Perfor mance Study of Dispatching Algorithmsin
Multi-tier Web Architectures

Mauro Andreolini* Michele Colajann? Ruggero Morsell?

Abstract nature of the site architecture completely transparente Th
first set of Web servenodes run the HTTP daemons. They

The number and heterogeneity of requests to Web sites diéen on some network portfor the client requests assigyed
increasing also because the Web technology is becoming i€ Web switch, prepare the content requested by the clients
preferred interface for information Systems_ Many Systen’@nd the response back to the clients or to the Web SWitCh, and
hosting current Web sites are Comp|ex architectures Coﬂtposﬁna”y return to the listen status. The Web server nodesare ¢
by multiple server layers with strong scalability and rélin ~ Pable of handling requests for static content, whereasfdrey

ity issues. In this paper we compare the performance of seyard requests for dynamic contenttiack-endservers host-

eral combinations of centralized and distributed dispatgh N databases and other (legacy) applications. It may sbnsi
algorithms working at the first and second layer, and usingf @ layer of separate nodes or thin gateway processes ginnin
different levels of state information. We confirm some know the Web server nodes that accept requests from the Web
results about load sharing in distributed systems and géxe n Server and interact with the database server or other legacy

insights to the problem of dispatching requests in mudti-ti @pplications at the back-end layer. A middle layer may be in-
cluster-based Web systems. terposed between the Web and the back-end layer. The load

reaching this Web system must be evenly distributed among
the server nodes, so as to improve performance. Hence, we
. have to include some component that routes client requests
1 Introduction among the servers with the goal of load sharing maximization
The level of multiple indirections in a multi-tier Web clus-
Web technology is becoming the preferred standard interfater architecture where each layer consists of multipleeserv
for accessing many services exploited through the Interneiodes opens several interesting performance problems be-
While the first generation of Web sites was largely based arause request routing and dispatching can be implemented at
static and read-only information, an increasing percemtdg different levels, for example, at the Web switch and at the
Web sites provide information and services that are petson&\Veb server layer. The Web switch receives all inbound pack-
ized for the client or created dynamically by the executioets that clients send to the VIP address, and routes them to a
of some application process. The consequence is that djeb server node. In such a way, it acts asdtetralizeddis-
namic pages and services are becoming essential in modgetcher of a distributed system with fine-grained control on
sites where Web-based technologies have emerged as a validnt requests assignments. This topic is widely investidg
alternative to traditional client-server computing. Besaof in literature. For a complete survey see [5].
the complexity of the Web infrastructure, performance prob
lems may arise in many points during an interaction witiRequest dispatching and load sharing at the internal layers
Web-based systems. Upgrading the power of a single senafe implemented in most commercial products, but they are
will not solve the Web scalability problem in a foreseeahle f not widely studied topics in the research community. Indeed
ture. The alternative architecture we consider in this pape the selection of a back-end server can be done by sne
alocally distributed Web system composed by multiple nodégalized entity (the Web switch itself or some master node,
that are typically organized in layers. e.g. [25]) or in eistributedway by any Web server. The com-
bination of feasible alternatives is wide. This paper gives
An example of multi-tier cluster-based Web system (brieflyof the first contributions to this area. We compare the perfor
Web clustey, is shown in Figure 1. The only visible addressmance of several combinations of centralized and disgibut
is the Virtual IP (VIP) corresponding to the front-end devic dispatching algorithms working at the first and second layer
which is located in front of the set of servers. This deviceand using different levels of state information.
hereafter calledMeb switch interfaces the rest of the Web
cluster nodes with the Internet, thus making the distributeThe main focus is on the second dispatching-level because
the non-uniformity of the load and non-cacheability of most
'Department of Computer Engineering, University of Romar'Ver- q4cyments (in spite of many efforts [12, 20]) introduce addi
gata’, Roma, Italy 00133, andreolini@ing.uniromaz2.it . . . -
2Department of Information Engineering, University of Mode Mode- tional degrees of complexity to the request dispatchinggiss
na, Italy 41100, colajanni@unimo.it Indeed, burst arrivals and hot spots can be faced by the Web

®University of Modena, ltaly, and Department of Computereice, Uni- switch and servers through caching techniques so that a Web
versity of Maryland, ruggero@cs.umd.edu

server node can typically deliver several hundreds ofcstati
files per second. On the other hand, to share the load for dy- Client requests
namic requests is quite difficult because they often reaurire
ders of magnitude higher service times. We also analyze the
efficiency and the limitations of the different solutiongldhe

tradeoff among the alternatives with the aim of identifyihg Web switch i Local Area Network
characteristics of centralized and distributed approseimel - l *************** l ****************************** l ******
their impact on performance. A partially unexpected reisult

that at the second layer the most simple dispatching pslicie | (esene | | [sresens |

work better than the more sophisticated ones, even when the

system is highly loaded. Instead, detailed informationuabo Mo

the server, especially past load, does not appear useflll, an
can often lead to bad dispatching choices. Our experimen- I

tal results confirm in a quite different context the well knmow
results by Eager et al. [13] and others [9] obtained through
analytical and simulative models.

Zhu et al. [25] have studied the problem of request dispatch-
ing in a multi-tier architecture, where a second-layer swit " packend pack-end Back-end
is integrated in each Web server node, calleaster node server 1 server 2 server 3 server M

When a Web server node receives a request for dynamic con- o _

tent, it queries the master to choose the back-end serverfigure 1: An example of multi-tier architecture for a cluster-based
which it has to forward the request. The back-end node selec- Web system.

tion is based on a prediction model that estimates the exgect

cost for processing the dynamic request on each slave node.

