
MESHCHORD: A Location-Aware, Cross-Layer Specialization of Chord
for Wireless Mesh Networks

Simone Burresi
Dept. of Computer Science

Univ. of Pisa, ITALY

Claudia Canali
IIT-CNR

Pisa, ITALY

M. Elena Renda
IIT-CNR

Pisa, ITALY

Paolo Santi
IIT-CNR

Pisa, ITALY

Abstract
Wireless mesh networks are a promising area for the de-

ployment of new wireless communication and networking
technologies. In this paper, we address the problem of en-
abling effective peer-to-peer resource sharing in this type of
networks. Starting from the well-known Chord protocol for
resource sharing in wired networks, we propose a special-
ization (called MESHCHORD) that accounts for peculiar
features of wireless mesh networks: namely, the availability
of a wireless infrastructure, and the 1-hop broadcast nature
of wireless communication. Through extensive packet-level
simulations, we show that MESHCHORD reduces message
overhead of as much as 40% with respect to the basic Chord
design, while at the same time improving the information
retrieval performance.
1 Introduction

Wireless mesh networks are a promising technology for
providing low-cost Internet access to wide areas (entire
cities or rural areas), and to enable the creation of new type
of applications and services for clients accessing the net-
work. Differently from other types of wireless multi-hop
networks, wireless mesh networks are composed of two
types of nodes: mostly stationary wireless access points
(routers), and mobile wireless clients. Routers are con-
nected to each other through wireless links, and provide a
wireless access infrastructure to wireless clients. Some of
the routers are connected to the Internet via wired links, and
act as gateways for the other routers and for the clients.

Among innovative applications enabled by mesh net-
working, we mention wireless community networks (see,
e.g., the Seattle Wireless initiative [14]), in which users in
a community (neighborhood, city, rural area, etc.) spon-
taneously decide to share their communication facilities
(wireless access points) and form a wireless multi-hop net-
work to be used by community members. Wireless com-
munity networks can be used to share the cost of broadband
Internet access, but also to realize innovative services for
the community, such as sharing of community-related re-
sources, live broadcast of local events, distributed backup
systems, and so on.

As the above mentioned innovative applications suggest,
peer-to-peer resource sharing is expected to play an im-
portant role in forthcoming wireless networks based on the
mesh technology. In this paper, we investigate the feasibil-
ity of the well-known Chord algorithm [15] for peer-to-peer
resource sharing in wired networks in a wireless mesh net-
work environment. Starting from the basic Chord design,
we propose a specialization – named MESHCHORD – that
accounts for peculiar features of mesh networks: namely, i)
the availability of a wireless infrastructure, which enables
location-aware ID assignment to peers, and ii) the 1-hop
broadcast nature of wireless communications, which is ex-
ploited through a cross-layering technique that bridges the
MAC to the application layer.

We evaluate the performance of Chord and MESH-
CHORD in a wireless mesh network environment through
extensive packet-level simulations. The results of the sim-
ulations show that MESHCHORD outperforms the basic
Chord design both in terms of reduced message over-
head for overlay maintenance (mainly achieved by location-
awareness), and in terms of increased information retrieval
efficiency (mainly achieved by cross-layering). Overall, the
study reported in this paper suggests that MESHCHORD can
be successfully utilized for implementing resource sharing
applications in wireless mesh networks.
2 Related work and contribution

Recent papers have addressed the problem of enabling
P2P resource sharing in mobile ad hoc networks (MANETs)
[4, 7, 11, 13, 16]. A standard technique used to improve
performance of P2P algorithms when used in wireless net-
works is cross-layering, i.e., taking advantage of informa-
tion delivered from lower layer protocols (typically, the net-
work layer) when constructing the logical links between
peers. Approaches based on this idea are [2, 9, 10]. Al-
though a careful design of the overlay improves the effi-
ciency of P2P systems for MANETs, the combination of
node mobility, lack of infrastructure, and unreliable com-
munication medium has hindered the application of P2P ap-
proaches in medium to large size ad hoc networks.

