
Open issues in self-inspection and self-decision mechanisms for
supporting complex and heterogeneous information systems

Michele Colajanni
University of Modena

Modena, Italy

colajanni@unimo.it

Mauro Andreolini
University of Roma Tor Vergata

Roma, Italy

andreolini@ing.uniroma2.it

Riccardo Lancellotti
University of Modena

Modena, Italy

lancellotti.riccardo@unimo.it

Abstract

Self-* properties seem an inevitable mean to manage the increasing complexity of networked in-
formation systems. The implementation of these properties imply sophisticated software and decision
supports. Most research results have focused on the former aspects with many proposals of passing from
traditional to reflective middleware. In this paper we focus instead on the supports to the run-time deci-
sions that any self-* software should take, independently of the underlying software used to achieve some
self-properties. We evidence the problems of self-inspection and self-decision models and mechanisms
that have to operate in real-time and in extremely heterogeneous environments. Without an adequate
solution to these inspection and decision problems, self-* systems have no chance of real applicability
to complex and heterogeneous information systems.

1 Introduction

Self-* systems seem the inevitable answer to the continuously increasing complexity of networked infor-
mation systems. Let us define a complex and heterogeneous information system (CHIS) as a system with
multiple application classes and multiple Service Level Objectives, such as performance, availability, se-
curity, energy saving, costs. These SLOs may be contradictory and, even worse, difficult or impossible
to quantify with the same measurable metrics. Many researchers have addressed the issues of designing
and implementing software that coordinates interactive networked applications. For example, CORBA [1],
J2EE [3], .NET [2] hide from the programmer many complicated details of the underlying software and
hardware platforms, thereby increasing portability and facilitating maintenance. They provide an abstract
interface that masks to the application low-level details of the operating system and network layer, and
guarantees interoperability among application components through standard interfaces. On the other hand,
these infrastructures lack the necessary support for the dynamic aspects of todays’ new computational needs.
Hiding the underlying details has many advantages, but a certain degree of awareness is necessary for scal-
ability, QoS, and adaptability to context and conditions of highly dynamic environments. For these reasons,
a desirable middleware for implementing complex policies related to the above mentioned aspects should
provide an adequate mix of transparency and control depending on the applications. Many researchers think
that to provide the software with adequate flexibility requires the passage from conventional middleware to
some forms of adaptive middleware. For example, the reflective middleware model (e.g., DynamicTAO [4],



OpenORB [9]) is implemented as a collection of concurrent objects that can react dynamically to changes
in the underlying platform and to external requirements through migration, enabling of dynamic interac-
tion patterns, reconfigurations, insertion and removal of components. In this way, it is possible to select
protocols, algorithms, policies and any other mechanism to optimize system performance for unpredictable
context and situations. However, it is important to remark that self-* properties and reflective middleware
are not synonymous. Actually, some partially self-* systems have been implemented without recurring to
reflective middleware. As an important example of self-oriented software that does not seem based on reflec-
tive middleware, we can cite the IBM WebSphere Application Server, that in its present version is considered
predictive, that is, at the third level in the IBM scale of Autonomic Computing, ranging from ”basic” (level
1) to ”autonomic” (level 5). Independently of the software supports to achieve self-* properties, there is an
underlying (and less investigated) level that must help the middleware to trigger or not the adapting actions
at run-time.

Self-inspection Self-inspection refers to the ability of automatically capture all information about the in-
ternal state and also adapting the monitoring system to internal and external conditions. The support
to self-adaptive applications for a CHIS must be well developed in the following parts: monitoring,
measurement, comparison, information retrieval from other sources, including resource utilization
monitors.

Self-decision This is the capacity of taking autonomous decisions according to some SLO rules and to a
measure of the internal system state that is obtained from the previously described self-inspection
component.

We think that self-inspection and self-decision properties are among the most important issues that
should be considered to implement really operative self-* systems. Self-* capabilities for inspection, deci-
sion (and, possibly, adaptation) are desirable in a middleware system, but they must be disciplined much bet-
ter than supports to conventional middleware, because dynamic and autonomous modifications can result in
unpredictable system behavior and possible breakdown. These risks limit the applicability of self-*systems
as the basis of a complex and heterogeneous information system.

2 Self-inspection

Operating any distributed information system without accurate statistics is not desirable. In general, it is
not easy to find the right combination between data sources providing low volume, coarse-grained, non-
application specific data, and data sources providing high volume, fine-grained, and application specific
information. These issues are even more complex in self-* systems that are governed by the imposed SLOs.
Their policies should use system-wide and component status information to take the appropriate actions
and to react to events, but this kind of valuable information is not directly available. Distributed monitors
usually yield raw, OS-level data (e.g., CPU and disk utilizations, network throughput) or application-level
data (e.g., request throughput) that has to be aggregated to infer conclusions about the specific subsystem.
Even worse, self-* systems should be able to weigh different measurements into an homogeneous indicator
that is used to quickly estimate the status of one or more components and to take actions accordingly.
Similarly to a neural network that has to make assumptions about which weights to increase/decrease after
an error signal, a distributed system relies on a number of interactive sub-parts that together result in a global
phenomenon. In this context, one interesting challenge is how to quickly transform heterogeneous and
distributed measurements into an homogeneous indicator of performance or status. These indicators should

2



help to take run-time decisions that allow the system to perform sufficiently well. Due to the complexity and
heterogeneity of the models, we cannot expect optimality and we should not search for it. It is much more
important to escape from worst cases and to respect SLOs. The literature helps only partially. Conversion
from multi-objective to single objective is often done by computing a weighted sum of the different metrics,
as shown in [10, 6, 7]. In these works, either a simple weighted arithmetic mean or a simple weighted
geometric mean are used to aggregate individual ratings of system features. The logical relationships among
features and the distinction of mandatory, desirable, and optional selection criteria are not incorporated in
these early models. Even more sophisticated hierarchical models [8] do not aim to capture and combine the
dynamics of transient phenomena fairly accurately. The large majority of statistical models provide off-line
data analyses.