Similar multi-tier architectures have been also analyrdd].

dispatching choice when a back-end server has to be chosen
The generation of dynamic content opens other performanf% a dynamic request._ The common rule is that these dis-
chers cannot use highly sophisticated algorithms secau

issues that are beyond the scope of this paper. Indeed, e h e i diate decisi tor hundred h
alternative solutions depend also on the application sofw they have to take immediate decisions for hundreds or t ou-
nds of requests per second. There are several altemative

the chosen middleware and database technology. For exajfi'° X) , o
ple, commercial Web service software, such SZ BEA wdor dispatching algorithms described in literature, hoardor

bLogic and IBM WebSphere, have evolved from simple WelIJhe Scope of this_pa_per the most impor_tant choices are among
servers into complex Web application servers that use Cdentrallzedvs. distributed andstate-blindvs. state-aware
Java Server Pages, Microsoft Active Server Pages, XML, aﬁ&gonthms.

other technologies. A different solution for load balamgin
based on CORBA middleware technology is proposed in [2
where several dispatching strategies have been also @dpo
and evaluated. Other interesting research fields in mietti-t
Web architectures are not oriented to load balancing, but
mechanisms that can cache query results and dynamic c
tent [12, 20].

he front-end architecture with a single Web switch that re-
eives all inbound packets drives the choice to centralized
aispatching policies. Hence, the real alternative for trebW
witch dispatching-layer is amomstate-blind vsstate-aware
(?gorithms. On the other hand, for the second dispatching-
?&per, we may consider botfistributed policies carried out
by the Web servers arantralized solutions where the deci-

The rest of this paper is organized in the following sectjonéion is taken by the Web switch or by another server selected

In Section 2, we describe the dispatching algorithms that c&S a master.
gie tunst? dt b&/\t\t\e V\ﬁbss W[[ticrr]]%nd:gib '\slvervexrsr::}r? ctintrtall%[et:i $ ate-blind(or static) algorithms are the fastest solution be-
stributed way. ection s a » We examine the 1est-bed \se they do not rely on the current state of the system at the

prototype and the bench_markmg parameters th_at we usedti'ﬁ]\e of decision making. However, the common belief is that
the experiments, respectively. In Section 5, we discusssthe

:) X . these algorithms may make poor assignment decisBiase-
perimental results which are obtained for two main workloa g y b 9

scenarios. In Section 6. we outline our conclusions ware (or dynamic) algorithms have the potential to outper-
’ k ' form static algorithms by using some state information ip he

dispatching decisions. The main problems with dynamic al-
gorithms are that they require mechanisms to collect and an-
alyze data, thereby incurring in potentially expensivereve

2 Dispatching algorithms) . "
® 949 heads and stale information about state conditions.

In a multi-tier Web cluster there is a dispatching policyrisat ~ State-aware algorithms can take into account a varietysf sy
out by the Web switch that selects a Web server, and anothtem state information that depends also on the protocdk stac

layer at which the dispatcher operates. They can be furthiemdex how and when to compute it, how and when to trans-
classified according to the level of system state infornmatiomit this information to the dispatcher. These are well known
being used by the dispatcher. A Web server operates at thmblems in a networked system [11, 15].

application layer and can appdpntent-aware dispatchirej-

gorithms, while a Web switch can operate at the same lay€ince a server load index is selected, the dispatcher cap appl
or atthe TCP |aye|’ where Ont;ontent-b"nd dispatching|- different algorithms. A common scheme is to have the new

gorithms are allowed. We consider the following four classerequest assigned to the server with the lowest load index. Th
of algorithms. Least Loaded algorithm (L) actually denotes a set of poli-

cies that depend on the index chosen to characterize therserv
load. The three main factors that affect the latency time of a

e In state-blindpolicies, the dispatcher assigns requestg/eb request are loads on CPU, disk, and network resources

using a static algorithm and no dynamic information. of the Web server nodes. Typical server state informatien in
. . . cludes the CPU utilization evaluated over a short intetha!,

* In client state-awar_epollmes, the (_dlspa}tcher ro_utes '®“instantaneous CPU queue length periodically observed, the
quests on th_e basis of some client |r_1for_mat|on. Foljisk or 1/0 storage utilization, the instantaneous number o
example’ a d'SpfitCher working at application Ia_y_er C@8ctive connections, the number of active processes, and the
examine the entire HTTP request and take decisions ofyie o+ |atency time, that is, the completion time of an objec
the ba3|s.of more detailed information about the CI'enﬁ'equest at the Web cluster side. These indexes need a pro-
.(”_“?'eedc"er?‘ mfo-awara/vou_ld be a more correct def- (oqq monitor on the servers and a communication mechanism
inition for this class of algorithms, but we prefer to Us&, . the servers to the dispatcher. For example, inl test
client state-aware for symmetry reasons.) Connections policy (LL-CONN), which is usually adopted

e In server state-awargolicies, the dispatcher assigns™" commercial products (e.g., Cisco's LocalDirector [75 F
requests on the basis of some server state informatidietworks’ BIG-IP [14]), the dispatcher assigns the new re-
such as current and past load condition, latency timguest to the se_rverW|th the fewest active connections.ifn th
and availability. paper we consider also other load metrics, such as CPU and

disk utilization. In theLL-CPU policy andLL-DISK pol-

e In client and server state-awapolicies, the dispatcher icy the dispatcher assigns requests to the server havirestow
routes requests by combining client and server state i&PU and disk utilization, respectively.

formation. _)) _)
The dynamic Weighted Round-Robin algorithm (WRR) is

a variation of the version that considers static infornmatio
We consider the dispatching algorithms which are represe(server capacity) as a weight. This policy associates each
tative of each of these four classes. Table 1 summarizes tberver with a dynamically evaluated weight that is propor-
policies analyzed in this paper and whether they are appli¢idnal to the server load state, typically estimated as abrarm

at the Web switch or at the Web server. of connections [16]. Periodically, the dispatcher gatheas!
index information from the servers and computes the wejghts
2.1 State-blind algorithms that are dynamically incremented for each new connection as

