios is
shown in Table 1. Space reasons lead us to present the
experimental results only for the buying scenario.

Web traffic is generated by means of a TPC-W like client
emulator, which is executed on a separate node. The
client emulator creates a fixed number of client processes
which instantiate sessions made up of multiple requests
to the e-commerce system. For each customer session,
the client emulator opens a persistent HT'TP connection



to the Web server which lasts until the end of the session.
Session length is exponentially distributed with a mean
of 15 minutes. Before initiating the next request, each
emulated client waits for a specified think time, which is
distributed exponentially with an average of 7 seconds.
The sequence of requests is determined through a state
transition matrix that specifies the probability to pass
from one Web page to another one.

5 Experimental results

In this section we present the main results of a fine grain
performance evaluation of the e-commerce system when
it is subject to the buying workload scenario. We eval-
uate multiple performance metrics at different granular-
ity levels (system, node, hardware resource and software
component levels) that allow us to identify the exact
causes of system congestion, and motivate some initially
unexpected behavior. To this purpose, we use node, re-
source and component level measurement to get a deeper
understanding of the hot spots in the system. Finer
grained metrics, at the function level, permit to narrow
the root of the problem and fully explain the causes of
the unexpected performance level.

In the first part, we show how the complete picture of the
performance metrics can give useful information about
the corrections that should be applied to the e-commerce
system to avoid bottlenecks or to improve its perfor-
mance. In the second part, we evaluate the impact of
wide area network dynamics on the system performance.
This study allow us to show the necessity of considering
in the analysis even the token-based resources that are
often neglected, but that cause the worst performance
problems when the pool is empty.

5.1 Fine grain performance evaluation

The first set of experiments is carried out in a local envi-
ronment without taking into account WAN effects, which
will be discussed in greater detail in Section 5.2. First,
we focus on system level measures (system response time
Tsys and the system throughput T'hr,) to find the capac-
ity of the system. Figure 4 shows the system throughput
(in served objects per second) as a function of the client
population. Saturation occurs around 250 clients when
the system is able to serve approximately 400 objects per
second.

We consider also cumulative distributions and percentiles
that are more representative of the system behavior in
the context of Web-based information systems. For ex-
ample, in Figure 5 we show the average and the 90-
percentile of the system response time for a single Web
object. The growth of the 90-percentile around the knee
is much more evident (from 0.075 at 240 clients to 0.68
seconds at 360 clients) than that of the average response
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Figure 4: Throughput of the e-commerce system
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Figure 5: Response time of the e-commerce system

time (from 0.0759 at 240 clients to 0.322 at 360 clients).
Indeed, mean value may tend to underestimate the ex-
plosion of the response time for increasing client popula-
tions.

Granularity at the system level is fairly easy to collect,
but it only allows for congestion detection. For example,
it does not provide any information about the causes
that lead to poor performance. Thus, it is necessary to
investigate the system at a finer grain level to find out
where and why congestion occurs. Let us pass to consider
the contribution to the system response time of the two
nodes that compose the considered e-commerce system:
one hosting the Apache Web server and the PHP compo-
nent, the others running the MySQL server. Node-level
measurement allows us to identify where the major part
of the response time is spent. Furthermore, we can eas-
ily identify the node that gets overloaded by observing
which node-level response time explodes first. Figure
6 shows the 90-percentile of the system response time
T,ys and the contributions of the two nodes Tf.—_,s and
Tye (logarithmic scale). There is no doubt that Tp. rep-
resents the predominant factor of 7,.. Hence, with the
considered workload oriented to dynamic requests, the
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bottleneck that limits the performance of the system is
on the back-end node.

At this level of granularity we are still missing most of
the information on the possible interventions on the sys-
tem to avoid the congestion. A common approach to
better identify the potential bottlenecks is to move to a
finer granularity level such as the resource level. We use
metrics such as CPU, disk and network utilization col-
lected on each node that allow to evidence the hardware
resource of the back-end node that is over-utilized with
respect to its capacity.

