
Performance Study of Dispatching Algorithms in
Multi-tier Web Architectures

Mauro Andreolini1 Michele Colajanni2 Ruggero Morselli3
Abstract

The number and heterogeneity of requests to Web sites are
increasing also because the Web technology is becoming the
preferred interface for information systems. Many systems
hosting current Web sites are complex architectures composed
by multiple server layers with strong scalability and reliabil-
ity issues. In this paper we compare the performance of sev-
eral combinations of centralized and distributed dispatching
algorithms working at the first and second layer, and using
different levels of state information. We confirm some known
results about load sharing in distributed systems and give new
insights to the problem of dispatching requests in multi-tier
cluster-based Web systems.

1 Introduction

Web technology is becoming the preferred standard interface
for accessing many services exploited through the Internet.
While the first generation of Web sites was largely based on
static and read-only information, an increasing percentage of
Web sites provide information and services that are personal-
ized for the client or created dynamically by the execution
of some application process. The consequence is that dy-
namic pages and services are becoming essential in modern
sites where Web-based technologies have emerged as a valid
alternative to traditional client-server computing. Because of
the complexity of the Web infrastructure, performance prob-
lems may arise in many points during an interaction with
Web-based systems. Upgrading the power of a single server
will not solve the Web scalability problem in a foreseeable fu-
ture. The alternative architecture we consider in this paper is
a locally distributed Web system composed by multiple nodes
that are typically organized in layers.

An example of multi-tier cluster-based Web system (briefly,
Web cluster), is shown in Figure 1. The only visible address
is the Virtual IP (VIP) corresponding to the front-end device
which is located in front of the set of servers. This device,
hereafter calledWeb switch, interfaces the rest of the Web
cluster nodes with the Internet, thus making the distributed1Department of Computer Engineering, University of Roma “Tor Ver-
gata”, Roma, Italy 00133, andreolini@ing.uniroma2.it2Department of Information Engineering, University of Modena, Mode-
na, Italy 41100, colajanni@unimo.it3University of Modena, Italy, and Department of Computer Science, Uni-
versity of Maryland, ruggero@cs.umd.edu

nature of the site architecture completely transparent. The
first set ofWeb servernodes run the HTTP daemons. They
listen on some network port for the client requests assignedby
the Web switch, prepare the content requested by the clients,
send the response back to the clients or to the Web switch, and
finally return to the listen status. The Web server nodes are ca-
pable of handling requests for static content, whereas theyfor-
ward requests for dynamic content toback-endservers host-
ing databases and other (legacy) applications. It may consist
of a layer of separate nodes or thin gateway processes running
on the Web server nodes that accept requests from the Web
server and interact with the database server or other legacy
applications at the back-end layer. A middle layer may be in-
terposed between the Web and the back-end layer. The load
reaching this Web system must be evenly distributed among
the server nodes, so as to improve performance. Hence, we
have to include some component that routes client requests
among the servers with the goal of load sharing maximization.
The level of multiple indirections in a multi-tier Web clus-
ter architecture where each layer consists of multiple server
nodes opens several interesting performance problems be-
cause request routing and dispatching can be implemented at
different levels, for example, at the Web switch and at the
Web server layer. The Web switch receives all inbound pack-
ets that clients send to the VIP address, and routes them to a
Web server node. In such a way, it acts as thecentralizeddis-
patcher of a distributed system with fine-grained control on
client requests assignments. This topic is widely investigated
in literature. For a complete survey see [5].

Request dispatching and load sharing at the internal layers
are implemented in most commercial products, but they are
not widely studied topics in the research community. Indeed,
the selection of a back-end server can be done by somecen-
tralized entity (the Web switch itself or some master node,
e.g. [25]) or in adistributedway by any Web server. The com-
bination of feasible alternatives is wide. This paper givesone
of the first contributions to this area. We compare the perfor-
mance of several combinations of centralized and distributed
dispatching algorithms working at the first and second layer,
and using different levels of state information.

The main focus is on the second dispatching-level because
the non-uniformity of the load and non-cacheability of most
documents (in spite of many efforts [12, 20]) introduce addi-
tional degrees of complexity to the request dispatching issue.
Indeed, burst arrivals and hot spots can be faced by the Web
switch and servers through caching techniques so that a Web



server node can typically deliver several hundreds of static
files per second. On the other hand, to share the load for dy-
namic requests is quite difficult because they often requireor-
ders of magnitude higher service times. We also analyze the
efficiency and the limitations of the different solutions and the
tradeoff among the alternatives with the aim of identifyingthe
characteristics of centralized and distributed approaches and
their impact on performance. A partially unexpected resultis
that at the second layer the most simple dispatching policies
work better than the more sophisticated ones, even when the
system is highly loaded. Instead, detailed information about
the server, especially past load, does not appear useful, and
can often lead to bad dispatching choices. Our experimen-
tal results confirm in a quite different context the well known
results by Eager et al. [13] and others [9] obtained through
analytical and simulative models.

Zhu et al. [25] have studied the problem of request dispatch-
ing in a multi-tier architecture, where a second-layer switch
is integrated in each Web server node, calledmaster node.
When a Web server node receives a request for dynamic con-
tent, it queries the master to choose the back-end server to
which it has to forward the request. The back-end node selec-
tion is based on a prediction model that estimates the expected
cost for processing the dynamic request on each slave node.
Similar multi-tier architectures have been also analyzed in [4].

