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Abstract example is in Figur€ll). Each NIDS sensgeifsorfor
short) analyzes the received traffic for illicit networkiaet

Increasing traffic and the necessity of stateful analysesities and, when necessary, generates alerts. The main prob-
impose strong computational requirements on network in-
trusion detection systems (NIDS), and motivate the need of
distributed architectures with multiple sensors. In a @xtt
of high traffic with heavy tailed characteristics, statides Inbound
for dispatching traffic slices among distributed sensors Traffic i
cause severe imbalance. Hence, the distributed NIDS ar-
chitecture must be combined with adequate mechanisms for |
dynamic load redistribution. In this paper, we propose and stcerm [ NS n
compare different policies for the activation/deactivatof |
the dynamic load balancer. In particular, we consider and
compare single vs. double threshold schemes, and load rep- o
resentations based on resource measures vs. load aggrega- Figure 1. An example of distributed NIDS ar-
tion models. Our experimental results show that the best ~chitecture.
combination of a double threshold scheme with a linear ag-
gre_gaﬂon of resource measures is able to ach|ev¢ a reallyIem is that inbound traffic received by the distributed NIDS
satisfactory balance of the sensor loads together with a sen architecture exhibits heavy-tailed characteristics [4mid

sible reduction of the number of load balancer activations. flash crowds([T2]. If the system adopted static traffic parti-
tioning, the amount of traffic reaching each sensor would be
extremely variable and would cause severe load unbalance
situations, with consequent risks of packet losses. Faethe
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1 Introduction reasons, we think necessary to recur to a dynamic redistri-
bution of the load among the sensors. To this purpose, we
Network Intrusion Detection SysterfidIDS) are a dif- introduce acoordinatorthat receives periodic information

fuse reality in many complex networks where it is neces- about the state of the sensors and, on the basis of some pol-
sary to look for malicious packets and illicit network ac- icy, it can activate a load balancing mechanism to move por-
tivities. To obtain a fully reliable analysis, a NIDS needs tions of network traffic from overloaded to less loaded sen-
to track, reassemble and examine each distinct connectiorsors. The load conditions of each sensor are usually evalu-
at wire-speed. Any architecture based on just one traffic ated through the periodic sampling of monitored raw data,
sensor cannot be sufficient to face networks that are charthat we callresource measures samples While a single
acterized by a continuous increase of capacities and traf-measure offers an instantaneous view of the load conditions
fic. Hence, distributed architectures with multiple sessor of a sensor, it does not help the system to distinguish real
appear as the most effective solution for a scalable trafficoverload conditions from transient peaks. Consequently,
analysis of present and future high speed networks. Thesen a context of heavy-tailed traffic with unexpected spikes
distributed architectures are characterized by a set of mul and burst arrivals, it is extremely difficult to define the tbes
tiple slicers that assign portions of network traffic to eliff activation decision policy and load redistribution aldgjon

ent NIDS sensors through some traffic shaping policy (an for the load balancing process. The optimal policy would



achieve the best sensor load balance with the minimal num-namic load balancing mechanisms that will be described
ber of load balancer activations. in SectiorB. The results are obtained through a prototype

