
A Scalable Architecture for Real-Time Monitoring
of Large Information Systems

Mauro Andreolini, Michele Colajanni, Marcello Pietri

University of Modena and Reggio Emilia
Via Vignolese, 905/b - 41125 Modena, Italy

Email: {mauro.andreolini,michele.colajanni,marcello.pietri}@unimore.it

ABSTRACT

Data centers supporting current cloud-based ser-
vices are characterized by a huge number of hard-
ware and software resources, often cooperating in
complex and unpredictable ways. Understanding the
state of these systems for management and service
level agreement reasons requires novel monitoring
architectures because fully centralized systems do
not scale to the required number of flows while pure
peer-to-peer architectures cannot provide a global
view of the system’s internal state. To make matters
worse, these services should be provided over short,
quasi real-time intervals. We propose a novel moni-
toring architecture that, by combining a hierarchical
approach with decentralized monitors, addresses the
aforementioned challenges. We evaluate its scal-
ability by means of an analytical models that is
validated through a set of experimental results.

Index Terms—Large Scale; Distributed; Data Center;
Monitoring; Cloud; Scalability.

I. INTRODUCTION

Cloud Computing is the most used model to
support the processing of large data volumes using
clusters of commodity computers. For example,
according to [1], already in 2008 Google processed
about 20 petabytes of data per day through an
average of 100.000 MapReduce jobs spread across
approximately 400 machines in September 2007,
crunching 11.000 machine years in a single month.
This dramatic increase in resource utilization is not
unique to Google, but rather to most competitors
in the cloud computing arena. As of late 2010,
Hadoop [2] clusters at Yahoo span 25000 servers,
and store 25 petabytes of application data, with the

largest cluster being 3500 servers [3]. Cloud SQL
Server uses Microsoft SQL Azure [4] to deploy an
Internet scale relational database service viable to
clusters of thousands of nodes.

These large infrastructures are monitored through
a multitude of services that extract and store mea-
surements about the performance and the utilization
of specific hardware and software resources. The
resource sampling interval is usually kept constant
and described in terms of its frequency. The be-
havior of each resource can be described through
the tuple (resource name, sampling interval, time
series). In this paper, we refer to this tuple with
the name resource data stream. For example, Sony
uses the closed-source Zyrion Traverse database [5]
to claim the monitoring of over 6000 devices and
applications over twelve datacenters across Asia,
Europe and North America. The virtual data layer
within the solution collects half a million resource
data streams every five minutes. This scenario opens
important challenges in the design of an advanced
monitoring infrastructure:

1) it must be able to scale to at least one million
of heterogeneous resource data streams within
reasonable real-time constraints which will
not be uncommon in the near future;

2) it must not have any single point of failure to
ensure service continuity.

We state that none of the existing solutions fully
addresses all these issues. In particular, fully central-
ized monitors cannot scale to the desired number
of resource data streams. For example, the proto-
type system introduced in [6], which uses Ganglia
and Syslog-NG to accumulate data into a central



MySQL database, shows severe scalability limits at
only 64 monitored nodes, each one collecting 20
metrics every 30 seconds. Here, the main bottleneck
is related to the increasing computational overhead
occurring at high sampling frequencies. On the other
hand, lowering the sampling frequency (commonly,
once every five minutes) can make it difficult to spot
rapidly changing workloads. Current decentralized,
per-data-center, hierarchical monitors such as Gan-
glia [7] are limited to computing efficiently averages
of measures spanning over several nodes. However,
the complexity of current workloads in modern
data centers calls for more sophisticated processing,
such as the identification of correlations among
different resource data streams, or the detection of
anomalies in the global system state. Finally, the
vast majority of current monitoring infrastructures,
including OpenNMS [8], Zabbix [9], Zenoss [10]
and Cacti [11] are not designed to be resilient to
failures. If, for any reason, any software module
fails (due to a bug, insufficient computing resources,
human mistake) it must be restarted manually. In a
very large system it is surprisingly easy for a system
administrator to miss these failures and to keep a
monitor running incorrectly (and producing garbage
resource data streams) for extended periods of time.