Only a few recent papers have explored how P2P ap-

Sixth Annual IEEE International Conference on Pervasive Computing and Communications

0-7695-3113-X/08 $25.00 © 2008 IEEE
DOI 10.1109/PERCOM.2008.25

206

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

proaches can be applied to wireless mesh networks. In [1],
the authors evaluate the gain that can be obtained from us-
ing network coding when running file sharing applications
in wireless mesh networks, and conclude that some gain can
actually be achieved, although not as much as in a wired net-
work. In [5], some of the authors of this paper introduced
a two-tier architecture for file sharing in wireless mesh net-
works: the lower tier is composed of mobile mesh clients,
which provide the content (files/resources to share) to the
P2P overlay; the upper tier is composed of stationary mesh
routers, and implements a distributed hash table for locating
resources within the network.

The investigation presented in this paper complements
our previous work [5] under many respects. While the em-
phasis in [5] was on the procedures for dealing with client
mobility at the lower tier of the architecture, in this paper we
are concerned with the efficiency of DHT implementation in
the upper tier of the architecture. Another major difference
with respect to [5] is that we consider Chord [15] instead of
Viceroy [8] for implementing the DHT, and that we perform
packet-level simulations to investigate the performance of
Chord and of our proposed specialization MESHCHORD in
realistic wireless mesh network scenarios. The simulations
carried out in the present paper account also for the (con-
siderable) message exchange needed to maintain the Chord
overlay, and for dynamic join/leave of nodes at the upper
tier of the architecture. As the results presented in this pa-
per show, the overhead for overlay maintenance is consid-
erable and, in some cases, can lead to network congestion.
Hence, results obtained from high level simulations that ig-
nore maintenance overhead and do not implement the MAC
layer can be very inaccurate. Finally, differently from [5],
we investigate also the performance of information retrieval
in terms of percentage of successful queries and query re-
sponse time.

Another major contribution of this paper is the notion
of cross-layering that we exploit in the MESHCHORD de-
sign: while existing works exploit cross-layering to ex-
tract information from the network layer (typically, IDs of
physical neighbors of a peer node) to improve performance
[2, 9, 10]1, in MESHCHORD we extract information from
the MAC layer. The main idea is to exploit the “wireless
advantage” (1-hop broadcast nature of wireless communi-
cations) to possibly capture packets which are not destined
to a certain peer node u, but for which u possesses rele-
vant information (e.g., u stores the key requested for in the
packet). To the best of our knowledge, MESHCHORD is the
first proposal exploiting MAC cross-layering for improving
performance in P2P file sharing applications for wireless
networks.

1Note that we also exploit this information in MESHCHORD, but we
use the term ‘location-awareness’ instead of cross-layering to refer to this
technique.

Finally we want to cite [3], where the authors present a
(packet-level) simulation-based investigation of Chord per-
formance in MANETs environments. The main finding of
[3] is that node mobility considerably impairs Chord consis-
tency, with a dramatic effect on information retrieval perfor-
mance: in presence of even moderate mobility, the percent-
age of successful queries can drop below 10%.

The main difference between our study and the one re-
ported in [3] is that we target mesh networks instead of
MANETs, and that we also study a location-aware, cross-
layer specialization of Chord for this type of networks.
Contrary to what reported in [3], our analysis shows that
Chord, and in particular our proposed specialization MESH-
CHORD, can successfully be applied in wireless mesh net-
work scenarios.
3 MESHCHORD
3.1 Network architecture

Similarly to [5], we assume a two-tier architecture for
file/resource sharing: the lower tier of the architecture is
composed of (possibly) mobile mesh clients (clients for
short), which provide the content to be shared in the P2P
system; the upper tier of the architecture is composed of sta-
tionary mesh routers (routers for short), which implement a
DHT used to locate file/resources within the network. Un-
less otherwise stated, in the following we use the term peer
to refer to a router forming the DHT at the upper tier of the
architecture.