The generation of dynamic content opens other performance
issues that are beyond the scope of this paper. Indeed, the
alternative solutions depend also on the application software,
the chosen middleware and database technology. For exam-
ple, commercial Web service software, such as BEA We-
bLogic and IBM WebSphere, have evolved from simple Web
servers into complex Web application servers that use CGI,
Java Server Pages, Microsoft Active Server Pages, XML, and
other technologies. A different solution for load balancing
based on CORBA middleware technology is proposed in [21]
where several dispatching strategies have been also proposed
and evaluated. Other interesting research fields in multi-tier
Web architectures are not oriented to load balancing, but to
mechanisms that can cache query results and dynamic con-
tent [12, 20].

The rest of this paper is organized in the following sections.
In Section 2, we describe the dispatching algorithms that can
be used by the Web switch and Web servers in a centralized or
distributed way. In Section 3 and 4, we examine the test-bed
prototype and the benchmarking parameters that we used in
the experiments, respectively. In Section 5, we discuss theex-
perimental results which are obtained for two main workload
scenarios. In Section 6, we outline our conclusions.

2 Dispatching algorithms

In a multi-tier Web cluster there is a dispatching policy carried
out by the Web switch that selects a Web server, and another

Local Area Network

Client requests

Local Area Network

HTTP server

server
Application

HTTP server

server
Application

HTTP server

server
Application

server 1 server 2 server 3 server M

����
����
����
����
����

����
����
����
����
����

���
���
���
���

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����

����
����
����

����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Back−end Back−end Back−end Back−end

Web server 1 Web server 2 Web server N

Web switch

Figure 1: An example of multi-tier architecture for a cluster-based
Web system.

dispatching choice when a back-end server has to be chosen
for a dynamic request. The common rule is that these dis-
patchers cannot use highly sophisticated algorithms because
they have to take immediate decisions for hundreds or thou-
sands of requests per second. There are several alternatives
for dispatching algorithms described in literature, however for
the scope of this paper the most important choices are among
centralizedvs. distributed, andstate-blindvs. state-aware
algorithms.

The front-end architecture with a single Web switch that re-
ceives all inbound packets drives the choice to centralized
dispatching policies. Hence, the real alternative for the Web
switch dispatching-layer is amongstate-blind vs.state-aware
algorithms. On the other hand, for the second dispatching-
layer, we may consider bothdistributed policies carried out
by the Web servers andcentralized solutions where the deci-
sion is taken by the Web switch or by another server selected
as a master.

State-blind(or static) algorithms are the fastest solution be-
cause they do not rely on the current state of the system at the
time of decision making. However, the common belief is that
these algorithms may make poor assignment decisions.State-
aware (or dynamic) algorithms have the potential to outper-
form static algorithms by using some state information to help
dispatching decisions. The main problems with dynamic al-
gorithms are that they require mechanisms to collect and an-
alyze data, thereby incurring in potentially expensive over-
heads and stale information about state conditions.

State-aware algorithms can take into account a variety of sys-
tem state information that depends also on the protocol stack



layer at which the dispatcher operates. They can be further
classified according to the level of system state information
being used by the dispatcher. A Web server operates at the
application layer and can applycontent-aware dispatchingal-
gorithms, while a Web switch can operate at the same layer
or at the TCP layer where onlycontent-blind dispatchingal-
gorithms are allowed. We consider the following four classes
of algorithms.� In state-blindpolicies, the dispatcher assigns requests

using a static algorithm and no dynamic information.� In client state-awarepolicies, the dispatcher routes re-
quests on the basis of some client information. For
example, a dispatcher working at application layer can
examine the entire HTTP request and take decisions on
the basis of more detailed information about the client.
(Indeedclient info-awarewould be a more correct def-
inition for this class of algorithms, but we prefer to use
client state-aware for symmetry reasons.)� In server state-awarepolicies, the dispatcher assigns
requests on the basis of some server state information,
such as current and past load condition, latency time,
and availability.� In client and server state-awarepolicies, the dispatcher
routes requests by combining client and server state in-
formation.

We consider the dispatching algorithms which are represen-
tative of each of these four classes. Table 1 summarizes the
policies analyzed in this paper and whether they are applied
at the Web switch or at the Web server.

2.1 State-blind algorithms
State-blind policies do not consider any system state infor-
mation. Typical examples areRandom and Round-Robin
(RR) algorithms. Random distributes the incoming requests
uniformly through the server nodes with equal probability of
reaching any server. RR uses a circular list and a pointer to
the last selected server to make dispatching decisions.

Both Random and RR policies can be easily extended to treat
servers with different processing capacities by making theas-
signment probabilistic on the basis of server capacity. Dif-
ferent processing capacities can be also treated by using the
so-calledstatic Weighted Round-Robin, which comes as a
variation of the Round-Robin policy. Each server is assigned
an integer weightwi that indicates its capacity. Specifically,wi = Ci=min(C), wheremin(C) is the minimum server ca-
pacity. The dispatching sequence will be generated according
to the server weights.

2.2 Server state-aware algorithms
When we consider dispatching algorithms that use some
server state information we have to decide theserver load

index, how and when to compute it, how and when to trans-
mit this information to the dispatcher. These are well known
problems in a networked system [11, 15].

Once a server load index is selected, the dispatcher can apply
different algorithms. A common scheme is to have the new
request assigned to the server with the lowest load index. The
Least Loaded algorithm (LL) actually denotes a set of poli-
cies that depend on the index chosen to characterize the server
load. The three main factors that affect the latency time of a
Web request are loads on CPU, disk, and network resources
of the Web server nodes. Typical server state information in-
cludes the CPU utilization evaluated over a short interval,the
instantaneous CPU queue length periodically observed, the
disk or I/O storage utilization, the instantaneous number of
active connections, the number of active processes, and the
object latency time, that is, the completion time of an object
request at the Web cluster side. These indexes need a pro-
cess monitor on the servers and a communication mechanism
from the servers to the dispatcher. For example, in theLeast
Connections policy (LL-CONN), which is usually adopted
in commercial products (e.g., Cisco’s LocalDirector [7], F5
Networks’ BIG-IP [14]), the dispatcher assigns the new re-
quest to the server with the fewest active connections. In this
paper we consider also other load metrics, such as CPU and
disk utilization. In theLL-CPU policy andLL-DISK pol-
icy the dispatcher assigns requests to the server having lowest
CPU and disk utilization, respectively.