State-blind policies do not consider any system state 4infogignment.
mation. Typical examples af®andom and Round-Robin
(RR) algorithms. Random distributes the incoming requests3 Client state-awarealgorithms
uniformly through the server nodes with equal probability 0The complexity and overheads of a dispatcher that can exam-
reaching any server. RR uses a circular list and a pointer f§e the HTTP request at the application layer motivates the
the last selected server to make dispatching decisions. yse of more sophisticated content-aware distributiorcesi

. , The proposed algorithms may use information about the re-
Both Random and RR policies can be easily extended to ”‘?ﬁﬁested URL for different purposes, such as: to improve ref-
servers with different processing capacities by makingi€ grence |ocality in the server caches so to reduce disk aesess
signment probabilistic on the basis of server capacity.- Difcache affinity; to use specialized server nodes to provide dif-
ferent processing capacities can be also treated by using farent web servicesspecialized serveyssuch as streaming
so-calledstatic Weighted Round-Robin, which comes as a ¢qntent, dynamic content: to partition the Web content agnon
variation of the Round-Robin policy. Each server is assigngy,e servers, for increasing secondary storage scalafstity
an integer weight; that indicates its capacity. Specifically, yjce partitioning; to increase load sharing among the server
w; = C;/min(C), wheremin(C) is the minimum server ca- 5des foad sharing.
pacity. The dispatching sequence will be generated aaogrdi

to the server weights. In cache affinity policies, the file space is typically paotied
among the server nodes. A hash function applied to the URL
2.2 Server state-awarealgorithms (or to a substring of the URL) can be used to perform a static

When we consider dispatching algorithms that use sonpartitioning of the files. The dispatching policy runningtbe
server state information we have to decide fleever load Web switch (namelyJRL hashing algorithm) uses the same

Table 1: Dispatching policies to distribute client requests amoreh\&Wnd back-end servers.

| Policy | Location | Knowledge |

| RR || switch/server| state-blind |
LL-CONN server server state-aware
LL-CPU server server state-aware
LL-DISK server server state-aware
WRR server server state-aware
PART switch client info-aware
CAP server client info-aware
CAP-CENTR switch client info-aware
LARD switch client and server state-aware
CAP-ALARM server client and server state-aware

function. However, the solution combining Web object partimanages a circular list of server assignments for each ofass
tioning and URL hashing can be applied to Web sites providAleb services. The CAP goal is to share multiple load classes
ing static contentonly. Moreover, itignores load shariogpe among all servers so that no component of a node is over-
pletely, as it is difficult to partition the file space in suclvay loaded. CAP in its initial form is a client state-aware pglic
that requests are balanced out. Indeed, if a small set of filaswever it can be easily combined with some server state in-
accounts for a large fraction of requests (a well-known-chaformation.

acteristic of Web workloads, e.g., [2, 10]), the server mode

serving those critical files will be more loaded than otherdt is worth noting that the client state-aware policies dé no
For cacheable documents, these critical load peaks can f§gluire a hard tuning of parameters, which is typical of the

lowered by architectures that integrate proxy server goigf ~ Server state-aware policies, because the service classes a
but the pr0b|ems remain for most dynamic services. decided in advance and the dispatching choice is determined

statically once the requested URL has been classified.
For Web sites providing heterogeneous Web services, the re-
quested URL can be used to statically partition the servers
according to the file space and service type they handle. TR& Client and server state-awarealgorithms
goal is to exploit the locality of references in the servedesy ~ Client information is often combined with some server state
to achieve the best cache hit rate for static documents, atiformation, for example to provide the so calleléent affin-
possibly to employ specialized servers for certain typasof ity [16, 17]. In policies based on client affinity, client and
quests, such as dynamic content, multimedia files, streamigerver information have a different weight: when available
video [24] We refer to this po||Cy as tBervice Partition- client information Usua”y overrides server information &s-
ing (PART). Most commercial content-aware switches designmentdecisions. Instead of assigning each new coomecti
ploy this type of approach (for example, F5 Networks’ BIG10 a server on the basis of its server state regardless of any

IP [14], Resonate’s Central Dispatch [23]) although they usPast assignment, performance or functional reasons ntetiva
different names. the assignment of the same request to the same server.

Another goal of the content-aware dispatching algorithsns iThe Locality-Aware Request Distribution (LARD) policy

to improve load sharing among the server nodes. These-strdfe & content-aware request distribution that considers bot
gies do not require static partitioning of the file space dred t locality and load balancing [3, 22]. The basic principle of
Web services. Let us consider one policy belonging to thisARD is to direct all requests for the same Web object to the
class, callecClient Aware Policy (CAP) [6], that is oriented Same server node as long as its utilization is below a given
to Web sites providing services with different computagibn threshold. By so doing, the requested object is more likely t
impact on system resources. The basic observation of CAPAg found into the disk cache of the server node. Some check
that when the Web site provides heterogeneous services, e@8 the server utilization is useful to avoid overloading/ses
client request could stress a different Web system respuré@d, indirectly, to improve load sharing.

e.g., CPU, disk, network. Although the Web switch cannot -))

estimate the service time of a static or dynamic requestacch medified version of the CAP policy, namelfAP-
rately, it can distinguish the class of the request from tRe U ALARM, uses an asynchronous communication mechanism
and estimate its main impact on one Web system resource [at exchanges alarm messages only when necessary, in ad-
feasible classification for CAP is to consider disk bouncLJCPd'tIon to th? request conte_nt _for dls_p_atchmg. The server
bound, and network bound services, but other choices are pi2d status is computed periodically; if it exceeds a thoish
sible depending on the Web content. To improve load sharif§'ue, an alarm message is sent to the dispatcher. When the

in Web clusters that provide multiple services, the Webghwit 102d falls clearly below the threshold, a wakeup message is
sent to the dispatcher. The requests are distributed uség t