We assume routers are stationary, but they can be
switched on/off during network lifetime. When a client u
wants to find a certain resource, it sends to its responsi-
ble router a (a mesh router within its transmission range)
a FindKey message, containing the key (unique ID) of the
resource to find (see next section for details on key assign-
ment to node/resources). The responsible router forwards
the resource request in the DHT overlay according to the
rules specified by the Chord protocol (see below), until the
resource query can be answered. In case of successful query
resolution, a message containing the IP address of the client
holding the requested file/resource is returned to client u
through its responsible router a. For details on the rules for
responsible router selection, on the procedures needed to
deal with client mobility, and to add/remove resources from
the distributed index, see [5].
3.2 Basic Chord operations

The DHT approach investigated in this paper is Chord
[15]. Chord is based on the idea of mapping both peer
(mesh router) IDs and resource IDs (keys) into the same
ID space, namely the unit ring [0, 1]. Each key resides on
the peer with the smallest ID larger than the key (see Figure
1), i.e., peer p manages keys comprised between its own ID
and the ID of the predecessor of p in the unit ring (denoted
range(p)). Chord maps peer and resource IDs into the unit
ring using a hashing function, named Sha1, which has the

207

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

0

P21

range(p)

peer ID

resource key

P12

P7

P31

P40

P49

p

P60

Finger Table (P21)
P21+1 P31
P21+2 P31
P21+4 P31
P21+8 P31
P21+16 P40
P21+32 P60lookup(45)

Figure 1. Basic Chord operations (m = 6).
property of uniformly distributing IDs in [0, 1]. Indeed, IDs
in Chord are represented through m-bit numbers, i.e., at
most 2m distinct (peer or resource) IDs are present in the
Chord system. In the following, we set m = 24, which cor-
responds to having about 16 millions possible IDs. This is
a reasonable ID space for wireless mesh networks, in which
the number of shared resources is expected to be in the or-
der of several thousands, and the number of mesh routers
(peers) in the order of a few hundreds.

The main operation implemented by Chord is the
lookup(x) operation, which can be invoked at any peer to
find the IP address of the peer with ID= x if x is a peer ID,
or the IP address of the peer responsible of key x in case x
is a resource ID. lookup operations are used both for query
resolution and for overlay maintenance.

To speed up lookup operations, every peer maintains a
table of up to m distinct peers (fingers). The i-th finger of
peer j, with 1 ≤ i ≤ m, is the peer which has the smaller
ID larger than j+2i−1. Note that some of the fingers (espe-
cially for low values of i) can actually coincide (see Figure
1). In order to facilitate join/leave operations, each peer
maintains also the ID of its predecessor in the Chord ring
(peer P12 for peer P21 in Figure 1).

When a lookup(x) operation is invoked at peer p and
the operation cannot be resolved locally (because x is not
within range(p)), a message is sent to the peer p′ with
largest ID < x in the finger table of node p. If p′ cannot
resolve the lookup operation, it replies to peer p with a mes-
sage containing the ID of the peer p′′ with largest ID < x in
its own finger table. Peer p then forwards the request to peer
p′′, and so on, until the lookup operation can be resolved (in
at most m steps)2. Referring to Figure 1, a lookup operation
for key 45 issued at node P21 is first forwarded to node P40,
and then to node P49, which is responsible for the key and
can resolve the lookup.

To deal with dynamic join/leaves of peers in the systems,

2This corresponds to the iterative method for implementing lookup
operations in Chord [15]. Also recursive lookup implementation is con-
sidered in the original Chord design.

the following procedures are implemented. When a new
peer p joins the network, it first needs to initialize its pre-
decessor and finger table. This is done by sending requests
to any peer currently joining the network peer p is aware
of (called hook peer). Then, the finger tables and prede-
cessor pointers of currently active peers must be updated to
account for the new peer joining the network. Finally, peer
p must contact its successor s in the ring so that the key
range previously managed by s can be split with p. In case
no (active) hook peer can be found, the join operation fails,
and the peer cannot join the Chord overlay. When an exist-
ing peer p leaves the network, it first informs its predecessor
and successor in the ring about its intention of leaving the
network, so that they can change their finger tables and pre-
decessor pointers accordingly; then, peer p transfers to its
successor the key range it is responsible for.

Finally, we mention that each active peer in the net-
work periodically performs a Stabilize operation, which
verifies and possibly updates the content of the finger table
and predecessor pointer. The period between consecutive
Stabilize operations is a critical parameter in the Chord
design: if the period is relatively short, the network is more
reactive, but a higher message overhead is generated; on
the other hand, a longer stabilize period reduces message
overhead, at the expense of having a less reactive network.
Optimal setting of this parameter in wireless mesh networks
is carefully investigated in Section 4.
3.3 Location-awareness

The first modification we propose to the basic Chord de-
sign concerns the function used to assign ID to peers (hash
function Sha1 is still used to assign key to files/resources).
The idea is to exploit locality, and to assign peers which are
close in the physical network with close-by IDs in the unit
ring. This choice is motivated by the observation that, ac-
cording to Chord specifications, most of the messages are
exchanged between a peer and its successor/predecessor in
the unit ring.