We initially show that the activation policies that are implementation of a distributed NIDS as in Figilie 1, that
based on resource measures lead to unsatisfactory load digs detailed in[[5]. It consists of two slicers, three sensors
tribution and excessive load balancer activations. It is in based on th&nortintrusion detection systern [R1], and one
teresting to observe that this result is due to the extremecoordinator. The distributed NIDS are exercised through
variability of the samples and it is independent of the ac- the IDEVAL [[15] traffic dumps that are considered standard
tivation/deactivation strategy that may be based on one ortraces containing attacks. Each component of the architec-
two thresholds. With the goal of reducing the load repre- ture runs on a different machine that is connected to the
sentation skews and to improve the load balancing processpthers through Gigabit Ethernet adapters. The traffic is gen
we propose and compare different models for load aggre-erated by multiple machines, where each of them executes
gation for various measures of the samples. To the best ofthe tcpreplaytrace replaying softwaré [22]. Each experi-
our knowledge, this is the first paper studying aggregation ment typically lasts for 1000 seconds.
models and activation policies in the context of dynamic  Static splitting is a technigue commonly adopted in
load balancing for distributed NIDS. Any previously pro- different contexts to distribute incoming traffic statigal
posed solution for NIDSL[20]5] evaluates the sensor load among different nodes [1L4]. Splitting can be performed
conditions and takes decisions on the basis of monitoredon the basis of protocol information (IP addresses, TCP
samples. We show that even linear aggregations (Simpleports) or more sophisticated application-level payloagt (s
Moving Average and Exponential Moving Average) that are natures). In this paper, we consider splitting based on TCP
integrated with a double threshold mechanism for activa- and IP information. We have instrumented the popigar
tion/deactivation lead to a consistent improvement of the ablespacket filter framework[11] with a set sficing rules
load balancing process and of the overall performance offor frame analysis, frame routing and MAC address rewrit-
a distributed NIDS. Several experimental results achieveding. We partition evenly the IP space of the internal network
through a prototype implementation show a reduction of (27 different hosts) across the 3 sensors. Although each
load balancer activations, a better stability of the sensorNIDS sensor becomes responsible for the analysis of a sub-
loads, and a consequent decrement of the traffic that canset of 9 IP addresses, the resulting traffic is quite differen
not be examined with fully reliable properties. in terms of packets.

The remaining part of the paper is organized as follows.  Figure[3 reports the network traffic (in Mbps) received
In Sectiorl 2, we focus on the static and dynamic traffic dis- by each sensor during the experiment. The horizontal line
tribution mechanisms for NIDS architectures consisting of at T,,,.,=40Mbps denotes the maximum capacity of anal-
multiple sensors. In Sectidd 3, we consider and compareysis of each sensor. Higher load causes packet drops that
load balancer activation policies based on resource meacorrespond to a portion of traffic that cannot be analyzed for
sures and on two aggregation models that is, Simple Movingintrusion detection alert. Figufé 3 clearly shows thatistat
Average and Exponential Moving Average. In Secfidn 4, traffic splitting does not balance at all the sensor load- Sen
we evaluate the benefits of load aggregation on the perfor-sor 1 operates always beyond its maximum capacity, while
mance of a distributed NIDS architecture where the load sensor 3 receives one fourth of the traffic that it could an-
balancer is based on a double threshold policy for activa-alyze. The reason behind this severe imbalance is the ex-
tion/deactivation. In Sectiol 5, we compare the contribu-
tions of this paper with respect to the state of the art. In
Sectior B, we conclude the paper with some final remarks.
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The design of a distributed NIDS architecture is a dif-
ficult task that requires several choices. For example, the
incoming traffic can be distributed statically or dinamigal i
across different sensors. In this section we show thatstati 600
rules lead to severe imbalance conditions because the traffi Time (sec.)
is unknown a priori. Hence, it is necessary to recur to mech- sensor 1 sensor$ -
anisms that can reassign some network traffic flows across
Sensors. Figure 2. Static traffic splitting based on IP

We demonstrate through experimental results the draw- gddresses.
backs of a static distribution and motivate the use of dy-
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- The risks of false alarms can be reduced through sev-
Table 1. Workload mn?igels Cg,%raCte”rﬁ;')fs' Sstddev eral schemes, for example by signaling an alarm only when
packets per connection| 1 3134 | 130105 | 671.71 multiple samples overcome the threshold or enlarging the
packet size 42 | 212.73| 1514 | 443.68 observation period. In this paper, we consider another pop-

ular scheme that is based omlauble thresholgdwhere the
load balancer is activated when the load of at least one sen-