CAP algorithm, unless the chosen server has sent an alaahgorithms are implemented as C modules that are activated

message, indicating that its utilization has exceeded #re m at startup of the Apache server. The dispatching module com-

imum capacity. In this case, CAP-ALARM chooses the nexinunicates with theewriting engine which is provided by

server which is not overloaded, if it exists, or the leastledh mod_rewrite over itsstdinandstdoutfile handles. For each

server. The overloaded server will be used again as soonragp-function lookup, the dispatching module receives #ye k

the dispatcher receives a wakeup message. to lookup as a string ostdin After that, it has to return the
looked-up value as a string @tdout

Some dispatching policies require information about the
server loads. Therefore, we implemented load monitors for

h b ol . ¢ b switch nod the following load metrics: number of active connections,
The Web cluster consists of a Web switch node, connectgds, gijization and number of 1/0 requests issued to the.disk

to th_e bar_:k—end nodes and the Web SErvers “_"Wgh one\Mbreover, several load update strategies have been imple-
multiple high speed LANS, as in Figure 1. The distributed s ented on the dispatcher modules

chitecture of the cluster is hidden to the HTTP client thioug

a unique Virtual IP (VIP) address. The combination of a set of load indexes into a single index

that reflects the server load is an interesting researcé thsi

In thl!s p?pelr we ushe a IaI)I/er-_7 Web switch mplementedﬁa_t ﬂh%s not yet been investigated in the context of Web clusters.
application layer, thus allowing content-aware requestrell |, tgst-bed system, we are considering the last five load

bution. leferent_ mechamsms were proposed to implement &, ficients coming from each server and we implemented the
layer-7 Web switch at various operating system levels. Th%llowing three load update strategies:
most efficient solutions are TCP hand-off [22] and TCP splic-

ing [8], both implemented at the kernel level. Application

layer solutions are undoubtedly less efficient than keenalll Last value: this is the most obvious load update strategy. The
mechanisms, but their implementation is cheaper and suffi- last load coefficient coming from the server is used as
cient for the purposes of this paper which intends to com- the server state information.

pare dispatching algorithms instead of Web switch solstion _)

There is no doubt that a commercial real system should wofl¥ithmetical mean: the state load of a server is computed as
at the kernel level, but addressing the switch performasce i the grlthmetlcal mean of the last three load coefficients
sues is out of the scope of this paper. coming from that server.

3 Test-bed architecture

. . Weighted mean: the server state information is computed as
In particular, we used the TCP gateway mechanism (also .)
the weighted mean of the five most recent load samples

known as reverse proxy or surrogate): a proxy running on the :) . .
proxy gate): & proxy g coming from the server. Each value is combined with a

Web switch at the application layer mediates the communica- . . N,
. . . weight obtained by a decay distribution. We use=
tion between the client and the server. When a request ayrive S0 (1/G)li(j)e=3/2, wherel;(j) for j € {1,....5}

the proxy on the Web switch accepts the client connection and J=l : :
) are the load samples of the servewraluated in the past
forwards the client request to the target server. When the re - 5 i/
. . five intervals of 5 seconds each, afid= " _, e~/
sponse arrives from the server, the proxy forwards it to the : . i=
.) ; . is the normalizing factor.
client through the client-switch connection.

We implemented the TCP gateway mechanism through thg addition to the choice of the server load index, all server
Apache Web server software, that was sufficient to implemestate aware policies face the problem of updating load infor
and test any layer-7 dispatching algorithm without modificamation. The intervals between load index updates need to be
tions at the kernel level. chosen carefully to make sure that the system remains stable
_ o If the interval is too long, performance may be poor because
Our system implementation is based on off-the-shelf hargg system is respondiggeco old informatio); abgut the server
ware and software components. The c!|ents and servers|85ds_ On the other hand, too short intervals may resultsn sy
the system are connected through a switched 100Mbps EE@'m over-reaction and instability. A strategy for intetjirg
ernet that does not represent the bottleneck for our expe kale load information that can apply to layer-4 Web switche

ments. The cluster is made up of a Web SW'tC.h’ ‘WO We a\s been proposed in [11]. Space limitations do not allow us
servers and four back-end servers. Each machine is a Dll’@address such important issue in this paper

Pentiumlll-833Mhz PC with 512MB of memory. All nodes

of the cluster use a 3Com 3C905C 100bTX network interface.

They are all equipped with a Linux operating system (ker-

nel release 2.4.17). Apache 1.3.12 is used as the Web server 4 Workload model

software, while PHP 3.0.17 has been chosen as the dynamic

page support. On the Web switch and on the Web servers, thke Web cluster is subject to a mixed workload consisting
Apache Web server is configured as a reverse proxy throughboth static and dynamic documents. Static pages and ob-
the modulesmod_proxyand mod_rewrite The dispatching jects are served by the Web servers, while dynamic content is

Table 2: Workload model for static requests and client behavior.

| Category | Distribution | PMF | Range| Parameters |

—A(a—u)?

Requests per session] Inverse Gaussian 1 /#e 2u2a x>0 | p=386A=946

User think time Pareto ak®y o1 >k | a=14k=1

Objects per request | Pareto akz ! x>k | a=133, k=2
—(lnz—p)2

HTML object size Lognormal ﬁe 2% >0 | p=7.630,0=1.001

Pareto ak®x—o! >k | a=1k=10240

—(lnz—p)2

Embedded object siz¢ Lognormal . 21"02 e 207 x>0 | p=282150=1.46

processed by the back-ends. Dynamic workload is obtainsgonse time of a client request, consisting of the base HTML
by means of PHP scripts which are passed to the back-epdge and all embedded objects. Web workloads are charac-
servers. The same dynamic service may yield very differeterized by heavy-tailed distributions, thus responsegimay
results depending on when it is requested. This affects rassume highly variable values with non-null probabilitye W
sponse times tremendously. To take this aspect into accoulnave verified, as other authors did in advance, that the mean
for each request we pre-generate a random number rangiagot at all representative of the system behavior. Henee, w
from 1Kb to 100Kb, representing the size of the buffer omave preferred to use the cumulative distribution and the 90
which we perform dynamic computations. We chose ngtercentile of the response time of a client request. These me
to generate bigger buffers since we do not want to perfornics are able to represent much better the different behavio
stress-test analysis, but a fair policy comparison. We haw# the dispatching policies examined in the next section.
considered four classes of dynamic servidgge lemulates