To address these challenges, in this paper we
propose an architecture for monitoring large-scale
network infrastructures hosted in data centers. Each
data center is equipped with its own decoupled
monitoring infrastructure; each monitor adopts a hi-
erarchical scheme to ensure scalability with respect
to the number of monitored resources. The internal
operations of the monitor are geared towards two
objectives: to provide real-time access to single
performance samples or graphs, and reduce the
expected time for the user to retrieve more sophis-
ticated analysis. The latter goal is obtained through
a batch-oriented subsystem that will be detailed
in the following section. Every single component
in the infrastructure is designed to be resilient to
failures. In particular, whenever possible, we enrich
the existing software modules with redundancy and
failover mechanisms. Otherwise, we automatically
restart the modules in case of failure.

Due to reasons of space, in this paper we focus
only on the local acquisition and analysis subsystem
and leave the other discussion to a future paper.

Our preliminary analysis reveals that the per-
cluster architecture is able to:

• collect 2946 resource data streams (from 128
probes) on a single monitored node every sec-
ond with a resources utilization <10%;

• collect 377088 resource data streams per sec-
ond from 128 different monitored nodes using
a single collector node;

• collect and process over three millions resource
data streams per second.

The rest of this paper is organized as follows.
Section II describes the design decisions support-
ing the aforementioned requirements, provides the
architecture of the monitoring infrastructure, moti-
vates the choice of the software components and
discusses various implementation details. Section
III investigates the theoretical scalability limits of
the proposed architecture. Section IV evaluates the
current state-of-the-art in the area of large-scale
system monitoring. Finally, Section V concludes the
paper with some remarks.

II. ARCHITECTURE DESIGN

The early decisions that have inspired the design
of the proposed architecture share two important
goals: to dominate the complexity of the monitoring
problem and to avoid single points of failure. The
huge problem size makes it literally impossible to
deploy any kind of centralized infrastructure. Even
worse, service centralization would not be fault-
tolerant. For these reasons, each cluster is equipped
with an independent monitor infrastructure. In our
opinion, this is the only viable alternative to scaling
to an arbitrary number of data centers. This strategy
is carried out only in the most advanced hierarchical
monitoring systems.

In order to scale to millions of data streams per
sample interval, it is mandatory to shift preliminary
computations (such as the sampling of a resource
and performing sanity checks on the sampled data)
as close as possible to the edge of the monitored
infrastructure. Failure to do so would result in a sys-
tem that unnecessarily processes potentially useless
data. Ideally, the resource data streams should be
initially filtered (or marked as invalid, anomalous)
on the monitored nodes. The resulting streams can
be sent to a storage system. This approach scales be-
cause the checks are, usually, computationally inex-



pensive and the monitored nodes are, usually, much
more than those dedicated to the monitoring infras-
tructure. Pushing frequent and preliminary checks
towards the edge of the monitored infrastructure
is currently done by Ganglia and Astrolabe [12].
Since the size of the sampled data is a crucial
factor in large monitoring systems that can severely
impact the network bandwidth, we also perform live
compression of the resource data streams.

Every time new samples are added to the re-
source data stream, an extra overhead is paid due
to data storage. As previous literature shows, in
this scenario characterized by frequent, small, ran-
dom database requests [13], write operations to
secondary storage do suffer from scalability issues.
To reduce this overhead, write operations should
be grouped and batched to secondary storage. We
believe that the map-reduce paradigm [14] is well
suited to this purpose. The adoption of map-reduce
also allows to perform sophisticated analysis over
the collected resource data streams in a scalable
fashion with commodity hardware (or even in a
leased platform such as Amazon EC2). On the
other hand, the most advanced monitors compute at
most moving averages of regular windows of past
samples. To the best of our knowledge, this paper
represents one first step towards a richer analysis in
a quasi real-time scenario.

To avoid single points of failure and to en-
sure service continuity, we enforce redundancy of
every component of the monitoring architecture.
Whenever possible, we deploy our solutions using
software that can be easily replicated. In other cases,
we wrap the component through custom scripts that
detect failures and restart it, in case.