treme variability of the numbers and sizes of the packets re-SOr is above thaigh thresholdhat represents the activation
lated to each subset of IP addresses. The considered workreshold. Theéow thresholdis used for a twofold purpose
load model reflects the typical behavior of a real network Pecause it denotes the deactivation threshold and the NIDS
traffic. In Tablel we present some statistics about two im- SENSOrs that are suitable for receiving traffic slices frben t
portant parameters that influence the amount of work per-overloaded sensor(s).
formed by each sensor: the number of packets per connec- Once the load balancer has been activated, there are
tion and the size of network packets. We can see that theMany feasible selection and location policies. When the
standard deviation of the number of packets per connection/0@d balancing mechanism has been activated, we choose to
is 20 times higher than its average, which indicates a verymove onetraffic sliceof one internal network host from the
h|gh dispersion_ Since a sensor ana|yzes all packets per.overloaded sensor to other underloaded SenSOf(S) through a
taining to a connection, the amount of work corresponding "ound-robin algorithm. We find convenient to consider this
to a subset of IP addresses can be (and usually is) very variSimple, yet stable and efficient policy that minimizes the
able. A similar consequence holds for the packet size. AsComputational overhead of the load balancing process.
a sensor analyzes the whole payload of a packet to detect An Open issue is that any load balancing mechanism re-
anomalies, different payload sizes imply different amsunt duires a representation of the sensor load. Choosing a good
of work. Static traffic slicing rules do not (and cannot) take 'eépresentationis a problem by itself, because there arg man
into account connection lengths or packet sizes. Henge, dif cfitical hardware and software resources at each senser nod
ferent sensors can be subject to extremely variable amount§CPU, disk, network, memory, open file and socket descrip-
of received traffic and consequent work. These considera10rs). Typically, the resource load or status can be mea-
tions motivate the need for the integration of a dynamic load Suréd through several system monitors (e.g., syssfat [10]
balancer into the distributed NIDS architecture. that yields instantaneous measures of CPU utilizatiotk, dis
and network throughput at regular time intervals). In this
. ) paper, the load of a sensor is measured in terms of received
3 Dynamic load balancing network traffic (in Mbps), which is a common solution in
the context of distributed NIDS systenis 2D, 5]. Initially,
Balancing the load of multiple sensors that are subject W€ USe a representation of the sensor load based on peri-
to highly variable traffic is a difficult problem. Multiple ~©dic samples and then we pass to consider linear aggrega-
alternatives may characterize a load balancer mechanismtion models applied to the resource load samples.
such as: thactivation strategyhat triggers the load balanc- .
ing process, theelection policyhat chooses the amountof 3-2  Policies based on resource samples
traffic to be moved from one sensor to another,|toation o ] o
policy that decides the new target sensor(s), deactiva- I\/I_We initially consider the two activation schemes baged
tion strategythat stops the load balancing process and the ©" single and doubl_e threshold that use the network traffic aF
sensor loadhat may be evaluated in terms of one or mul- _each sensor as their measure of the sensor Io_ad. '_I'he traffic
tiple different resources, performance metrics and ptessib IS Sampled every second, although different time intervals
aggregations of the resource samples. do not change the main re;ults and conclusions. Fidtires 3
(a) and (b) report the traffic on each of the three sensors
during the experiment. The horizontal line set to 40 Mbps
in Figure[3 (a), and to 40 Mbps and 28 Mbps in Figlire 3
(b) denote the activation/deactivation thresholds fordyre
The simplest activation/deactivation scheme is based onnamic load balancing mechanism. Comparing the results in
a single threshold a load balancing action is triggered Figurel2 referring to static traffic splitting with those iigF
whenever the last load information used by the coordinatorures[B, we can see that the introduction of a dynamic load
overcomes a static threshold. The single threshold modelbalancer improves substantially the sensor load balarce. T
has been widely adopted (just to cite an examplelin [17]), quantify the benefits of dynamic load balancing, we com-
and its oscillatory risks of continuous activation and deac pute three indexes that are related to the performance and
vation phases are well known, especially in highly variable to the efficiency of the distributed NIDS: the load balance
environments, such as those considered in this paper. metric, the packet loss percentage and the number of sensor

3.1 Alternative policies
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Figure 3. Dynamic load balancing based on resource samples.

overload signals. a factor of at least 2.4. This result is important because it
Theload balance metri§3] (LBM) measures the degree denotes that there are fewer critical load conditions. How-
of load balancing across different nodes. Let us define theever, there are still many invocations of the dynamic load

load of the sensar(of n sensors) at thg? observation (of
the observation periogh) asload; ; andpeakload; as the
highest load on any sensor at tji& observation. The LBM
is defined as follows:

balancer (357 and 321 in the single and double threshold
strategy, respectively). We think that the main motivation

for these high numbers is due to an inappropriate represen-
tation of the sensor load that is based on direct measures.

For this reason, we propose some load aggregation models
that should reduce the dispersion of load information sam-
1) ples and yield a cleaner view of sensor status.