The dynamic Weighted Round-Robin algorithm (WRR) is
a variation of the version that considers static information
(server capacity) as a weight. This policy associates each
server with a dynamically evaluated weight that is propor-
tional to the server load state, typically estimated as a number
of connections [16]. Periodically, the dispatcher gathersload
index information from the servers and computes the weights,
that are dynamically incremented for each new connection as-
signment.

2.3 Client state-aware algorithms
The complexity and overheads of a dispatcher that can exam-
ine the HTTP request at the application layer motivates the
use of more sophisticated content-aware distribution policies.
The proposed algorithms may use information about the re-
quested URL for different purposes, such as: to improve ref-
erence locality in the server caches so to reduce disk accesses
(cache affinity); to use specialized server nodes to provide dif-
ferent Web services (specialized servers), such as streaming
content, dynamic content; to partition the Web content among
the servers, for increasing secondary storage scalability(ser-
vice partitioning); to increase load sharing among the server
nodes (load sharing).

In cache affinity policies, the file space is typically partitioned
among the server nodes. A hash function applied to the URL
(or to a substring of the URL) can be used to perform a static
partitioning of the files. The dispatching policy running onthe
Web switch (namely,URL hashing algorithm) uses the same



Table 1: Dispatching policies to distribute client requests among Web and back-end servers.
Policy Location Knowledge

RR switch/server state-blind

LL-CONN server server state-aware
LL-CPU server server state-aware
LL-DISK server server state-aware
WRR server server state-aware

PART switch client info-aware
CAP server client info-aware
CAP-CENTR switch client info-aware

LARD switch client and server state-aware
CAP-ALARM server client and server state-aware

function. However, the solution combining Web object parti-
tioning and URL hashing can be applied to Web sites provid-
ing static content only. Moreover, it ignores load sharing com-
pletely, as it is difficult to partition the file space in such away
that requests are balanced out. Indeed, if a small set of files
accounts for a large fraction of requests (a well-known char-
acteristic of Web workloads, e.g., [2, 10]), the server nodes
serving those critical files will be more loaded than others.
For cacheable documents, these critical load peaks can be
lowered by architectures that integrate proxy server solutions,
but the problems remain for most dynamic services.

For Web sites providing heterogeneous Web services, the re-
quested URL can be used to statically partition the servers
according to the file space and service type they handle. The
goal is to exploit the locality of references in the server nodes,
to achieve the best cache hit rate for static documents, and
possibly to employ specialized servers for certain types ofre-
quests, such as dynamic content, multimedia files, streaming
video [24]. We refer to this policy as toService Partition-
ing (PART). Most commercial content-aware switches de-
ploy this type of approach (for example, F5 Networks’ BIG-
IP [14], Resonate’s Central Dispatch [23]) although they use
different names.

Another goal of the content-aware dispatching algorithms is
to improve load sharing among the server nodes. These strate-
gies do not require static partitioning of the file space and the
Web services. Let us consider one policy belonging to this
class, calledClient Aware Policy (CAP) [6], that is oriented
to Web sites providing services with different computational
impact on system resources. The basic observation of CAP is
that when the Web site provides heterogeneous services, each
client request could stress a different Web system resource,
e.g., CPU, disk, network. Although the Web switch cannot
estimate the service time of a static or dynamic request accu-
rately, it can distinguish the class of the request from the URL
and estimate its main impact on one Web system resource. A
feasible classification for CAP is to consider disk bound, CPU
bound, and network bound services, but other choices are pos-
sible depending on the Web content. To improve load sharing
in Web clusters that provide multiple services, the Web switch

manages a circular list of server assignments for each classof
Web services. The CAP goal is to share multiple load classes
among all servers so that no component of a node is over-
loaded. CAP in its initial form is a client state-aware policy,
however it can be easily combined with some server state in-
formation.

It is worth noting that the client state-aware policies do not
require a hard tuning of parameters, which is typical of the
server state-aware policies, because the service classes are
decided in advance and the dispatching choice is determined
statically once the requested URL has been classified.

2.4 Client and server state-aware algorithms
Client information is often combined with some server state
information, for example to provide the so calledclient affin-
ity [16, 17]. In policies based on client affinity, client and
server information have a different weight: when available,
client information usually overrides server information for as-
signment decisions. Instead of assigning each new connection
to a server on the basis of its server state regardless of any
past assignment, performance or functional reasons motivate
the assignment of the same request to the same server.

The Locality-Aware Request Distribution (LARD) policy
is a content-aware request distribution that considers both
locality and load balancing [3, 22]. The basic principle of
LARD is to direct all requests for the same Web object to the
same server node as long as its utilization is below a given
threshold. By so doing, the requested object is more likely to
be found into the disk cache of the server node. Some check
on the server utilization is useful to avoid overloading servers
and, indirectly, to improve load sharing.