At the lowest level of infrastructure, a set of hard-
ware and software resources can be associated to
subnets, racks, distinct production areas, and logical
or physical clusters. Each resource is monitored by a
probe process that is responsible for collecting peri-
odically performance and/or utilization samples. On
each monitored node, a collection agent receives the
samples from several probes, performs preliminary
validity checks on them, updates the resource data
streams and sends them in a coded form (usually, a
compression) to a dedicated collector node.

The collector node is the main component of
the distributed cluster data filter. It receives the

filtered and coded resource data streams, performs
the necessary decompression and stores them for
further analysis or a real-time plot. In the latter case,
processing stops and the user is able to see immedi-
ately the behavior of the resource data stream. In the
former case, data is made available to the distributed
analyzer system. Its purpose is to compute more
sophisticated models on the resource data streams,
such as identification of the relevant components in
the system, trend analysis, anomaly detection and
capacity planning. The goal of these actions is to
provide a “reduced view” of the entire cluster by
discarding the negligible data streams in terms of
system management. At the end of the analysis,
the resulting resource data streams are persistently
stored and available as (key, value) pairs, where
“key” is a unique identifier of a measure and “value”
is usually a tuple of values describing it (for exam-
ple timestamp, host name, service/process, name of
the monitored performance index, actual value).

Fig. 1. Monitored node

We have used exclusively open source tools
that can be modified and adapted for our goals.
The operating system adopted in the prototype is
GNU/Linux (we used Debian, Ubuntu and Fedora
in different experimental testbeds), enhanced with
the software packages from the Cloudera repository
(CDH4). The languages used for the deployment
of our modules are Bash (v4.2.36) and C (where
efficiency is needed, such as in our modified mon-
itor probes). The batch processing framework is
Hadoop [2], version 2.0. Our choice is motivated by
the dramatic scalability improvement with respect
to traditional RDBMS-based data storage architec-



tures under random, write intensive data access
patterns [15]. Other frameworks like Traverse [5]
and Microsoft SQL Azure [4] are proprietary, or are
not adequate to supports long-term network growth
[7], [16].

The collection agent. Each monitored node
(scheme in Figure 1) is equipped with an indepen-
dent collection agent. Its main duty is to ensure
that each hardware and software resource of interest
is continuously monitored. To this purpose, each
resource has associated a probe process that collects
a set of indexes (such as response time, throughput
and utilization) at constant time intervals. Both
parameters (performance indexes and sampling in-
terval) are fully configurable by the user. Probing
is performed through standard, off-the-shelf mon-
itoring tools (vmstat, pidstat, sar); the associated
performance indexes include CPU utilization, disk
and network bandwidth, number of page faults and
memory usage, both per-process and system-wide.
We have modified the nethogs code to measure
also per-process bandwidth consumption, which was
natively not available in batch form. The output of
each probe process is piped into a C program (called
agent). This module keeps a constant, configurable
window of past samples representing the resource
data stream and performs preliminary sanity checks
on it. These checks are executed through dynamic,
pluggable modules that receive in input the data
stream and respond with TRUE or FALSE. If at
least one check fails, the stream is tagged as invalid,
but it is never discarded; this facilitates later de-
bugging operations. Currently, the following checks
are implemented: missing value, value out of range,
sequence of null values. The pre-processed streams
are coded (in our prototype, GZIP-compressed) and
finally forwarded to the selected monitor node of
the distributed cluster data filter. The selection of
the monitor node is made by a specific module of
the agent (Figure 1, comm.s), which ensure the best
monitor choice and the relative availability. This
choice is made on the basis of reachability and the
workload of the collector nodes. For this purpose,
each monitored node knows a subset of all collector
nodes in the cluster. Each sample has the following
record format:

<index> <timestamp> <value> <monitored host> <tag> .. <tag>

where “index” is the name of the desired per-
formance or utilization index, “timestamp” is the
sampling instant in UNIX time format, “value” is
the sampled value returned from the probe, “moni-
tored host” is the symbolic name or the IP address
of the host executing the probe, and “tag” is an
information cookie of the form “name=value” that
enriches the description (there can be multiple tags).
Some example records are displayed below:
block.in 1345742145 3 host=webserver12 check=true
cpu.user 1345742115 9 host=node67 check=true
gproc.net.rxkBs 1345742120 3.21000003814 iface=eth0

host=client45 pid=1130 name=apache2 check=true

Each component (probe, agent) is wrapped by a
BASH script that restarts it in case of exit with an
error status. After a preconfigured number of restart
failures, a warning alert is sent to the administrator
of the corresponding service.