More specifically, location-awareness is implemented by
assigning IDs to peers according to the following function
(see [5]):

ID(x, y) =


x∆
s2 + b y

∆c ·
∆
s ifb y

∆c is even

(s−x)∆
s2 + b y

∆c ·
∆
s ifb y

∆c is odd
,

where ID(x, y) is the ID of a peer with coordinates
(x, y) ∈ [0, s]2, s is the side of the deployment region, and
∆ is a parameter which defines the ‘granularity’ of location-
awareness: the lower the value of ∆, the closer the peers
must be in the physical network in order to be mapped into
close-by regions of the unit ring3.

3Note that the above location-aware ID assignment function requires
that peers are aware of their location, which can be easily accomplished in
wireless mesh networks through, e.g., the use of GPS receivers.

208

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 40 50 60 70 80 90 100 110 120 130 140 150

pa

ck
et

s

nodes

Chord
ChordXL

ChordLoc
MeshChord

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 40 50 60 70 80 90 100 110 120 130 140 150

pa

ck
et

s

nodes

Chord
ChordXL

ChordLoc
MeshChord

Figure 2. Total number of packets exchanged in grid networks for increasing number of n: almost
static network (left) – (1− pleave) = 0.999, and very dynamic network (right) – (1− pleave) = 0.9.

 75

 80

 85

 90

 95

 100

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Su
cc

es
sf

ul
 jo

in
 o

pe
ra

tio
ns

 [%
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 70

 75

 80

 85

 90

 95

 100

 40 50 60 70 80 90 100 110 120 130 140 150

Su
cc

es
sf

ul
 jo

in
 o

pe
ra

tio
ns

 [%
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

Figure 3. Percentage of successful join operations in grid networks for n = 100 and increasing values
of (1− pleave) (left), and for increasing value of n with (1− pleave) = 0.9 (right).

3.4 Cross-layering
The second contribution of the MESHCHORD proposal

concerns the introduction of a MAC cross-layering tech-
nique. This technique aims at speeding up the lookup oper-
ations by exploiting the information that is available at the
MAC layer due to the 1-hop broadcast communication oc-
curring in wireless networks. The basic idea is that a peer u
may capture packets for which it owns relevant information,
even if they are not destined to u. More specifically, when-
ever a node u receives a packet at the MAC layer, u sends it
up to the application layer for further processing, even if the
packet was not destined to u. If the packet does not contain
a lookup request, it is discarded. Otherwise, u checks if it
may resolve the lookup(x) operation. This occurs if x is
comprised between u’s ID and the ID of the predecessor of
u in the unit ring. In this case, u sends a message containing
its own ID to the peer that invoked the lookup(x) operation.
It is important to note that, since the lookup process is in-
voked for both query resolution and overlay maintenance,
cross-layering may improve the performance of both these
operations.
4 Performance evaluation

We have evaluated the performance of Chord and of the
proposed specialization MESHCHORD on mesh networks
using GTNetS, a packet-level network simulator developed
at Georgia Institute of Technology [12]. To better un-
derstand the contribution of location-awareness and MAC

cross-layering on Chord performance, we have also consid-
ered a version of Chord in which only location-awareness is
implemented (ChordLoc), and a version of Chord in which
only MAC cross-layering is implemented (ChordXL).

We considered two network topologies in simulations:
– grid: peers are located in a square, equally spaced grid;
peer separation is 100m;
– random uniform: n peers are distributed uniformly at ran-
dom in a square area of side s, where s =

√
n · 100m.

In both cases, we assume peers are equipped with
802.11b radios, the link data rate is 11Mbs, and radio sig-
nal obeys free space propagation. For routing messages be-
tween far-away peers, we used DSR [6].

To model dynamic join/leaves of peers into the network
(which occur only after all peers have initially joined the
network, and the Chord overlay is stabilized), we assume
that each peer updates its status every 30sec, possibly mak-
ing a transition to active/inactive state. More specifically, a
peer which is currently active becomes inactive with proba-
bility pleave, while a currently inactive peer becomes active
with probability pjoin. Unless otherwise stated, in the fol-
lowing we assume pleave = pjoin.