>~ peak_load;

1<j<m

(> > load;;)/n

1<j<mi<i<n

LBM =

Note that the value of the LBM can range from 1 to the Table 2. Evaluation of load distribution mech-

number of sensors. Smaller values of the LBM indicate a anisms.
better load balance than larger values. i _
The packet loss percentage is the ratio between not anaf | Dynamic | Dynamic
lyzed and received packets for all sensors, that is, Static | Single Double
Threshold | Threshold
i i LBM 1.88 1.41 1.36
ST (2) Packetloss | 40% | 20% 13%
g percentage
wheren is the number of sensor; is the number of pack- Overload signals| 861 357 321

ets not analyzed by seng@andr; is the number of packets
received by senser
We also consider the number of overload signals gener-3.3 Policies based on aggregation models
ated by each sensor, that lead to the invocation of the dy-
namic load balancing mechanism. We think that in the context of a distributed NIDS archi-
Table[2 reports the three performance results for thetecture subject to heavy-tailed distributed traffic, the af
static traffic splitting, dynamic single threshold and dy- direct resource samples as a measure of sensor load infor-
namic double threshold distribution mechanisms. The LBM mation is inappropriate because they tend to signal continu
values show that the dynamic load balancing schemes im-ous variations between the need of activation and deactiva-
prove sensor load significantly. The packet loss percentagdion. For this reason, we consider some load aggregations
drops from 40% to 20% when moving from a static to a that allow us to obtain a more representative view of the
dynamic load balancer, and to 13% if we consider a dou-load status from monitored raw data. The goal of a load
ble threshold activation mechanism. This implies an im- aggregation model is twofold: to filter outlier values and to
provement in the efficiency of the network traffic analysis. reduce the variability of resource samples, such as the net-
Furthermore, the number of overload signals decreases bywork traffic measured at each sensor.



Let us suppose that at timig aload aggregatiormodel Similarly to the SMA model, the number of considered
can count on a set of previously obtained resource sam- resource measures is a parameter of the EMA model, hence
plesS(i,n) = (Si—n+1,-.--,5;) 10 COMpute a representa- EMA,, denotes an EMA function based ersamples.
tion of the load conditions of a sensor. A continuous appli-
cation of this model produces a sequence of load values thaE1 Performance results
should yield a cleaner trend of the sensors load conditions.

As load aggregation models we consider the class of ) ) _
moving averagéunctions. We think that these linear func- ~ We will see that, through an appropriate choice of the
tions, that are commonly used as trend indicators, are suf-Sample vector sizes, load aggregation based on SMA or
ficient to smooth out resource mDeasures, reduce the effecEMA models can lead to a significant reduction of the load
of out-of-scale values, and are fairly easy to compute at run balancer activations and of the packet loss percentage. All
time. In this paper, we count on two classes of moving av- res_ults_presented in this section refer to the double tiotdsh
erage functions: th8imple Moving AveragéSMA) and the activation scheme that has been demonstrated to perform
Exponential Moving Averag€EMA) that use uniform and always better than the single threshold scheme in terms of
non-uniform weighted distributions of the past samples, re LBM, packet loss percentage and number of load balancer
spectively. As we are interested to run-time models in a con-activations. We give a quantitative analysis for both aggre
text of highly variable systems, we cannot consider other_gation models by evaluating three important factors: qual-
popular linear auto-regressive models, such as ARMA andity (represented by a low value of LBM), overhead (repre-
ARIMA [7] 23], because in the considered extremely vari- se_nted by a low number of load balancer activations) and
able workload scenario they would require frequent updatesefficacy (represented by a low packet loss percentage and a
of their parameters. These operations are computationally©W number of not analyzed packets).
too expensive and inadequate to support run-time decision I Figure[3(a) we report the results of the LBM for the
systems. SMA and EMA-based load aggregations and different sizes