Fig. 2. Cluster collection, filtering and analysis

The distributed cluster data filter. The resource
data streams gathered by the collection agent are
sent to the Distributed cluster data filter, shown
in Figure 2. Here, a collector process receives
the compressed and filtered resource data streams.
The received streams are decoded and sent to two



different storage: one for real-time plotting of the
resource data streams, and one for later, non-real-
time processing. If needs be, several collectors
can be added to scale the acquisition process to
the desired number of resource data streams. The
collector is designed to scale up to thousands of
streams, provided that the limitations on the maxi-
mum number of TCP connections and open files be
raised. In GNU/Linux, this can be easily achieved
by recompiling the Linux kernel and the GNU C
library.

The former storage is handled by
OpenTSDB [17], a software for the storage
and configurable plotting of time series. We have
chosen OpenTSDB because it is open-source,
scalable, and interacts with another open-source
distributed database, HBase [18]. It retains time
series for a configurable amount of time (defaults
to forever), it creates custom graphs on the fly, it
allows to plug it into an alerting system such as
Nagios [19]. The OpenTSDB’s secret ingredient
that helps to increases its reliability, scalability and
efficiency is asynchbase. It is a fully asynchronous,
non-blocking HBase [18] client, written from the
ground up to be thread-safe for server apps. It has
far fewer threads and far less lock contention; it
uses less memory and provides more throughput
especially for write-heavy workloads. The latter
storage, called data sync, receives data destined
to further processing, performed by the following
subsystem. To enhance the performance of the
storage engine, we have chosen to pack the resource
data streams in larger chunks (64KB by default)
and write them asynchronously to a distributed file
system that can be scaled to the appropriate size by
easily adding backend nodes. The distributed file
system we have chosen is the Hadoop Distributed
File System (HDFS). It creates multiple replicas of
data blocks and distributes them on compute nodes
throughout a cluster to enable reliable, extremely
scalable computations. It is also designed to run
on commodity hardware, is highly fault-tolerant,
provides high throughput access to application data
and is suitable for applications that have large data
sets.

The distributed analyzer system. The dis-
tributed analyzer system is composed by a set of
analyzer nodes (Figure 2). Each analyzer node runs

arbitrary batch jobs that analyze the resource data
streams. Typical analyses include:

1) computing moving averages of resource data
streams, in order to provide a more stable
representation of an internal resource’s status;

2) correlating several resource state representa-
tions in order to exclude secondary flows;

3) computing prediction trends of resource rep-
resentations on different time scales.

The batch jobs first read the necessary resource data
streams (map) from the distributed cluster data filter
and runs the appropriate scripts (reduce). The result
is a reduced set of (key, value) pairs that is written
to the distributed data storage. The goal shared
by these operations is to compute a reduced state
information that is able to tell whether the service
is about to misbehave or not and, in the former
case, also to tell which resource is the culprit. The
different analyzer functions also produce the status
of each node and cluster, and few figures of merit
that show the health status of the entire data center
(longer term predictions, principal component anal-
ysis, capacity planning).

We have chosen the Pig framework for the imple-
mentation of the analysis scripts. Pig offers richer
data structures over pure map-reduce, for example
multivalued and nested dictionaries. Each Pig script
is compiled into a series of equivalent map-reduce
scripts that process the input data and write the
results in a parallel way. We implemented scripts to
aggregate data both temporally and spatially (over
nodes). Further analysis include anomaly detections,
trend analysis and supports for capacity planning on
a longer time scale.