When a peer u leaves the network, it notifies its succes-
sor u′ by sending it key range range(u). Considering that
in our proposed architecture the information associated to a
key is the IP address of the mesh client storing the requested
resource, that IP addresses are very short (4 bytes), and that

209

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 40 50 60 70 80 90 100 110 120 130 140 150

Un
su

cc
es

sf
ul

 q
ue

rie
s

[%
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 40 50 60 70 80 90 100 110 120 130 140 150

Un
su

cc
es

sf
ul

 q
ue

rie
s

[%
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

Figure 4. Percentage of unsuccessful queries in very dynamic networks for increasing values of n:
grid topology (left), and random topology (right).

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 40 50 60 70 80 90 100 110 120 130 140 150

Av
g

se
ar

ch
 ti

m
e

[s
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 40 50 60 70 80 90 100 110 120 130 140 150

Av
g

se
ar

ch
 ti

m
e

[s
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

Figure 5. Average query response time in very dynamic networks for increasing values of n: grid
topology (left), and random topology (right).

key IDs are 24 bits long, each entry in the key table is com-
posed of 56 bits. Given this, we have implemented key
range transfer trough the communication of a single UDP
message with a 2KB payload between the leaving peer and
its successor, which is sufficient to transfer as many as 292
entries in the key table.

When a peer u (re-)joins the network, it first has to find
an active peer u′ it is aware of (hook peer). To find the hook
peer, before leaving the network u stores the IP address of
the last three fingers in its finger table (this is because the
last fingers in the table are most likely distinct – recall Fig-
ure 1). Peer u then tries to contact the first finger in the
list, then, in case it is not responding, the second one, and
so on, until u is able to join the network, or the join oper-
ation fails. If the join operation is successful, and after the
successor pointer is stabilized, peer u sends a message to
its successor u′′, so that u′′ can send to u a part of its key
range. This is also implemented through communication of
a single UDP message with 2KB payload.

A certain number of queries is generated during Chord
lifetime. Queries are generated uniformly over time (every
tquery seconds); when a new query is generated, the peer
that issues the query is chosen uniformly at random among
the currently active peers, and the ID of the key k to be
searched is chosen uniformly at random in [0,1] (expressed
as an m-bits binary number).

In the following, we present the results of two differ-

ent sets of simulations, focusing on the effect of i) increas-
ing the number n of peers, and ii) changing the number
of join/leave events in the simulated time interval. For all
the sets of experiments, the simulated time interval was
3800sec, where the first 200sec were used to incrementally
add peers to Chord, and to stabilize the overlay; all the sim-
ulation results presented in the following refer to data gath-
ered in the last 3600sec of the simulation, and are averaged
over 10 (50) runs in case of grid (uniform random) topol-
ogy4.

The performance of the various versions of Chord con-
sidered in our simulations is expressed in terms of:
– message overhead: total number of network-level packets
exchanged by Chord to maintain the overlay, and to resolve
the queries;
– query resolution: percentage of queries which are suc-
cessfully resolved; a query on key k is successfully resolved
if the IP address of the peer responsible for key k is returned
to the peer which issued the query;
– query response time: for successful queries, the time
elapsed between the instant the query is issued by peer p,
and the instant the answer is received at peer p;
– successful join ratio: percentage of successful join over
all join operations; the percentage is computed accounting

4The largest sample set in case of random topologies was needed to
account for the higher degree of randomness (which also plays a role in
determining the network topology) in this setting.

210

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

pa

ck
et

s

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

pa

ck
et

s

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

Figure 6. Total number of exchanged packets for different values of (1 − pleave): grid topology (left),
and random topology (right).

 1

 2

 3

 4

 5

 6

 7

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Lo
st

 K
ey

s
[%

]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Un
su

cc
es

sf
ul

 q
ue

rie
s

[%
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

Figure 7. Percentage of unsuccessful queries for different values of (1 − pleave): grid topology (left),
and random topology (right).

only for the join operations occurring after the initial stabi-
lization period.