A modified version of the CAP policy, namelyCAP-
ALARM, uses an asynchronous communication mechanism
that exchanges alarm messages only when necessary, in ad-
dition to the request content for dispatching. The server
load status is computed periodically; if it exceeds a threshold
value, an alarm message is sent to the dispatcher. When the
load falls clearly below the threshold, a wakeup message is
sent to the dispatcher. The requests are distributed using the



CAP algorithm, unless the chosen server has sent an alarm
message, indicating that its utilization has exceeded the max-
imum capacity. In this case, CAP-ALARM chooses the next
server which is not overloaded, if it exists, or the least loaded
server. The overloaded server will be used again as soon as
the dispatcher receives a wakeup message.

3 Test-bed architecture

The Web cluster consists of a Web switch node, connected
to the back-end nodes and the Web servers through one or
multiple high speed LANs, as in Figure 1. The distributed ar-
chitecture of the cluster is hidden to the HTTP client through
a unique Virtual IP (VIP) address.

In this paper we use a layer-7 Web switch implemented at the
application layer, thus allowing content-aware request distri-
bution. Different mechanisms were proposed to implement a
layer-7 Web switch at various operating system levels. The
most efficient solutions are TCP hand-off [22] and TCP splic-
ing [8], both implemented at the kernel level. Application
layer solutions are undoubtedly less efficient than kernel level
mechanisms, but their implementation is cheaper and suffi-
cient for the purposes of this paper which intends to com-
pare dispatching algorithms instead of Web switch solutions.
There is no doubt that a commercial real system should work
at the kernel level, but addressing the switch performance is-
sues is out of the scope of this paper.

In particular, we used the TCP gateway mechanism (also
known as reverse proxy or surrogate): a proxy running on the
Web switch at the application layer mediates the communica-
tion between the client and the server. When a request arrives,
the proxy on the Web switch accepts the client connection and
forwards the client request to the target server. When the re-
sponse arrives from the server, the proxy forwards it to the
client through the client-switch connection.

We implemented the TCP gateway mechanism through the
Apache Web server software, that was sufficient to implement
and test any layer-7 dispatching algorithm without modifica-
tions at the kernel level.

Our system implementation is based on off-the-shelf hard-
ware and software components. The clients and servers of
the system are connected through a switched 100Mbps Eth-
ernet that does not represent the bottleneck for our experi-
ments. The cluster is made up of a Web switch, two Web
servers and four back-end servers. Each machine is a Dual
PentiumIII-833Mhz PC with 512MB of memory. All nodes
of the cluster use a 3Com 3C905C 100bTX network interface.
They are all equipped with a Linux operating system (ker-
nel release 2.4.17). Apache 1.3.12 is used as the Web server
software, while PHP 3.0.17 has been chosen as the dynamic
page support. On the Web switch and on the Web servers, the
Apache Web server is configured as a reverse proxy through
the modulesmod_proxyand mod_rewrite. The dispatching

algorithms are implemented as C modules that are activated
at startup of the Apache server. The dispatching module com-
municates with therewriting engine, which is provided by
mod_rewrite, over itsstdinandstdoutfile handles. For each
map-function lookup, the dispatching module receives the key
to lookup as a string onstdin. After that, it has to return the
looked-up value as a string onstdout.

Some dispatching policies require information about the
server loads. Therefore, we implemented load monitors for
the following load metrics: number of active connections,
CPU utilization and number of I/O requests issued to the disk.
Moreover, several load update strategies have been imple-
mented on the dispatcher modules.

The combination of a set of load indexes into a single index
that reflects the server load is an interesting research issue that
has not yet been investigated in the context of Web clusters.
In our test-bed system, we are considering the last five load
coefficients coming from each server and we implemented the
following three load update strategies:

Last value: this is the most obvious load update strategy. The
last load coefficient coming from the server is used as
the server state information.

Arithmetical mean: the state load of a server is computed as
the arithmetical mean of the last three load coefficients
coming from that server.

Weighted mean: the server state information is computed as
the weighted mean of the five most recent load samples
coming from the server. Each value is combined with a
weight obtained by a decay distribution. We useLi =P5j=1(1=G)li(j)e�j=2, whereli(j) for j 2 f1; : : : ; 5g
are the load samples of the serveri evaluated in the past
five intervals of 5 seconds each, andG =P5j=1 e�j=2
is the normalizing factor.

In addition to the choice of the server load index, all server
state aware policies face the problem of updating load infor-
mation. The intervals between load index updates need to be
chosen carefully to make sure that the system remains stable.
If the interval is too long, performance may be poor because
the system is responding to old information about the server
loads. On the other hand, too short intervals may result in sys-
tem over-reaction and instability. A strategy for interpreting
stale load information that can apply to layer-4 Web switches
has been proposed in [11]. Space limitations do not allow us
to address such important issue in this paper.

4 Workload model

The Web cluster is subject to a mixed workload consisting
of both static and dynamic documents. Static pages and ob-
jects are served by the Web servers, while dynamic content is



Table 2: Workload model for static requests and client behavior.
Category Distribution PMF Range Parameters

Requests per session Inverse Gaussian
q �2�x3 e��(x��)22�2x x > 0 � = 3:86, � = 9:46

User think time Pareto �k�x���1 x � k � = 1:4, k = 1
Objects per request Pareto �k�x���1 x � k � = 1:33, k = 2
HTML object size Lognormal 1xp2��2 e�(lnx��)22�2 x > 0 � = 7:630, � = 1:001

Pareto �k�x���1 x � k � = 1, k = 10240
Embedded object size Lognormal 1xp2��2 e�(lnx��)22�2 x > 0 � = 8:215, � = 1:46

processed by the back-ends. Dynamic workload is obtained
by means of PHP scripts which are passed to the back-end
servers. The same dynamic service may yield very different
results depending on when it is requested. This affects re-
sponse times tremendously. To take this aspect into account,
for each request we pre-generate a random number ranging
from 1Kb to 100Kb, representing the size of the buffer on
which we perform dynamic computations. We chose not
to generate bigger buffers since we do not want to perform
stress-test analysis, but a fair policy comparison. We have
considered four classes of dynamic services.Type 1emulates
the retrieval of data which is cached at the back-end and does
not require intensive CPU or disk usage.Type 2emulates a
query to a database.Type 3emulates an activity that stresses
the CPU, such as ciphering.Type 4emulates a heavy Web
transaction that requires a database query and ciphering of
the results.