The distributed data storage. The reduced
streams representing the system state must be writ-
ten into a database. The data storage must scale
with an increasing number of data streams, must be
fault tolerant and should be oriented to time series
management. We have chosen Apache HBase [18]
as the distributed analysis storage for many reasons,
which include the homogeneity and the reuse of
components. Apache HBase is a distributed column-
oriented database built on top of HDFS, designed
from the ground-up to scale linearly just by adding
nodes. It is not relational and does not support SQL,
but thanks to the proper space management proper-
ties, it is able to surpass a traditional RDBMS-based



system by hosting very large and sparsely popu-
lated tables on clusters implemented on commodity
hardware. In our architecture, the HBase storage is
responsible to preserve all the analyzed information
about nodes, clusters and datacenter.

III. ANALYSIS

In this section we evaluate the scalability of
the proposed architectures in terms of number of
monitored resource data streams. In particular, we
find out:

• how many resource data streams can be moni-
tored per physical host (intra-node scalability);

• how many physical hosts can be monitored
(inter-node scalability).

We have used two different hardware platforms,
Amazon EC2 and Emulab. In the next paragraphs
we will only present the results on the Amazon EC2
platform, due to high similarity with Emulab ones.
The backing storage is shared across the instances
(EBS). The theoretical network connectivity is up to
1Gbps. The virtual machines are running instances
of the popular TPC-W benchmark suite (one for
client, one for the application server, one for the
DBMS). The application server is Tomcat (v6.0),
while the DBMS is MySQL (v5.1). In the monitored
node, one probe is dedicated to system-related per-
formance monitoring (essentially, through the output
of the vmstat and sar monitors). The remaining
probes are process-related (through the output of the
pidstat and nethogs2 monitors). Ths system probe
collects 25 difference performance indexes, while
each process probe collects 23 different metrics. The
sampling interval is configured at t = 1s for each
probe.

TABLE I
AVERAGE RESOURCE UTILIZATION OF THE COLLECTION AGENT

Number of Number of CPU Main memory Network
probes metrics (%) (%) (%)

1 25 0.3 0.4 0.005
2 48 0.5 0.5 0.009
4 94 1.1 0.6 0.019
8 186 1.8 0.9 0.041
16 370 2.9 1.4 0.085
32 738 4.1 2.6 0.173
64 1474 6.0 4.8 0.352

128 2946 9.8 9.3 0.681
256 5890 23.1 18.3 1.392

A. Intra-node scalability

In this first scenario, we evaluate how many
resource data streams (metrics) can be handled on a
single monitored node. We use one collector node
and one analyzer node running a single script that
computes the moving average for every resource
data stream. The detail of the resources of the moni-
tored node is the following: micro instance, 613 MB
memory, Up to 2 EC2 Compute Units (Dual-Core
AMD Opteron(tm) Processor 2218 HE, cpu 2600
MHz, cache size 1024 KB), EBS storage, dedicated
network bandwidth of 100 Mbps per node.

Table I reports the average resource consumption
of the collection agent as a function of the number
of resource data streams monitored. From the table
we see that the most used resources is the CPU.
At 128 probes, the CPU utilization is about the
10%. This threshold is commonly used as the largest
fraction of resource utilization that administrators
are comfortable devoting to monitoring. Lacking
any more principled standard, we have adopted this
as our target maximum resource utilization for the
monitoring system. Thus, on a single monitored
node, it is reasonable to collect 128 probes for a
total of 2946 resource data streams per second.

B. Inter-node scalability

In the next experiment, we add monitored nodes
with the same probe setup and measure the resource
consumption of the collector and the analyzer node.

Table II reports the average resource consumption
of the collector and analyzer nodes as a function of
the number of the monitored nodes. From the table
we see that the most used resource is the CPU of
the collector node. We have run experiments up to
a maximum of the most used resources is the CPU
(mainly due to the decompression effort of multiple
heterogeneous packets). At 128 monitored hosts, the
CPU of the collector node is saturated. In this sce-
nario, the system is monitoring 128 ∗ 128 = 16384
resource data streams and 2946 ∗ 128 = 377088
metrics.

We have added collector nodes and incremented
the number of monitored hosts to evaluate the scal-
ability of the distributed cluster data filter. Table III
reports the average resource utilization across the
collector nodes.