the retrieval of data which is cached at the back-end and doBgcause of this choice, we have also modified iiperf

not require intensive CPU or disk usag'a{pe 2emulates a tool [19] (version 08) because no available benchmark was
query to a databas@ype 3emulates an activity that stressesable to return the 90-percentile and the cumulative distrib
the CPU, such as cipheringlype 4emulates a heavy Web tion of the response time. Client requests are obtained from

transaction that requires a database query and ciphering@pre-generated trace whose characteristics follow theemod
the results. described above. This approach guarantees also the replica

bility of the tests, that is fundamental for a fair companisd
In the experiments we compare the performance of dispatctine performance of the dispatching policies. During each ex
ing strategies under two workload scenarios. Both of themperiment, at least 1000 user sessions are generated; linés va
consist of 80% of dynamic requests and 20% of static réacreases as the mean inter-arrival time decreases, td&step
quests. This choice was motivated to put more stress on ttimes sufficiently long. We have planned 5 runs for each ex-
back-end nodes, but it is also confirmed by some worklogaeriment and consider the mean result; in this way, we limit
characterizations, e.g. [1]. Among the dynamic reque®& 5 the fluctuations derived from the high variability of the \eor
are of Type 1 25% are ofType 2 12.5% are offype 312.5% load.
are of Type 4 In thelight scenarioand in theheavy sce-
nario client inter-arrival times are exponentially distributed
with mean equal to 10 seconds and 1 second, respectively.
We have verified that these load mixes do not overload the
Web switch and the Web servers, but tend to stress the back- 5 Experimental results
end servers of the test-bed prototype. This is inline with th
purposes of this paper that is more oriented to investigate d
patching at the second layer. We have also verified that|athis section, we present the results of several dispagci
different mix of dynamic requests does not change the ®suljorithms with a focus on the the second-layer. We indicate th
significantly, provided that the bottleneck remains atthekd solutions that use a centralized policy at the Web switcbriay
end level and not at the Web switch or at the Web server layeind a distributed algorithm at the Web server layer throbgh t

o _ <policyl>/<policy2> notation.
To emulate realistic Web workloads, we have also considered

concepts like user sessions, user think-time, embedded aRe first consider the class of server state-aware policitgto
jects per Web page, realistic file sizes and popularity. @bl purpose of showing the difficulty of using server load infor-
summarizes the probability mass function (PMF), the rangenation for dispatching. Next, we analyze server statedblin
and the parameter values of the workload model for static rgolicies which do not take into account any kind of servedioa
quests and client behavior. information, and we verify that these algorithms perform-ge

))) _ erally better than server state-aware policies. The final igo
The performance metric of interest for this paper is the rgg compare centralized and distributed solutions.

5.1 Instability of server state infor mation edly the best index for representing the load on the back-end
Various issues need to be addressed when we consider disrvers. The curves in Figures 4 and 5 are the most stable,
patching policies based on some server state informatiah: fito the extent that this algorithm is almost no sensitive ® th
of all, the choice for one or morgerver load index(esjhen update intervals and to present and past samples. Staifility
the way to compute the load state information and the frehe results is of primary importance for a Web system subject
quency of the samples; finally, due to the cluster architet¢e highly variable traffic. Moreover, LL-CPU gives the lowes
ture, most indexes are not immediately available at the disesponse times with respect to LL-CONN and LL-DISK that
patcher, so we have to decide how to transmit them and hagy always below 3 seconds and below 7 seconds for the light
frequently. and heavy scenario, respectively.

The focus of this section is on distributed dispatching athe number of active TCP connections (LL-CONN) is not
the second layer that is, between the Web and the back-eadjood measure of the server load, because almost anything
servers. We consider the LARD centralized policy at the Weban be requested to a back-end server over a TCP connection,
switch that performs well for static documents. We comparigom a small document, possibly cached, to a stressing query
nine server state-aware policies that come as variantseof tfihis result was actually expected, while the bad perforraanc
basic Least Loaded algorithm. In particular, we considezgh of the LL-DISK results more surprising. As many queries to
load indexes evaluated on the back-end servers (that is, Lihe back-end servers are also disk bound, we expected that
CPU, LL-DISK, LL-CONN), and the three metrics “instanta-the number of 1/O requests issued in the last update inter-
neous load”, “arithmetical mean” (AM) and “weighted mean’val would be a good measure of the back-end load. On the
(WM), because we are also interested to analyze the impaather hand, Figures 6 and 7 show that the 90-percentiles of
on performance of using present and/or past samples. Hesponse times are much higher than those achieved by the
comparison reasons, we finally report the results of anothet-CPU, and comparable, although more stable, to those ob-
state-aware policy, CAP-ALARM, that uses an asynchronouained by the LL-CONN. We give the following motivation
alarm mechanism for skipping overloaded back-end servers$o this result. Counting the number of 1/O requests suffers
from a drawback similar to that discussed about the number
There are various ways for reading the results reportedein tipf active TCP connections. An access to disk does not reveal
Figures 2- 7. Two preliminary observations are in order: thgyuch about the computational weight of the involved query.
figures on the left side refer to the light workload scenarigjoreover, as the update interval increases this measuts ten

and response time scales are between 0 and 8 seconds;tfBecome inaccurate, especially if I/O requests are concen
figures on the right side refer to the heavy workload scenarigated in bursts during short periods of time.

and response time scales are between 0 and 12 seconds.
We finally compare the results of the LL policies against éhos