In the experiments we compare the performance of dispatch-
ing strategies under two workload scenarios. Both of them
consist of 80% of dynamic requests and 20% of static re-
quests. This choice was motivated to put more stress on the
back-end nodes, but it is also confirmed by some workload
characterizations, e.g. [1]. Among the dynamic requests, 50%
are ofType 1, 25% are ofType 2, 12.5% are ofType 3, 12.5%
are of Type 4. In the light scenarioand in theheavy sce-
nario client inter-arrival times are exponentially distributed
with mean equal to 10 seconds and 1 second, respectively.
We have verified that these load mixes do not overload the
Web switch and the Web servers, but tend to stress the back-
end servers of the test-bed prototype. This is inline with the
purposes of this paper that is more oriented to investigate dis-
patching at the second layer. We have also verified that a
different mix of dynamic requests does not change the results
significantly, provided that the bottleneck remains at the back-
end level and not at the Web switch or at the Web server layer.

To emulate realistic Web workloads, we have also considered
concepts like user sessions, user think-time, embedded ob-
jects per Web page, realistic file sizes and popularity. Table 2
summarizes the probability mass function (PMF), the range,
and the parameter values of the workload model for static re-
quests and client behavior.

The performance metric of interest for this paper is the re-

sponse time of a client request, consisting of the base HTML
page and all embedded objects. Web workloads are charac-
terized by heavy-tailed distributions, thus response times may
assume highly variable values with non-null probability. We
have verified, as other authors did in advance, that the mean
is not at all representative of the system behavior. Hence, we
have preferred to use the cumulative distribution and the 90-
percentile of the response time of a client request. These met-
rics are able to represent much better the different behaviors
of the dispatching policies examined in the next section.

Because of this choice, we have also modified thehttperf
tool [19] (version 0.8) because no available benchmark was
able to return the 90-percentile and the cumulative distribu-
tion of the response time. Client requests are obtained from
a pre-generated trace whose characteristics follow the model
described above. This approach guarantees also the replica-
bility of the tests, that is fundamental for a fair comparison of
the performance of the dispatching policies. During each ex-
periment, at least 1000 user sessions are generated; this value
increases as the mean inter-arrival time decreases, to keeptest
times sufficiently long. We have planned 5 runs for each ex-
periment and consider the mean result; in this way, we limit
the fluctuations derived from the high variability of the work-
load.

5 Experimental results

In this section, we present the results of several dispatching al-
gorithms with a focus on the the second-layer. We indicate the
solutions that use a centralized policy at the Web switch layer,
and a distributed algorithm at the Web server layer through the
<policy1>/<policy2> notation.

We first consider the class of server state-aware policies tothe
purpose of showing the difficulty of using server load infor-
mation for dispatching. Next, we analyze server state-blind
policies which do not take into account any kind of server load
information, and we verify that these algorithms perform gen-
erally better than server state-aware policies. The final goal is
to compare centralized and distributed solutions.



5.1 Instability of server state information
Various issues need to be addressed when we consider dis-
patching policies based on some server state information: first
of all, the choice for one or moreserver load index(es); then
the way to compute the load state information and the fre-
quency of the samples; finally, due to the cluster architec-
ture, most indexes are not immediately available at the dis-
patcher, so we have to decide how to transmit them and how
frequently.

The focus of this section is on distributed dispatching at
the second layer that is, between the Web and the back-end
servers. We consider the LARD centralized policy at the Web
switch that performs well for static documents. We compare
nine server state-aware policies that come as variants of the
basic Least Loaded algorithm. In particular, we consider three
load indexes evaluated on the back-end servers (that is, LL-
CPU, LL-DISK, LL-CONN), and the three metrics “instanta-
neous load”, “arithmetical mean” (AM) and “weighted mean”
(WM), because we are also interested to analyze the impact
on performance of using present and/or past samples. For
comparison reasons, we finally report the results of another
state-aware policy, CAP-ALARM, that uses an asynchronous
alarm mechanism for skipping overloaded back-end servers.

There are various ways for reading the results reported in the
Figures 2- 7. Two preliminary observations are in order: the
figures on the left side refer to the light workload scenario
and response time scales are between 0 and 8 seconds; the
figures on the right side refer to the heavy workload scenario
and response time scales are between 0 and 12 seconds.

The first important conclusion is a confirmation of the im-
portance of the load index and update interval. Any of these
choices has a strong impact on final performance to the ex-
tent that the same server LL policy can behave much better or
much worse than other algorithms depending on an adequate
selection of the load indexes and of the update interval. The
dependency on these choices is impressive: the 90-percentiles
of response times go from 2.3 to 7 seconds for the light sce-
nario, and from 6 to 12 seconds for the heavy scenario.

If we focus on the sample analysis, we can see that in most
instances, even if some instability exists, the shortest update
interval (5 seconds) gives the best results. Moreover, the low-
est response time is achieved when the last sample or the
weighted samples (WM) are considered. On the other hand,
the arithmetical mean (AM) that gives the same importance to
all samples never performs as the best. These results indicate
that it is preferable to make dispatching decisions based on
the most recent load information only. The motivation can be
attributed to the dynamics of the multi-tier Web cluster sys-
tem. Due to the large variability of client requests assigned to
a server, the load information becomes obsolete quickly and
it is poorly correlated with future server load.