TABLE II
AVERAGE RESOURCE UTILIZATION OF THE COLLECTOR AND THE ANALYZER NODE

Number of Number of Number of CPU Network CPU Network
monitored nodes data streams metrics collector collector analyzer analyzer

1 128 2946 0.6 0.450 0.1 0.023
2 256 5892 0.9 0.899 0.1 0.037
4 512 11784 2.0 1.797 0.2 0.089
8 1024 23568 3.6 3.594 0.3 0.176

16 2048 47136 8.1 7.188 0.7 0.341
32 4096 94272 17.1 14.375 1.8 0.702
64 8192 188544 33.6 28.750 2.5 1.597
128 16384 377088 69.9 57.500 5.2 2.996

TABLE III
AVERAGE RESOURCE UTILIZATION OVER THE DISTRIBUTED CLUSTER DATA FILTER

Number of Number of Number of Number of CPU Network CPU Network
monitored data metrics collector collector collector analyzer analyzer

nodes streams nodes (AVG) (AVG) (AVG) (AVG)
128 16384 377088 1 69.6 57.539 5.2 2.996
256 32768 754176 2 70.4 57.890 6.2 3.209
512 65536 1508352 4 71.1 58.020 5.5 3.007
1024 131072 3016704 8 70.7 57.970 5.1 2.891

We kept adding collectors up to 1024 monitored
nodes. We also had to add more HDFS and HBASE
nodes to support the write throughput after 256
nodes. In this scenario, one hour of experiment
produces more then 30 GB of data only for the real-
time subsystem, monitoring 128 ∗ 1024 = 131072
different streams per second (or about 130000 dif-
ferent processes). We have also measured the total
network bandwidth in about 60 MB/s and we have
monitored 2946 ∗ 1024 = 3016704 metrics.

IV. RELATED WORK

The oldest log collection framework is syslog,
which supports streaming logs across the network.
System activity report is another popular system
monitor used on most UNIX-like systems. Hawk-
eye [20] is a monitor for grid systems. Nagios [19]
and Cacti [11] are a popular alerting and monitoring
system respectively, which has inspired, among the
others, OpenNMS [8], Zabbix [9], Zenoss [10],
GroundWorks [21] and Hyperic [22]. Hyperic is
currently collecting and analyzing more then 9000
resources and 11000 metrics per minute at hi5, hun-
dreds of servers with different OSs and applications
which produce more then 6500 metrics per minute
at MOSSO, and more then 37000 resources and
20000 metrics per minute at CONTEGIX. Zabbix
claims the monitoring of up-to 100000 monitored

devices and up-to one million of metrics (no time
unit is reported), and thousands of checks per sec-
ond. It requires a database (MySQL, PostgreSQL,
Oracle or SQlite) to store the collected metrics.
Zenoss currently manages networks as large as
32,000 devices. These and other centralized prod-
ucts alone cannot cope with the challenges presented
in this paper. In particular, their scalability is of-
ten severely hindered by a RDBMS backend, they
cannot be easily balanced, they are not designed
to be fault tolerant. In other words, centralized
solutions represent a serious scalability bottleneck
and introduce single point of failure.

The rise of datacenter-scale distributed systems
has made these problems particularly glaring, and in
recent years several newer hierarchical systems have
been developed, among these Ganglia [7]. Hierar-
chical monitors overcome some of the limitations
of centralized solutions at the cost of overall system
manageability, which now depends on different site
specific administrators. Further, the root node in the
system may present a single point failure similar to
the centralized model.

Astrolabe [12] is a hybrid solution that com-
bines a hierarchical scheme with an unstructured
P2P routing protocol for distributed communication.
While it is highly scalable and resilient, its man-
ageability is a complex task since it incurs a lot



of network traffic. Unstructured systems do not put
any constraints on placement of data items on peers
and how peers maintain their network connections.
Resource lookup queries are flooded to the directly
connected peers, which in turn flood their neigh-
boring peers. Queries have a TTL (Time to Live)
field associated with maximum number of hops, and
suffer from non-deterministic result, high network
communication overload and non-scalability [23].