The first important conclusion is a confirmation of the im-of the CAP-ALARM algorithm that does not use server load
portance of the load index and update interval. Any of thesgformation to take dispatching decisions, but it just ter
choices has a strong impact on final performance to the ege dispatcher to skip an overloaded or unreachable sétver.
tent that the same server LL policy can behave much better giould be noted that for the CAP-ALARM policy, the update
much worse than other algorithms depending on an adequaigerval concerns only the recomputation of the server load
selection of the load indexes and of the update interval. Thgatus, because an alarm (wakeup) message is sent only if the
dependency on these choices is impressive: the 90-pde=entserver exceeds (falls below) a given load threshold. Wiserea
of response times go from 2.3 to 7 seconds for the light sceAP-ALARM performs similarly to LL-CPU when the load
nario, and from 6 to 12 seconds for the heavy scenario. s light, for the heavy scenario we have that simply tracking

i _ the heavily loaded servers reduces the response times by al-
If we focus on the sample analysis, we can see that in mqgf,st 5004 (Figure 5). This result is important because this

instances, even if some instability exists, the shortedate o formance improvement can be achieved at a minimum in-
interval (5 seconds) gives the best results. Moreoveraive | .oase in the communication overheads.

est response time is achieved when the last sample or the
weighted samples (WM) are considered. On the other hangictually, for a fair comparison, it must be pointed out tha t
the arithmetical mean (AM) that gives the same importance 9AP-ALARM policy tends to perform better when the load
all samples never performs as the best. These results fediceecomputation interval is small, since alarm and wakeup mes
that it is preferable to make dispatching decisions based @ages are delivered more promptly to the dispatcher. This in
the most recent load information only. The motivation can bgitive result is confirmed by the results of the CAP-ALARM
attributed to the dynamics of the multi-tier Web cluster-sysalgorithm with respect to the server load recomputatioarint
tem. Due to the large variability of client requests assiftoe val in a light and heavy load scenario (Figure 8). It is inter-
a server, the load information becomes obsolete quickly arg@ting to observe that we have two clear choices for solving
itis poorly correlated with future server load. the tradeoff between performance results and overhedureit
we prefer a very small interval (e.g., about 1 second) with it

From the Figures 2- 7 we can also derive other interesting,,sequent high costs or we limit overheads and choose large
considerations. The CPU utilization (LL-CPU) is undoubtypsarvation intervals (e.g., 6 or more seconds).

8 12

=
S}
|

©
|
g
\
\
\
\

90 Percentile of response time [sec]
\
\
\
\
\
\
90 Percentile of response time [sec]

LARD/LL-CONN - P LARD/LL-CONN g
14 LARD/LL-CONN-AM =% —- LARD/LL-CONN-AM —-x~
LARD/LL-CONN-WM - - %- - LARD/LL-CONN-WM - - %- -
RR/CAP-ALARM —+— RR/CAP-ALARM —+—
0 T T 0 T T
5 10 15 20 5 10 15 20
Update interval [sec] Update interval [sec]
Figure 2: LARD/LL-CONN algorithms (ight load scenarip Figure 3: LARD/LL-CONN algorithms Heavy load scenarjo
8 12

~
|
=
o
|

o
|

®
|
\
X
|
|
|
|
1
|
|
|
|
|
1
|
|
|

o
|

IS
1

90 Percentile of response time [sec]
90 Percentile of response time [sec]

LARD/LL-CPU --&-- P LARD/LL-CPU &
14 LARD/LL-CPU-AM -~ LARD/LL-CPU-AM - -x~-
LARD/LL-CPU-WM - - %- - LARD/LL-CPU-WM - - %- -
RR/CAP-ALARM —+— RR/CAP-ALARM —+—
0 T T 0 T T
5 10 15 20 5 10 15 20
Update interval [sec] Update interval [sec]
Figure4: LARD/LL-CPU algorithms (ight load scenaridp Figure5: LARD/LL-CPU algorithms Heavy load scenarjo
8 12

10 -

,//\/4

90 Percentile of response time [sec]

LARD/LL-DISK @ P LARD/LL-DISK @
14 LARD/LL-DISK-AM -~ LARD/LL-DISK-AM -~
LARD/LL-DISK-WM - - x- - LARD/LL-DISK-WM - - x- -
RR/CAP-ALARM —+— RR/CAP-ALARM —+—
0 T T 0 T T
5 10 15 20 5 10 15 20
Update interval [sec] Update interval [sec]
Figure 6: LARD/LL-DISK algorithms (Light load scenaridp Figure 7: LARD/LL-DISK algorithms Heavy load scenarjo

Similarly to [13], we can conclude that in a distributed gyst the selected server even for light scenarios.

the threshold policy using a small amount of state infororati

provides substantial performance improvements. On ther othAn importantfinal observation is in order. Although the quan
hand, the LL strategy, which tends to assign every dynamitiative values of the performance results are by no means
request to the same back-end for the entire update inteamal dndependent of the considered workload model, the relative
easily unbalance the server loads and can possibly overlogenclusions about the load indexes, metrics and sample are

90 Percentile of response time [sec]

CAP-ALARM (light scenario) ——
CAP-ALARM (heavy scenario)-—» -+

0 T T T T T T T T
0 1 2 3 4 5 6 7 8
Server status update interval [sec]

policy tends to augment.

5.3 Centralized vs. distributed algorithms

After the analysis of several distributed policies, we gtud
the performance of a centralized algorithm for dispatching
requests to the back-end servers. There are two main ways
for implementing a centralized mechanism: to select a mas-
ter node as in [25] or to let the Web switch decide for both
first- and second-layer dispatching. In this paper we refer t
the latter choice, because we verified that a query to an-exter
nal master node for each request dispatching slows down the
response time.

Hence, we consider the CAP policy implemented at the Web

. switch, namely CAP-CENTR, that parses the URL and classi-
Figure 8: Sensitivity of the CAP-ALARM algorithm to the fre- fieg the type of the request (we recall that there are fousetas
quency of status information updating of dynamic requests and one of static requests). The satic r
guests are assigned to the Web servers in a RR way, while
for each dynamic request the Web switch selects a back-end

server on the basis of the CAP multi-class list.
rather stable.