We are studying models that distinguish two main classes of reaction to external forces: resources
degrading gracefully (e.g., CPU) and resources degrading suddenly (e.g., thread pools, memory, process
descriptors, number of connections). Resources degrading gracefully cause a smooth deterioration of sys-
tem performance, while those degrading suddenly may have tragic consequences on the SLOs and even
on the availability of the whole system. To avoid abrupt performance degradation, a possible solution is
that of adjusting the weights according to the availability of suddenly degrading resources. In this way,
resource scarcity is gradually signaled by an increasing performance indicator. This could lead to novel
self-inspection supports that combine heterogeneous sources of information by working on the distance
from the maximum capacity of each critical resource and by focusing on performance trends more than
on instantaneous values, possibly combined with some past measures. The goals of these and other mod-
els for self-inspection run-time support should be clear: to extract from many heterogeneous and raw data
”the information” that is really valuable to the self-decision support of CHIS in order to activate the right
component.

3 Self-Decision

There is on open debate whether a CHIS with multiple SLOs may be characterized by steady state behav-
iors or just by an aperiodic behavior. In the latter case, it appears dangerous to predict future conditions
by crunching current information, and almost impossible to take any valuable adaptive decision. However,
drawing a pessimistic view, such as that CHIS is characterized by unstable aperiodic behavior resembling
chaos, only because any human product is not (and for a long time will not be) helped by other natural
features typical of chaotic systems, is premature. We think that to associate self-* properties to nervous sys-
tems or nature-like behaviors is a dangerous hype. Human products cannot embed all known (and unknown)
forces that govern natural beings, such as selection, evolution, and the time scale is completely different.
Maybe one day in the future, this will be the reality. But we need to support CHIS tomorrow, not in an
unforeseen future. Hence, we have to consider what it is possible to do now.

On the negative hand, we undoubtedly have to forget about linearity assumptions at the basis of many
previous models. We also have to exclude all optimization models and algorithms that do not provide an
answer in reasonable or real-time. On the positive hand, self-decision run-time supports for a CHIS can
confide in at least two important facts. First, any CHIS consists of layers, components, subsystems and
hierarchies, hence traditional divide-et-impera approaches remain the most valuable source of solutions.
Last, and even more important, a CHIS must not tend to optimization but to something we will call ”good
enough quality”.

Lloyd suggests that the combination of the dynamical systems theory and information theory could be
used together to formulate a solution for the control of complex adaptive systems. However, control of

3



complex, nonlinear systems requires insight and intuition [5]. But, what happens if the decision algorithm
has not enough time to learn? The time to learn, the time to reach another stable state, the time necessary
for optimization, is often neglected by previous theories. Is another theory necessary? Can existing theories
be extended or combined? If we try to adopt previous theories that tend to optimization, that assume to have
enough time to reach a steady state, that have many try-and-drop possibilities, that have natural selection,
we do not have many hopes to build a sufficiently reactive self-*system .Fortunately, in most instances, a
CHIS does not require optimization methods that are interested in finding the best solution possible. A
self-* system supporting a CHIS can be fully satisfied by an acceptable state that escapes a critical situation.
This goal is not so difficult to meet, since most real systems are largely over-provisioned. However, the full
requirements and implications of good enough quality remain to be explored.

4 Conclusions

Integrating self-* properties into current systems is one of the future challenges of distributed computing.
The claim of this position paper is that the real applicability of self-* properties to complex and heteroge-
neous information systems requires not only sophisticated software supports (such as reflective middleware),
but also new insights and models for self-inspection and self-decision that can support real-time adaptation.
We presented some open issues that have to be addressed. It is yet unclear how to aggregate several hetero-
geneous measurements into an homogeneous indicator of performance or status. Given the highly dynamic
nature of CHIS, fast and ”good enough quality” decisions are often preferred to slow and optimal solutions.
However, the full requirements and implications of ”good enough quality” in most contexts remain yet to be
explored.

References

[1] The Object Management Group. http://www.omg.org/.

[2] Microsoft .NET Information. http://www.microsoft.com/net/.

[3] Java 2 Platform, Enterprise Edition (J2EE). http://java.sun.com/j2ee/.

[4] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes, and R. H. Campbell. Monitoring, Security,
and Dynamic Configuration with the dynamic TAO Reflective ORB. In Proceedings of IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware’2000), Apr. 2000.

[5] Learning How to Control Complex Systems. http://www.santafe.edu/sfi/publications/
Bulletins/bulletin-spr95/10cont%rol.html.

[6] J. R. Miller. Professional Decision-Making: a procedure for evaluating complex alternatives. Praeger, New
York, NY, 1970.

[7] J. D. Sable. System evaluation methodology. Technical Report AUER-1834-TR-2, INFROM Data Management
System Study, Auerbach, 1970.

[8] S. Y. W. Su, J. Dujmovic, D. S. Batory, S. B. Navathe, and R. Elnicki. A cost-benefit decision model: analysis,
comparison and selection of data management. IEEE Trans. on Database Systems (TODS), 12(3):472–520, Sept.
1987.

[9] The Community OpenORB project. http://openorb.sourceforge.net/.

[10] D. R. J. White, D. L. Scott, and R. N. Schulz. POED – A method of Evaluating System performance. IEEE
Trans. Eng. Manage., pages 177–182, Dec. 1963.

4