From the Figures 2- 7 we can also derive other interesting
considerations. The CPU utilization (LL-CPU) is undoubt-

edly the best index for representing the load on the back-end
servers. The curves in Figures 4 and 5 are the most stable,
to the extent that this algorithm is almost no sensitive to the
update intervals and to present and past samples. Stabilityof
the results is of primary importance for a Web system subject
to highly variable traffic. Moreover, LL-CPU gives the lowest
response times with respect to LL-CONN and LL-DISK that
is, always below 3 seconds and below 7 seconds for the light
and heavy scenario, respectively.

The number of active TCP connections (LL-CONN) is not
a good measure of the server load, because almost anything
can be requested to a back-end server over a TCP connection,
from a small document, possibly cached, to a stressing query.
This result was actually expected, while the bad performance
of the LL-DISK results more surprising. As many queries to
the back-end servers are also disk bound, we expected that
the number of I/O requests issued in the last update inter-
val would be a good measure of the back-end load. On the
other hand, Figures 6 and 7 show that the 90-percentiles of
response times are much higher than those achieved by the
LL-CPU, and comparable, although more stable, to those ob-
tained by the LL-CONN. We give the following motivation
to this result. Counting the number of I/O requests suffers
from a drawback similar to that discussed about the number
of active TCP connections. An access to disk does not reveal
much about the computational weight of the involved query.
Moreover, as the update interval increases this measure tends
to become inaccurate, especially if I/O requests are concen-
trated in bursts during short periods of time.

We finally compare the results of the LL policies against those
of the CAP-ALARM algorithm that does not use server load
information to take dispatching decisions, but it just alerts
the dispatcher to skip an overloaded or unreachable server.It
should be noted that for the CAP-ALARM policy, the update
interval concerns only the recomputation of the server load
status, because an alarm (wakeup) message is sent only if the
server exceeds (falls below) a given load threshold. Whereas
CAP-ALARM performs similarly to LL-CPU when the load
is light, for the heavy scenario we have that simply tracking
the heavily loaded servers reduces the response times by al-
most 50% (Figure 5). This result is important because this
performance improvement can be achieved at a minimum in-
crease in the communication overheads.

Actually, for a fair comparison, it must be pointed out that the
CAP-ALARM policy tends to perform better when the load
recomputation interval is small, since alarm and wakeup mes-
sages are delivered more promptly to the dispatcher. This in-
tuitive result is confirmed by the results of the CAP-ALARM
algorithm with respect to the server load recomputation inter-
val in a light and heavy load scenario (Figure 8). It is inter-
esting to observe that we have two clear choices for solving
the tradeoff between performance results and overhead: either
we prefer a very small interval (e.g., about 1 second) with its
consequent high costs or we limit overheads and choose larger
observation intervals (e.g., 6 or more seconds).



0

1

2

3

4

5

6

7

8

5 10 15 20

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Update interval [sec]

LARD/LL-CONN
LARD/LL-CONN-AM
LARD/LL-CONN-WM

RR/CAP-ALARM

Figure 2: LARD/LL-CONN algorithms (Light load scenario)

0

2

4

6

8

10

12

5 10 15 20

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Update interval [sec]

LARD/LL-CONN
LARD/LL-CONN-AM
LARD/LL-CONN-WM

RR/CAP-ALARM

Figure 3: LARD/LL-CONN algorithms (Heavy load scenario)

0

1

2

3

4

5

6

7

8

5 10 15 20

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Update interval [sec]

LARD/LL-CPU
LARD/LL-CPU-AM
LARD/LL-CPU-WM

RR/CAP-ALARM

Figure 4: LARD/LL-CPU algorithms (Light load scenario)

0

2

4

6

8

10

12

5 10 15 20

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Update interval [sec]

LARD/LL-CPU
LARD/LL-CPU-AM
LARD/LL-CPU-WM

RR/CAP-ALARM

Figure 5: LARD/LL-CPU algorithms (Heavy load scenario)

0

1

2

3

4

5

6

7

8

5 10 15 20

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Update interval [sec]

LARD/LL-DISK
LARD/LL-DISK-AM
LARD/LL-DISK-WM

RR/CAP-ALARM

Figure 6: LARD/LL-DISK algorithms (Light load scenario)

0

2

4

6

8

10

12

5 10 15 20

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Update interval [sec]

LARD/LL-DISK
LARD/LL-DISK-AM
LARD/LL-DISK-WM

RR/CAP-ALARM

Figure 7: LARD/LL-DISK algorithms (Heavy load scenario)

Similarly to [13], we can conclude that in a distributed system
the threshold policy using a small amount of state information
provides substantial performance improvements. On the other
hand, the LL strategy, which tends to assign every dynamic
request to the same back-end for the entire update interval can
easily unbalance the server loads and can possibly overload

the selected server even for light scenarios.

An important final observation is in order. Although the quan-
titative values of the performance results are by no means
independent of the considered workload model, the relative
conclusions about the load indexes, metrics and sample are



0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

90
 P

er
ce

nt
ile

 o
f r

es
po

ns
e 

tim
e 

[s
ec

]

Server status update interval [sec]

CAP-ALARM (light scenario)
CAP-ALARM (heavy scenario)

Figure 8: Sensitivity of the CAP-ALARM algorithm to the fre-
quency of status information updating

rather stable.