Figures 7 and 8 show the CPU utilization of the back-
end node during the experiments carried out with a pop-
ulation of 240 and 360 clients, respectively. The two
horizontal lines represent the mean values. CPU utiliza-
tion is burst at 240 clients (Figure 7), while it bumps to
100% for the majority of time when there are 360 clients
(Figure 8). Table 2 shows the average resource utiliza-
tion of the database node for different client populations.
In particular, user-space and kernel-space measures are
separated to better identify the source of the problem
(application computations or system calls?). To com-
plete the picture, we also report the utilization of the
disk and the network interface. This table confirm that
the CPU utilization is extremely high, while disk and
network seem underutilized. The low disk activity is an
initially unexpected result that we can explain due to the
database size which in large part fits in the main memory
of 1Gbyte. This aspect is interesting because with the
hardware improvements even at the entry level, it is be-
coming common for medium-size e-commerce databases
to fit for a large part in the main memory. As a trend re-
sult, we can conclude that the disk activities may not be
the most significant component for understanding the be-
havior of the back-end node hosting the database server.
A similar result has been obtained in [6].

If we consider the CPU utilization for 360 clients (Ta-

# of CPU utilization disk Network
clients | user kernel utilization | utilization
120 17% 4% 0.10% 0.018%
240 51% 9% 0.12% 0.019%
360 76% 14% 0.15% 0.020%

Table 2: Hardware resource utilizations

ble 2), we recognize a 80-20% ratio between the time
spent in the user and kernel space. This initially unex-
pected result suggests that the application level compu-
tations are much more intensive than the cost necessary
for the system calls. As there is only one major pro-
cess running on the back-end, we can easily assume that
the mysqld server process is the source of the bottleneck.
However, if we limit the analysis at this granularity level,
we cannot exactly motivate the high CPU utilization of
the database server application.

Hence, to identify the hot spots in the database server
process we pass to get measurements at the function
level that represent our finest grain. The profiler out-
put shows more than 800 mysqld functions, hence a de-
tailed analysis is quite difficult and even useless. The
idea is to focus on the functions the use more CPU
time, while we aggregate the others that are not sig-
nificant for a performance study. Figure 9 shows the
percentages of CPU utilizations that are used by the
main functions of the mysqld process that is, tuple man-
agement, I/O management, buf_page_is_corrupted(), oth-
ers. The result of the pie is clear and unexpected: the
function buf page_is_corrupted() that checksums asyn-
chronous I/0 buffers uses almost 70% of the CPU time.
This result is not at all obvious from the measurements
carried out at the hardware resource level, hence some
technical details may be useful. This function is part
of the asynchronous I/O buffer management of mysqld.
Asynchronous 1/0 is used to improve I/O performance
by caching frequently accessed portions of the database
thus bypassing the operating system disk buffer cache.
To provide data consistency a checksum is calculated on
every mysqld buffer through the buf_page_is_corrupted()
function. We can conclude that the asynchronous I/0
subsystem is the real bottleneck of the mysqld process.

To improve the database performance, we need to reduce
this checksumming activity by decreasing the number of
buffer accesses. This can be easily done by augmenting
the size of the query cache. Figure 10 reports the cu-
mulative probabilities of the response time of the back-
end node before and after the intervention. This figures
proves the validity of our deduction because the 90 per-
centile of Ty drops from the original 0.646 seconds to
0.273 seconds after the database tuning. A similar im-
provement is reflected on the system response time T'.
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Figure 10: Cumulative distribution functions of the back-
end response time before and after the tuning
operation
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Figure 8: CPU utilization of the back-end node (360
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5.2 Impact of wide area network effects

The performance study on the e-commerce system in-
volved a large number of experiments. In this section we
report another interesting result that was initially un-
expected, at least for the motivations. The goal is to
evaluate the impact of WAN effects on the performance
of the e-commerce system. The initial motivation for
this study comes from the results of Nahum et al. [16]
that were among the first authors to describe the details
of the wide area network effects on the behavior of the
Web server system. The results of this section extends
their work from a single layer Web site to a multi-tier
e-commerce systems.