Figure 11 and 12 show the 90-percentile of the response times
5.2 Performance of server state-blind policies for the CAP-CENTR algorithm and other distributed algo-
In this section we consider the policies which do not take int"ithms that show the best results. (It should be noted that tw
account any server state information for dispatching. @hef' them, thatis LARD/LLopt and PARTopt/WRRopt, are op-
fimal versions of the considered policies, for which thevsho

are two classes of server state-blind policies: pure stat) .)
blind (e.g., RR) and client state-aware algorithms (e AR P results are not guaranteed at all.) Again, the light scenari
@rigure 11) does not show appreciable differences.

CAP). The figures report also the best server state-aware p
icy (LLopt) whose performance must be considered as an o
timal target which is absolutely not guaranteed for all work
load conditions.

Hf a heavier load scenario, the convenience of a centralized
(CAP-CENTR) and a state-blind solution (RR/RR) over dis-
tributed server state-aware dispatching becomes evidient.

Figures 9 and 10 show the cumulative distribution functiond€€d, with a distributed mechanism, the dispatchers tend to

of the response time in the case of a light and heavy scenarilUence each other negatively, unless some sort of badk-en
respectively. When the load is low, all server state-blinti-p partitioning scheme is adopted. We recall that the PARTopt

cies perform similarly. When we pass to consider a heavesults shown in these figures are by far an optimal choice

ier dynamic workload, the performance results of RR/RR antfiat is not guaranteed for other workload conditions.
PARTopt/RR are clearly the best. The slight better results o

PARTopt/RR over RR/RR were expected because the docu-

ment partition was done on the basis of a known workload, 6 Conclusions

so to maximize load sharing. This is an optimal condition

for the PART policy because different workload distribuo - systems with multiple nodes are the leading architectures t
could lead the PART policy to perform much worse than PARpild highly accessed Web sites that have to guarantee scal-
Topt, especially if requests tend to be concentrated toessibsaple services and to support ever increasing request Ideel. T
of Web document directories. performance problems of Web-based architectures is wors-

h her hand. th q its of RR/ b ening also because of the need of client authentication and
On the other hand, the good results of RR/RR, even eug)r/stem security, the increased complexity of middlewark an

tha_m _RR/CAP' were quite surpr_ising (and, we can ac_id, disaprlication software, and the high availability requirense
pointing, because they c_ontradlcted the_ results obtal_r’lmlhw of corporate data centers and e-commerce Web sites. In this
RR and CAP were applied to a centralized Web switch [6])paper, we analyze dispatching algorithms that are suifable

We gi\{e the foI.Iowing motiyation. Itis not convenient to US€multi-tier distributed Web systems. We have analyzed tfie ef
a multi-class dispatching list for each Web server whenetheg;o, . and fimitations of different centralized and disaed

are multiple independent dispatchers, because this augm licies and evaluated the tradeoff among the considered al

the probability that two or more requests of the same clag§atives. From the performance study carried out in this
are sent to the same back-end server with high risks of ov aper we can take several conclusions

loading it. Instead, dispatching the requests in a plain R
way (that is, through a single class list for each independen
dispatcher) limits the risks of conflicts that instead theRCA e To balance the load across the nodes organized in mul-

CDF of page response time

i
£
Q
1%
=4
o
Q.
7]
®
[}
j=J
©
Q.
5
'8
[a)
O
0.2+ LARD/LLOpt @
RR/RR — % -
014 PARTOPY/RR - - *- -
RRICAP —+—
0 T T T T T
0 1 2 3 4 5 6

Page response time [sec]

- X% % XK XX
0.9 R
R e
0.8 e =
* i3]
x e o
.
0.7 o =
. 4 al
06 o -
6 K a
P =
0.5 - < o
1/ /)(=)
* o
e b o
P
Vs
LARD/LLopt &
RR/RR - —-
PARTOPURR - - %- -
RRICAP ——
0 T T T T T
0 1 2 3 4 5 6

Page response time [sec]

Figure 9: State-blind and state-aware policidsght load sce- Figure 10: State-blind and state-aware policieése@vy load sce-

CDF of page response time

nario)

(¢}
£
()
[%2)
j =
o
Q
7]
1<)
[}
=2
[
o
k]
'
[a)]
s
0.2 4 LARD/LLopt &~
RR/RR — >~
0.1 o PARTopt/WRRopt- - *- -
CAP-CENTR —+—
0 T T T T T
0 1 2 3 4 5 6

Page response time [sec]

nario)
1
x K- K- K -k -
0.9 - RS == e S 2
Py 8 o8
0.8 x" gx =
* B
0 7 a *// E
. , 7 B
06 % o
6 ,
¥ /)(Rl
05 Sl "
* =
. o
044 S v
o3 4 F
. /r// m
02+ f 7 LARD/LLopt &
/2 RR/RR — -
0.1 4/; PARTOPYWRROPpt- - %- -
CAP-CENTR —+—
0 T T T T T
0 1 2 3 4 5 6

Page response time [sec]

Figure 11: Centralizedvs distributed policies l(ight load sce- Figure 12: Centralizedvs distributed policies Kleavy load sce-

nario)

tiple layers, a Web cluster has two control knobs: the
dispatching policy carried out by the Web switch for se-
lecting a Web server for static requests and a dispatch-
ing mechanism for selecting a back-end server for dy-
namic requests. Just exploring one dispatching compo-
nent alone is inadequate to address uneven distributions
of the traffic reaching a Web site.

Among the most used dispatching algorithms in com-
mercial Web clusters, we found that Round-Robin gives
good results and is quite stable, while the Least-Loaded
policies are inadequate because they tend to drive
servers to saturation as all requests are sent to the same
server until new information is propagated. This “herd
effect” is well known in distributed systems [11, 18],
yet it is surprising that the Least-Loaded approach is
commonly proposed in commercial products. On the
other hand, server state-blind algorithms make not so
poor assignment decisions as we and other authors ex-
pected.