Simple Moving Average (SMA). It is the unweighted of the sample_vector.. The worst balancing performance
mean of the: resource measures of the vecii, n), that (LBM = 1.2) is obtained for small values of the sample

is evaluated at time; (i > n), that is, vector history £ = 10 in our experiments). If we con-
sider larger sample vectors, we initially observe an improv
> 8j ment of the load balancing process for both load aggrega-
. i (n—1)<g<i tion models {BM = 1.1 atn = 20 for the SMA model,
SMA(S(i,n)) = n 3) LBM = 1.06 atn = 30 for the EMA model). Further in-

crements of the sample vector history do not improve load
An SMA-based representative function evaluates a newpgalancing.
SMA(S(i,n)) for each sample; during the observation pe- Let us now consider Figuld 4(b) that reports the num-
riod. The number of considered resource measures is a paper of load balancing activations as a function of the sample
rameter of the SMA model, hence hereafter we use SMA yector size. Some of the previous considerations are still
to denote an SMA representative function basede@am-  yajig for both the SMA and EMA models. In particular,
ples. As SMA models assign an equal weight to every re- fo; small values ofn, the load balancing process is acti-
source measure, they tend to introduce a significant delay in5eq very often (over 150 times in the= 10 case), while
the trend representation, especially when the size of the Sehigher values of. do not necessarily reduce the number of
S(i,n) increases. The EMA models are often considered 4¢tivations (for example, we measured 150 activations us-
with the purpose of limiting this delay effect. ing the SMA,, model). However, if we consider the SMA
Exponential Moving Average (EMA). It is the  model, while in Figuré4(a) the LBM remains almost con-
weighted mean of the: resource measures of the vec- stant forn in [30, 40], the overhead of a load balancer based
tor S(i,n), where the weights decrease exponentially. An on the SMA model increases abruptly. The reason of this
EMA based functiort(i, ), at timet;, is equal to: behavior is straightforward. With increasing valuesnof
the SMA model introduces delays in the representation of
EMA(S(i,n)) = axsi+(1—a)x EMA(S(i—1,n)) (4)  sensor load. This, in turn, implies a reduced ability of the
load balancer to react to sudden changes in the traffic dis-
where the parameter = 2/(n+ 1) is thesmoothing factar tribution, which could lead more easily to sensor overload.
The initial EMA(S(i,n)) value is set to the arithmetical nmea  The load balancer must be activated more often in order to

of the firstn measures: mitigate this overload.
The impact of load balancing instability on the perfor-
O<Z< 5i mance of the sensors is shown in Figllre 4(c) and (d), that
. >SN
EMA(S(,n)) = = — (5)  report the packet loss rate and the number of not analyzed
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Figure 4. Performance results as a function of the sample vec tor size.

packets as a function of the sample vector size, respegtivel vided thatn is chosen sufficiently higha( > 20 in our sce-
Inefficiencies in the load balancing process can quickly tur narios). On the other hand, the SMA load model shows a
to sensor overload and considerable packet loss (up to 13%igher dependency on the sample vector size.
when using the SM4g, model).

All the Figured? lead to an important conclusion about
the sample vector size: for each considered load aggrega-
tion model, there exists a value ofthat optimizes quality,
overhead and efficacy. The reason of this behavioris simple. In Table[3 we summarize all performance metrics for
For small values ofi, load aggregation models present 0s- the best load balancers based on double threshold activatio
cillations and lead to false detections and packet loss&s. F and aggregated load models, namely Siland EMAy,.
high values of:, the SMA and the EMA models are notable We also include the load balancer based on samples and a
to react quickly enough to load condition changes of the static splicing NIDS. The benefits of dynamic load balanc-
sensors. Hence, in the initial part of the experiment, whereing based on aggregation models are clear: the number of
one sensor receives all incoming traffic and the other two sensor overloads reduces considerably, ranging from a fac-
sensors are idle, the load balancing process is slower. Agor of 2.6 when passing from a static to a dynamic strategy.
a consequence, a transient unbalance state may last longéf we consider the effects of load aggregation, sensor over-
because the initially overloaded sensor passes trafficeto th load signals drop by a factor of 40 and over. Moreover, the
other sensors too slowly. This explains the high packet lossload balancer activations drop by a factor of 7 when consid-
percentages of the most overloaded sensor and the very lovering linear aggregation models instead of resource sample
packet loss percentage of the initially offloaded sensor. representations. Finally, a dynamic load balancing gisate

In the considered scenario, the best dynamic load bal-improves the LBM of at least 30% with respect to static
ancers are based on the SMAand the EMA, load aggre-  traffic splitting. If we consider load aggregations, the im-
gation models. From these and other not shown results reprovement is about 40%. The exponential moving average
lated to different scenarios, we can conclude that the EMA EMA3, shows the best performance in terms of load bal-
is not only the best load aggregation model, but also theance and packet loss. It is worth to note that its results are
most stable. The stability of EMA is a consequence of its achieved through the minimum number of load balancer ac-
low sensitivity with respect to the sample vector size, pro- tivations.