V. CONCLUSIONS

In this paper, we have proposed a novel archi-
tecture for monitoring large-scale network infras-
tructures hosted in data centers. These choices are
mandatory when you have to support gathering
and analysis operations of huge numbers of data
streams coming from cloud system monitors. The
proposed architecture is already integrated with on-
line analyzers working at different temporal scales.
Our preliminary experiments show the potential
scalability limits of the monitoring system: more
than 3M of resource data streams per data center,
per second. All these operations of data streams are
carried out within real-time constraints in the order
of seconds thus demonstrating that huge margins of
improvement are feasible.

We are currently studying an hybrid solution
(both hierarchical and peer-to-peer) in a WAN em-
ulated scenario. Finally, we are studying adaptive
random sampling techniques to further reduce the
number of performance samples collected at each
monitored node.

REFERENCES

[1] Jeffrey Dean, Sanjay Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 50th anniversary issue: 1958 - 2008s, no. 51, p. issue 1,
01/2008.

[2] “Apache Hadoop,” 2006, – http://hadoop.apache.org/.
[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The

hadoop distributed file system,” Mass Storage Systems and
Technologies, IEEE / NASA Goddard Conference on, vol. 0,
pp. 1–10, 2010.

[4] “Microsoft sql azure,” 2009, –
http://www.microsoft.com/windowsazure/sqlazure/.

[5] “A scalable streaming log aggregator,” 2008, –
http://www.zyrion.com/company/whitepapers/Zyrion Traverse.

[6] C. E. A. Litvinova and S. L. Scott, “A proactive fault tolerance
framework for high-performance computing,” in Proceedings
of the 9th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN2010), ser. PDCN
2010. Calgary, AB, Canada: ACTA Press, Feb. 16-18 2010.

[7] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler,
“Wide area cluster monitoring with ganglia,” Cluster Comput-
ing, IEEE International Conference on, vol. 0, p. 289, 2003.

[8] “Opennms, world’s first enterprise grade network management
application platform,” 2002-2012, – http://www.opennms.org.

[9] “Zabbix, the enterprise-class monitoring solution for everyone,”
2001-2012, – http://www.zabbix.com.

[10] “Zenoss, transforming it operations,” 2005-2012, –
http://www.zenoss.com.

[11] “Cacti, the complete rrdtool-based graphing solution,” 2009-
2012, – http://www.cacti.net.

[12] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining,” ACM Transactions on
Computer Systems, vol. 21, no. 2, pp. 164–206, May 2003.

[13] M. Andreolini, M. Colajanni, and R. Lancellotti, “Assessing
the overhead and scalability of system monitors for large data
centers,” in Proceedings of the First International Workshop on
Cloud Computing Platforms, ser. CloudCP ’11, New York, NY,
USA, 2011, pp. 3:1–3:7.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in OSDI, 2004, pp. 137–150.
[Online]. Available: http://www.usenix.org/events/osdi04/tech/
dean.html

[15] J.-S. Leu, Y.-S. Yee, and W.-L. Chen, “Comparison of map-
reduce and sql on large-scale data processing,” Parallel and
Distributed Processing with Applications, International Sym-
posium on, vol. 0, pp. 244–248, 2010.

[16] E. Imamagic and D. Dobrenic, “Grid infrastructure monitoring
system based on nagios,” in Proceedings of the 2007
workshop on Grid monitoring, ser. GMW ’07. New York,
NY, USA: ACM, 2007, pp. 23–28. [Online]. Available:
http://doi.acm.org/10.1145/1272680.1272685

[17] “Opentsdb, a distributed, scalable time series database,” 2010-
2012, – http://opentsdb.net.

[18] “Apache HBase,” 2007, – http://hbase.apache.org/.
[19] “Nagios enterprises,” 2009-2012, – http://www.nagios.org.
[20] D. Thain, T. Tannenbaum, and M. Livny, “Distributed comput-

ing in practice: the condor experience.” Concurrency - Practice
and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[21] “Groundworks, the open platform for it monitoring,” 2012, –
http://www.gwos.com.

[22] “Hyperic, open source systems monitoring, server monitoring,
and it management software,” 2012, – http://www.hyperic.com.

[23] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
replication in unstructured peer-to-peer networks,” in Proceed-
ings of the 16th international conference on Supercomputing
(ICS2002), New York, NY, USA, 2002, pp. 84–95.