4.1 Preliminary simulations
In a preliminary set of simulations, whose results are not

shown due to lack of space, we have optimized a set of pa-
rameters such as node transmission range, value of ∆ in the
location-aware versions of Chord, and the stabilize inter-
val. Optimal settings of these parameters are: transmission
range = 200m, ∆ = 200m, stabilize interval = 7.5sec.

4.2 Increasing network size
In the first set of experiments, we considered networks

of size ranging from 49 to 144 peers (mesh routers). The
number of queries during the simulated time interval is fixed
at 120 · n, corresponding to having (on the average) each
node generating a new query every 30sec.

Figure 2 reports the total number of network-layer pack-
ets exchanged during the simulated time interval in the grid
topology. Location-awareness is very effective in reducing
message overhead: the reduction can be as high as 40% in
the almost static scenario, while it is somewhat lower in the
very dynamic scenario. On the other hand, cross-layering
seems to have only marginal effect on message overhead,
if not actually increasing the number of exchanged mes-
sages in very dynamic networks. Indeed, this higher over-
head is caused by a very positive effect of cross-layering,
which is depicted in Figure 3. As seen from the plots,

cross-layering significantly increases the number of suc-
cessful join operations, especially in case of very dynamic
networks: while the number of successful join operation is
consistently above 95% with cross-layering, with the orig-
inal Chord protocol this percentage can drop to as low as
70% in case of very dynamic networks. Hence, the higher
message exchange observed with cross-layering in dynamic
networks is caused by the larger number of peers joining the
Chord system in this situation.

It is also worth observing that location awareness tends
to decrease the number of successful join operations un-
der very dynamic network conditions. We believe this is
due to the fact that, while location-awareness is very effec-
tive in reducing message overhead (Figure 2), its effect on
lookup operations (which are at the basis of both new join
and query resolution procedures) can actually be detrimen-
tal. In fact, location-aware ID assignment tends to rule out
the possibility of having close-by peers in the physical net-
work which are far-away in the unit ring (hence, possibly
corresponding to the last fingers in the finger table). This
negative effect of location-awareness becomes more evident
for larger networks (see Figure 3-right).

The results for the random topology scenario, not re-
ported for lack of space, confirm the trends observed in the
grid scenario, with a somewhat lower reduction in terms of
message overhead of MESHCHORD with respect to Chord
(as high as 30%). This lower reduction is due to the fact

211

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Av
g

se
ar

ch
 ti

m
e

[s
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Av
g

se
ar

ch
 ti

m
e

[s
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

Figure 8. Average query response time for different values of (1 − pleave): grid topology (left), and
random topology (right).

that cross-layering is even more effective in increasing the
percentage of successful join operations in case of random
network topology than with grid topologies.

Figure 4 reports the percentage of unsuccessful queries
in very dynamic networks ((1 − pleave = 0.9)). MESH-
CHORD tends to slightly decrease the query success rate
with respect to the original Chord; however, this apparent
shortcoming is indeed caused by the fact that MESHCHORD
tends to operate on a larger network (recall Figure 3), where
the success rate is physiologically smaller. The results ob-
tained in the almost stationary scenario (not reported for
lack of space) showed an above 99% query success rate
even for the basic Chord protocol.

Figure 5 reports the average query response time in very
dynamic networks. As seen from the plots, cross-layering
has a significant effect on response time in both grid and
random topologies. On the other hand, location-awareness
only achieves marginal reductions with respect to the basic
Chord protocol. Overall, MESHCHORD achieves as high
as 60% reduction in query response time with respect to
Chord. The results for the almost stationary scenario show
very similar trends.
4.3 Varying the number of join/leaves

In the second set of experiments, we fixed the size of
the network to n = 100, and considered different values of
pleave. The results reported in Figure 6 show that location-
awareness considerably reduce message overhead, over the
entire range of pleave values considered. These results are in
accordance with those reported in Figure 2. It is also worth
observing that the relative advantage of MESHCHORD over
Chord tends to become smaller for more dynamic networks;
as observed in the previous section, this is due to the in-
creased number of successful join operations achieved by
cross-layering.

Figure 7 clearly shows the decreasing trend of the per-
centage of unsuccessful queries as the network becomes
less and less dynamic: while the success rate is above 96%
for almost stationary networks, it becomes as low as 93%
for more dynamic networks. This trend is less pronounced
when the network topology is random.