Another initially unexpected result for the server state-
aware policies is that the best performance is achieved

nario)

by algorithms that use only limited state information
for checking whether a server is overloaded or not. On
the other hand, detailed load information, especially
the less recent load information, does not appear use-
ful, and can often lead to bad dispatching choices. The
most promising server state-aware algorithms use asyn-
chronous alarms (when the load at a server crosses
a threshold) combined with some client information.
However, server load remains an unreliable informa-
tion which is costly to get and difficult to manage ad-
equately, because it is highly sensitive to the instanta-
neous state conditions.

e Pure client state-aware policies have a great advantage

over policies that use also server information, as they
do not require expensive and hard-to-tune mechanisms
for monitoring and evaluating the load on each server,
gathering the results, and combining them to make dis-
patching decisions. However, even client state-aware
policies should take into account at least a binary server
information in order to avoid routing the requests to
temporarily unavailable or overloaded servers.

e Static partitioning algorithms tend to ignore load shar{14] F5 Networks Incht t p: / / ww. f 51 abs. cont .
ing, as it is almost impossible to partition the Web[15] D. Ferrariand S. Zhou. An empirical investigation cétbin-
services in such a way that client requests are badtices for load balancing applications.Rmoceedings of Performance
anced out. On the other hand, if these algorithms af987 pages 515-528, North-Holland, The Netherlands, 1987.
combined with dispatching policies that guarantee higft6] G.S. Hunt, G. D. H. Goldszmidt, R. P. King, and R. Mukher-
cache hitrates, such as LARD, they give best results fgge. Network Dispatcher: A connection router for scalablernet
Web sites providing static information and some simplé&ervices.Computer Networks30(1-7):347-357, 1998.
database information. [17] Linux Virtual Server project. ht t p: / / waw.
I'i nuxvirtual server.org/.
[18] M. Mitzenmacher. How useful is old informationlEEE
The study of optimal resource management in multi-tier affrans. Parallel and Distributed Systenisl(1):6—20, Jan. 2000.
chitectures is challenging because the multitude of ire@lv 19) p. Mosberger and T. Jin. httperf - A tool for measuringowe
technologies and complexity of process interactions g0wyir - server performance. IRroceedings of Workshop on Internet Server
at the middle-tier let the vast majority of commercial produ PerformanceMadison, Wisconsin, 1998.

prefer quite naive dispatching solutions. Combining loall b [20] Oracle. Oraclef@is web Cacheht t p: / / www. or acl e.
ancing and caching of dynamic content in multi-tier Systemsont i p/ depl oy/ i as/ cachi ng/ i ndex. ht n .

is worthy of further investigation. [21] O. Othman, C. O'Ryan, and D. C. Schmidt. Strategies for
CORBA middleware-based load balancindzEE Distributed Sys-
tems Onling2(3), Mar. 2001.

[22] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-aware requestidist
bution in cluster-based network servers. Aroceedings of the 8th
ACM Conference on Architectural Support for ProgrammingiLa
guages and Operating Systermpages 205-216, San Jose, CA, Oct.

References
[1] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterigj the
scalability of a large web-based shopping systehCM Trans. on
Internet Technologyl(1):44—69, Aug. 2001.
[2] M. F Arlitt and T. Jin. A workload characterization stud 1998
of the 1998 World Cup Web site.lEEE Network 14(3):30-37, ’
May/June 2000. [23] Resonate Inchtt p: // ww. r esonat e. com .
[38] M. Aron, P. Druschel, and Z. Zwaenepoel. Efficient suppor[24] C.-S.Yang and M.-Y. Luo. A content placement and manage
for P-HTTP in cluster-based Web servers. Rroceedings of the ment system for distributed Web-server systemsProceedings of
1999 USENIX Annual Technical Conferenpages 185-198, Mon- the 20th IEEE International Conference on Distributed Coimm

terey, CA, June 1999.

[4] E. A.Brewer. Lessons from giant-scale servideEE Inter-
net Computing5(4):46-55, July/Aug. 2001.

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yuh&
state of the art in locally distributed web-server systé&f@M Com-
puting Surveys34(2), June 2002.

[6] E. Casalicchio and M. Colajanni. A client-aware dis|beg
algorithm for Web clusters providing multiple services.Froceed-
ings of the 10th International World Wide Web Conferenzages
535-544, Hong Kong, May 2001.

[7] Cisco Systems Incht t p: / / www. ci sco. con .

[8] A.Cohen, S. Rangarajan, and H. Slye. On the performahce
TCP splicing for URL-aware redirection. Proceedings of the 2nd
USENIX Symposium on Internet Technologies and SysBoukler,
CO, Oct. 1999.

[9] M. Colajanni, P. S. Yu, and D. M. Dias. Analysis of task as-
signment policies in scalable distributed Web-serveresyistIEEE
Trans. Parallel and Distributed Systen®6):585-600, June 1998.
[10] M. E. Crovella and A. Bestavros. Self-similarity in War
Wide Web traffic: Evidence and possible caud&£E/ACM Trans.
Networking 5(6):835-846, Dec. 1997.

[11] M. Dahlin. Interpreting stale load informatiohEEE Trans.
Parallel and Distributed System$1(10):1033—-1047, Oct. 2000.
[12] L. Degenaro, A. lyengar, I. Lipkind, and I. Rouvellou. A
middleware system which intelligently caches query resuttPro-
ceedings of ACM/IFIP Middleware 200@ages 24—44, Palisades,
NY, Apr. 2000.

[13] D.L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptiaio
sharing in homogeneous distributed systetB€E Trans. Software
Engineering 12(5):662—-675, May 1986.

Systemgpages 691698, Taipei, Taiwan, Apr. 2000.

[25] H. Zhu, B. Smith, and T. Yang. Scheduling optimizatiam f
resource-intensive Web requests on server clusterBrdeoeedings
of the 11th ACM Symposium on Parallel Algorithms and Archite
tures (SPAA'99)pages 13-22, June 1999.

(0]