5.2 Performance of server state-blind policies
In this section we consider the policies which do not take into
account any server state information for dispatching. There
are two classes of server state-blind policies: pure state-
blind (e.g., RR) and client state-aware algorithms (e.g., PART,
CAP). The figures report also the best server state-aware pol-
icy (LLopt) whose performance must be considered as an op-
timal target which is absolutely not guaranteed for all work-
load conditions.

Figures 9 and 10 show the cumulative distribution functions
of the response time in the case of a light and heavy scenario,
respectively. When the load is low, all server state-blind poli-
cies perform similarly. When we pass to consider a heav-
ier dynamic workload, the performance results of RR/RR and
PARTopt/RR are clearly the best. The slight better results of
PARTopt/RR over RR/RR were expected because the docu-
ment partition was done on the basis of a known workload,
so to maximize load sharing. This is an optimal condition
for the PART policy because different workload distributions
could lead the PART policy to perform much worse than PAR-
Topt, especially if requests tend to be concentrated to subsets
of Web document directories.

On the other hand, the good results of RR/RR, even better
than RR/CAP, were quite surprising (and, we can add, disap-
pointing, because they contradicted the results obtained when
RR and CAP were applied to a centralized Web switch [6]).
We give the following motivation. It is not convenient to use
a multi-class dispatching list for each Web server when there
are multiple independent dispatchers, because this augments
the probability that two or more requests of the same class
are sent to the same back-end server with high risks of over-
loading it. Instead, dispatching the requests in a plain RR
way (that is, through a single class list for each independent
dispatcher) limits the risks of conflicts that instead the CAP

policy tends to augment.

5.3 Centralized vs. distributed algorithms
After the analysis of several distributed policies, we study
the performance of a centralized algorithm for dispatching
requests to the back-end servers. There are two main ways
for implementing a centralized mechanism: to select a mas-
ter node as in [25] or to let the Web switch decide for both
first- and second-layer dispatching. In this paper we refer to
the latter choice, because we verified that a query to an exter-
nal master node for each request dispatching slows down the
response time.

Hence, we consider the CAP policy implemented at the Web
switch, namely CAP-CENTR, that parses the URL and classi-
fies the type of the request (we recall that there are four classes
of dynamic requests and one of static requests). The static re-
quests are assigned to the Web servers in a RR way, while
for each dynamic request the Web switch selects a back-end
server on the basis of the CAP multi-class list.

Figure 11 and 12 show the 90-percentile of the response times
for the CAP-CENTR algorithm and other distributed algo-
rithms that show the best results. (It should be noted that two
of them, that is LARD/LLopt and PARTopt/WRRopt, are op-
timal versions of the considered policies, for which the shown
results are not guaranteed at all.) Again, the light scenario
(Figure 11) does not show appreciable differences.

In a heavier load scenario, the convenience of a centralized
(CAP-CENTR) and a state-blind solution (RR/RR) over dis-
tributed server state-aware dispatching becomes evident.In-
deed, with a distributed mechanism, the dispatchers tend to
influence each other negatively, unless some sort of back-end
partitioning scheme is adopted. We recall that the PARTopt
results shown in these figures are by far an optimal choice
that is not guaranteed for other workload conditions.

6 Conclusions

Systems with multiple nodes are the leading architectures to
build highly accessed Web sites that have to guarantee scal-
able services and to support ever increasing request load. The
performance problems of Web-based architectures is wors-
ening also because of the need of client authentication and
system security, the increased complexity of middleware and
application software, and the high availability requirements
of corporate data centers and e-commerce Web sites. In this
paper, we analyze dispatching algorithms that are suitablefor
multi-tier distributed Web systems. We have analyzed the effi-
ciency and limitations of different centralized and distributed
policies and evaluated the tradeoff among the considered al-
ternatives. From the performance study carried out in this
paper we can take several conclusions.� To balance the load across the nodes organized in mul-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
D

F
 o

f p
ag

e 
re

sp
on

se
 ti

m
e

Page response time [sec]

LARD/LLopt
RR/RR

PARTopt/RR
RR/CAP

Figure 9: State-blind and state-aware policies (Light load sce-
nario)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
D

F
 o

f p
ag

e 
re

sp
on

se
 ti

m
e

Page response time [sec]

LARD/LLopt
RR/RR

PARTopt/RR
RR/CAP

Figure 10: State-blind and state-aware policies (Heavy load sce-
nario)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
D

F
 o

f p
ag

e 
re

sp
on

se
 ti

m
e

Page response time [sec]

LARD/LLopt
RR/RR

PARTopt/WRRopt
CAP-CENTR

Figure 11: Centralizedvs distributed policies (Light load sce-
nario)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
D

F
 o

f p
ag

e 
re

sp
on

se
 ti

m
e

Page response time [sec]

LARD/LLopt
RR/RR

PARTopt/WRRopt
CAP-CENTR

Figure 12: Centralizedvs distributed policies (Heavy load sce-
nario)

tiple layers, a Web cluster has two control knobs: the
dispatching policy carried out by the Web switch for se-
lecting a Web server for static requests and a dispatch-
ing mechanism for selecting a back-end server for dy-
namic requests. Just exploring one dispatching compo-
nent alone is inadequate to address uneven distributions
of the traffic reaching a Web site.� Among the most used dispatching algorithms in com-
mercial Web clusters, we found that Round-Robin gives
good results and is quite stable, while the Least-Loaded
policies are inadequate because they tend to drive
servers to saturation as all requests are sent to the same
server until new information is propagated. This “herd
effect” is well known in distributed systems [11, 18],
yet it is surprising that the Least-Loaded approach is
commonly proposed in commercial products. On the
other hand, server state-blind algorithms make not so
poor assignment decisions as we and other authors ex-
pected.� Another initially unexpected result for the server state-
aware policies is that the best performance is achieved