Finally, Figure 8 shows that MESHCHORD is very ef-
fective in reducing the query response time with respect to
Chord over the entire range of pleave values considered.
5 Conclusions

The main finding of the study reported in this paper is
that, contrary to what happens in MANET environments
[3], the Chord approach can be successfully utilized for
implementing file/resource sharing applications in wireless
mesh networks. With respect to the basic Chord design,
our proposed MESHCHORD protocol achieves a consider-
able reduction in message overhead, and a significant im-
provement in information retrieval performance.

Although our investigation has shown that MESH-
CHORD message overhead does not lead to network con-
gestion by itself, overlay maintenance still requires the ex-
change of a relatively high number of messages in the net-
work, which could indeed lead to congestion when several
applications are executed in the network concurrently with
MESHCHORD. Thus, the problem of designing lightweight
applications for file/resource sharing in wireless mesh net-
works is still open, and is matter of ongoing research.

References
[1] A. Al Hamra, C. Barakat, T. Turletti, “Network Coding for Wireless Mesh Networks: A Case Study”, Proc.

IEEE Int. Symposium on a World of Wireless, Mobile and Multimedia (WoWMoM), 2006.

[2] M. Conti, E. Gregori, G. Turi, “A Cross-Layer Optimization of Gnutella for Mobile Ad Hoc Networks”,
Proc. ACM MobiHoc, May 2005.

[3] C. Cramer, T. Fuhrmann, “Performance Evaluation of Chord in Mobile Ad Hoc Networks”, Proc. ACM
MobiShare, pp. 48–53, 2006.

[4] M. Denny, M. Franklin, P. Castro, A. Purakayastha, “Mobiscope: A Scalable Spatial Discovery Service for
Mobile Network Resources”, Proc. International Conference on Mobile Data Management (MDM), 2003.

[5] L. Galluccio, G. Morabito, S. Palazzo, M. Pellegrini, M.E. Renda, P. Santi, “Georoy: A Location-Aware
Enhancement to Viceroy Peer-to-Peer Algorithm”, Computer Networks, Vol. 51, n. 8, pp. 379–398, June
2007.

[6] D.B. Johnson, D.A. Maltz, “Dynamic Source Routing in Ad Hod Wireless Networks”, Mobile Computing,
n. 353, pp. 153–181, 1996.

[7] A. Klemm, C. Lindemann, O.P. Waldhorst, “A Special-Purpose Peer-to-Peer File Sharing System for Mobile
Ad Hoc Networks”, Proc. IEEE VTC-Fall, Oct. 2003.

[8] D. Malkhi, M. Naor, D. Ratajczak, “Viceroy: A Scalable and Dynamic Emulation of the Butterfly”, Proc.
ACM Symposium on Principles of Distributed Computing (PODC), Jul. 2002.

[9] G. Moro, G. Monti, “W-Grid: a Cross-Layer Infrastructure for Multi-Dimensional Indexing, Querying and
Routing in Wireless Ad Hoc and Sensor Networks”, Proc. IEEE Conf. on Peer-to-Peer Computing, 2006.

[10] A. Passarella, F. Delmastro, M. Conti, “XScribe: a Stateless, Cross-Layer Approach to P2P Multicast in
Multi-Hop Ad Hoc Networks”, Proc. ACM MobiShare, pp. 6–11, 2006.

[11] H. Pucha, S.M. Das, Y.C. Hu, “Ekta: An Efficient DHT Substrate for Distributed Applications in Mobile Ad
Hoc Networks”, Proc. IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), 2004.

[12] G. Riley, “The Georgia Tech Network Simulator,” ACM SIGCOMM MoMeTools Workshop, 2003.

[13] F. Sailhan, V. Issarny, “Scalable Service Discovery for MANET”, Proc. IEEE PerCom, 2005.

[14] http://www.seattlewireless.net/

[15] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, Proc. ACM Sigcomm, Aug. 2001.

[16] O.Wolfson, B. Xu, H. Yin, H. Cao, “Search-and-Discover in Mobile P2P Network Databases”, Proc. IEEE
ICDCS, 2006.

212

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on March 9, 2009 at 13:10 from IEEE Xplore. Restrictions apply.