Table 3. Evaluation of load distribution mechanisms.

Static strategy Dynamic load balancing
Static traffic Sample-based| SMAq-based | EMA 30-based
splitting model model model
LBM 1.88 1.36 1.10 1.07
Packet loss percentage 40% 13% 11% 10%
Not analyzed packets 20971154 7780001 6422771 5641611
Sensor overload signals| 861 321 43 40

5 Related work proposed in[23] is validated through realistic disk I/Ceint
arrival patterns referring to scientific applications. ®@e t

Detecting significant and permanent load changes of aother hand, the workload features considered in all these

system resource is at the basis of most run-time decisiond’!ON€€r Papers differ substantially from the Io_ad merI;
for the management of distributed systems. Some examplegh"’lracterIZIng web-based Servers that show h'gh Va“.ab”'
of applications include load balancelr$ [2], overload and ad ity, bursty patterns and heavy tails even at different time
mission controllers[13], request routing mechanisms andscales. ) ) ) )
replica placement algorithmE[18]. The common method ~ The focus on run-time operations is another key differ-
to represent resource load values for run-time managemengnce of this paper with respect to previous literature. The
systems is based on the periodic collection of samples fromC0mmon method for investigating the efficacy of load repre-
server nodes and on the subsequent use of these value§entation for run-time management tasks is off-line anslys
Some low-pass filtering of network throughput samples has©f samples collected from access or resource usagellogs [7].
been proposed if[19], but the large majority of proposals N this paper, the need for run-time decision supports in a
detect load changes and predict future values on the basi§ighly variable context has led to evaluate the feasibdity
of some functions that work directly on resource measures.Simple yet effective load aggregation models, and possibil
Even the proposals that adopt a control theoretical approac 'ty of integrating them into our distributed NIDS.

to prevent overload or to provide guaranteed levels of per-
formance in Web systemis |1 3] refer to single resource sam-
ples (e.g., the CPU utilization or the average Web object
response time) as feedback signals. On the other hand, we

think that in the proposed scenario of a distributed NIDS, A fully reliable and stateful network traffic analysis re-
characterized by high instability and variability of netko  quires NIDS that are able to handle the ever increasing ca-
bandwidth samples, real-time management decisions thapacities of present and future network technologies. Is thi
are based on the direct use of single samples may lead t@ontext, distributed architectures with some suitablé tra
risky when not completely wrong actions. Our preliminary fic shaping and load balancing mechanisms appear as the
experimental results show the impossibility of deducing a most valuable solution for high speed traffic analysis, due
representative view of a system resource from collected rawto their intrinsic scalability. However, in a context of hig
measures that are characterized by very large variability.  traffic with heavy tailed characteristics, load balanciag i

To demonstrate our hypotheses, we implemented a real non trivial task that requires adequate solutions at the
small-scale distributed NIDS but the results obtained from |evel of activation mechanisms and load representation. We
this prototype could be extended using larger scale simula-show that direct resource measures offer instantaneods loa
tions [9]8]. views, but they are of little help for distinguishing over-

There are many studies on the characterization of re-load conditions from transient peaks, thus making the ac-
source loads, albeit related to systems that are subject tdivation/deactivation load balancing process extremely u
quite different workload models with respect to those con- stable. We propose and implement different linear models
sidered in this paper. Hence, many of the previous resultsfor sample aggregation that reduce the skewness of the load
cannot be applied directly to the proposed distributed NIDS representation and improve the load balancing process. We
system. For example, the authors[inl[16] evaluate the ef-show that even simple, linear aggregations can lead to a con-
fects of different load representations on job load balanc- sistent performance improvement of the entire distributed
ing through a simulation model that assumes a Poisson jobNIDS architecture. There are two main consequences of an
inter-arrival process. Dinda et al.l[7] investigate the-pre improved sensor load balance: the reduction of activations
dictability of the CPU load average in a UNIX machine sub- of the dynamic balancing mechanisms and the reduction of
ject to CPU-bound jobs. The adaptive disk I/O prefetcher packet losses experienced by the NIDS sensors.

6 Conclusions
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