by algorithms that use only limited state information
for checking whether a server is overloaded or not. On
the other hand, detailed load information, especially
the less recent load information, does not appear use-
ful, and can often lead to bad dispatching choices. The
most promising server state-aware algorithms use asyn-
chronous alarms (when the load at a server crosses
a threshold) combined with some client information.
However, server load remains an unreliable informa-
tion which is costly to get and difficult to manage ad-
equately, because it is highly sensitive to the instanta-
neous state conditions.� Pure client state-aware policies have a great advantage
over policies that use also server information, as they
do not require expensive and hard-to-tune mechanisms
for monitoring and evaluating the load on each server,
gathering the results, and combining them to make dis-
patching decisions. However, even client state-aware
policies should take into account at least a binary server
information in order to avoid routing the requests to
temporarily unavailable or overloaded servers.



� Static partitioning algorithms tend to ignore load shar-
ing, as it is almost impossible to partition the Web
services in such a way that client requests are bal-
anced out. On the other hand, if these algorithms are
combined with dispatching policies that guarantee high
cache hit rates, such as LARD, they give best results for
Web sites providing static information and some simple
database information.

The study of optimal resource management in multi-tier ar-
chitectures is challenging because the multitude of involved
technologies and complexity of process interactions occurring
at the middle-tier let the vast majority of commercial products
prefer quite naive dispatching solutions. Combining load bal-
ancing and caching of dynamic content in multi-tier systems
is worthy of further investigation.

References

[1] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the
scalability of a large web-based shopping system.ACM Trans. on
Internet Technology, 1(1):44–69, Aug. 2001.

[2] M. F. Arlitt and T. Jin. A workload characterization study
of the 1998 World Cup Web site.IEEE Network, 14(3):30–37,
May/June 2000.

[3] M. Aron, P. Druschel, and Z. Zwaenepoel. Efficient support
for P-HTTP in cluster-based Web servers. InProceedings of the
1999 USENIX Annual Technical Conference, pages 185–198, Mon-
terey, CA, June 1999.

[4] E. A. Brewer. Lessons from giant-scale services.IEEE Inter-
net Computing, 5(4):46–55, July/Aug. 2001.

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The
state of the art in locally distributed web-server system.ACM Com-
puting Surveys, 34(2), June 2002.

[6] E. Casalicchio and M. Colajanni. A client-aware dispatching
algorithm for Web clusters providing multiple services. InProceed-
ings of the 10th International World Wide Web Conference, pages
535–544, Hong Kong, May 2001.

[7] Cisco Systems Inc.http://www.cisco.com/.

[8] A. Cohen, S. Rangarajan, and H. Slye. On the performance of
TCP splicing for URL-aware redirection. InProceedings of the 2nd
USENIX Symposium on Internet Technologies and Systems, Boulder,
CO, Oct. 1999.

[9] M. Colajanni, P. S. Yu, and D. M. Dias. Analysis of task as-
signment policies in scalable distributed Web-server systems.IEEE
Trans. Parallel and Distributed Systems, 9(6):585–600, June 1998.

[10] M. E. Crovella and A. Bestavros. Self-similarity in World
Wide Web traffic: Evidence and possible causes.IEEE/ACM Trans.
Networking, 5(6):835–846, Dec. 1997.

[11] M. Dahlin. Interpreting stale load information.IEEE Trans.
Parallel and Distributed Systems, 11(10):1033–1047, Oct. 2000.

[12] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou. A
middleware system which intelligently caches query results. InPro-
ceedings of ACM/IFIP Middleware 2000, pages 24–44, Palisades,
NY, Apr. 2000.

[13] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load
sharing in homogeneous distributed systems.IEEE Trans. Software
Engineering, 12(5):662–675, May 1986.

[14] F5 Networks Inc.http://www.f5labs.com/.

[15] D. Ferrari and S. Zhou. An empirical investigation of load in-
dices for load balancing applications. InProceedings of Performance
1987, pages 515–528, North-Holland, The Netherlands, 1987.

[16] G. S. Hunt, G. D. H. Goldszmidt, R. P. King, and R. Mukher-
jee. Network Dispatcher: A connection router for scalable Internet
services.Computer Networks, 30(1-7):347–357, 1998.

[17] Linux Virtual Server project. http://www.
linuxvirtualserver.org/.

[18] M. Mitzenmacher. How useful is old information.IEEE
Trans. Parallel and Distributed Systems, 11(1):6–20, Jan. 2000.

[19] D. Mosberger and T. Jin. httperf - A tool for measuring web
server performance. InProceedings of Workshop on Internet Server
Performance, Madison, Wisconsin, 1998.

[20] Oracle. Oracle9ias web Cache.http://www.oracle.
com/ip/deploy/ias/caching/index.html.

[21] O. Othman, C. O’Ryan, and D. C. Schmidt. Strategies for
CORBA middleware-based load balancing.IEEE Distributed Sys-
tems Online, 2(3), Mar. 2001.

[22] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-aware request distri-
bution in cluster-based network servers. InProceedings of the 8th
ACM Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 205–216, San Jose, CA, Oct.
1998.

[23] Resonate Inc.http://www.resonate.com/.

[24] C.-S. Yang and M.-Y. Luo. A content placement and manage-
ment system for distributed Web-server systems. InProceedings of
the 20th IEEE International Conference on Distributed Computing
Systems, pages 691–698, Taipei, Taiwan, Apr. 2000.

[25] H. Zhu, B. Smith, and T. Yang. Scheduling optimization for
resource-intensive Web requests on server clusters. InProceedings
of the 11th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA’99), pages 13–22, June 1999.