The testbed and workload model is the same of the pre-
vious section, with the addition of wide area network em-
ulation between the clients and the front-end node. Due
to space limitations, we focus on a client population of
240 clients and outline the impact of wide area network
characteristics on the results obtained previously. We
denote the scenario without and with wide area effects
through the terms no-WAN and WAN, respectively.

We first compare the response time T, for the two net-
work scenarios. Figure 11 shows the cumulative distribu-
tion of the response time of one dynamic request to the
e-commerce system 7). and the network delay T;,¢; for the
WAN scenario. The 90-percentile of T,,(WAN) is equal
to 2.5 seconds. From the previous experiments we have
also that the 90-percentile of the system response time
for the no-WAN scenario is equal to 0.075. The difference
of two orders of magnitude is too large to be motivated
only by the introduction of the network delays. Indeed,
the network delay has a 90-percentile below 1.5 seconds,
which cannot explain the 90-percentile of 2.5 seconds for
T.(WAN), when the T, (no — WAN) counterpart is be-
low 0.1 seconds.

To look for other motivations we pass to a finer grain
analysis of the system. To this purpose, we show in Fig-
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Figure 11: Cumulative distributions of the response time
T, and the network time Tne: (WAN scenario)

ures 12 and 13 the contributions to the response times
at the level of the three main software components. In
the comparison, it is necessary to consider the different
scale on the z-axis.

While the contributions of the front-end servers T, re-
main low for both scenarios (the 90-percentile is equal
to 0.0045 and 0.005 for the no-WAN and WAN scenario,
respectively), the contributions of the application and
back-end server grow substantially with the introduc-
tion of the WAN effects. In particular, the 90-percentile
of T,s passes from 0.008 to 0.46 seconds, and the 90-
percentile of Tj passes from 0.055 to 1.5 seconds. The
poor performance of the database and the application
server in a WAN scenario are explained through a finer
granularity analysis.

Figure 14 shows the number of open sockets during the
experiment in the WAN and no-WAN scenarios. From
this figure, it is immediate to get two results: the num-
ber of sockets simultaneously used by the database server
is three times higher in the WAN scenario (on average,
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Figure 13: Cumulative distribution function of the
components of Tsys (WAN scenario)

45 vs. 128); the sockets are a limited set that in this
experiment is fully utilized (128 is the default number).
The growth in socket needs is explained by considering
that connections between the application server and the
database server last much longer in the WAN scenario
due to the network slowdown on client requests. Sockets
are token based resources that are not gracefully degrad-
able. This means that once the number of available sock-
ets is exhausted, further requests to the database server
are queued. The contention for access to the limited pool
of available sockets connecting to the database further
increases the concurrency level leading to an amplifica-
tion of the phenomenon that is similar to a thrashing
event. The macroscopic effect of socket shortage is the
poor performance of the application server and back-end
server components.

The previous finer granularity analysis show two impor-
tant results. In an e-commerce system there are many
token-based resources that are often neglected in the
performance studies: ignoring these resources may have
serious consequences. There is a high interdependence
among the multiple components of an e-commerce sys-
tem, hence a bottleneck on one component can easily be
reflected on other parts of the system with an amplifica-
tion effect that sometimes makes difficult to understand
the initial cause.

6 Conclusions

This paper investigate different granularity levels for the
performance evaluation of medium-size e-commerce sys-
tems. We discuss the trade-off between the complexity
of the analysis and the importance of having detailed re-
sults. We also demonstrate that, if a coarse grain view
of the system performance may be useful for the bottle-
neck localization, it is necessary to pass to a fine grain
analysis to understand the motivations and remove the
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problems.

We also notice the importance of using percentiles and
cumulative distribution functions instead of average val-
ues in e-commerce systems that are characterized by
complex sub-system interactions, burst arrivals, heavy-
tailed workload models.

These premises are allowed us also to evaluate the im-
pact of WAN effects even on the internal layers of the e-
commerce system, and the consequences on performance
of having a certain number of token-based resources that
degrade suddenly.
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