
Dynamic load balancing for network intrusion detection systems based on
distributed architectures

Mauro Andreolini, Sara Casolari, Michele Colajanni, MircoMarchetti
Department of Information Engineering

University of Modena and Reggio Emilia

{mauro.andreolini, sara.casolari, colajanni, mirco.marchetti}@unimore.it

Abstract

Increasing traffic and the necessity of stateful analyses
impose strong computational requirements on network in-
trusion detection systems (NIDS), and motivate the need of
distributed architectures with multiple sensors. In a context
of high traffic with heavy tailed characteristics, static rules
for dispatching traffic slices among distributed sensors
cause severe imbalance. Hence, the distributed NIDS ar-
chitecture must be combined with adequate mechanisms for
dynamic load redistribution. In this paper, we propose and
compare different policies for the activation/deactivation of
the dynamic load balancer. In particular, we consider and
compare single vs. double threshold schemes, and load rep-
resentations based on resource measures vs. load aggrega-
tion models. Our experimental results show that the best
combination of a double threshold scheme with a linear ag-
gregation of resource measures is able to achieve a really
satisfactory balance of the sensor loads together with a sen-
sible reduction of the number of load balancer activations.

1 Introduction

Network Intrusion Detection Systems(NIDS) are a dif-
fuse reality in many complex networks where it is neces-
sary to look for malicious packets and illicit network ac-
tivities. To obtain a fully reliable analysis, a NIDS needs
to track, reassemble and examine each distinct connection
at wire-speed. Any architecture based on just one traffic
sensor cannot be sufficient to face networks that are char-
acterized by a continuous increase of capacities and traf-
fic. Hence, distributed architectures with multiple sensors
appear as the most effective solution for a scalable traffic
analysis of present and future high speed networks. These
distributed architectures are characterized by a set of mul-
tiple slicers that assign portions of network traffic to differ-
ent NIDS sensors through some traffic shaping policy (an

example is in Figure 1). Each NIDS sensor (sensorfor
short) analyzes the received traffic for illicit network activ-
ities and, when necessary, generates alerts. The main prob-

Figure 1. An example of distributed NIDS ar-
chitecture.

lem is that inbound traffic received by the distributed NIDS
architecture exhibits heavy-tailed characteristics [4, 1] and
flash crowds [12]. If the system adopted static traffic parti-
tioning, the amount of traffic reaching each sensor would be
extremely variable and would cause severe load unbalance
situations, with consequent risks of packet losses. For these
reasons, we think necessary to recur to a dynamic redistri-
bution of the load among the sensors. To this purpose, we
introduce acoordinator that receives periodic information
about the state of the sensors and, on the basis of some pol-
icy, it can activate a load balancing mechanism to move por-
tions of network traffic from overloaded to less loaded sen-
sors. The load conditions of each sensor are usually evalu-
ated through the periodic sampling of monitored raw data,
that we callresource measuresor samples. While a single
measure offers an instantaneous view of the load conditions
of a sensor, it does not help the system to distinguish real
overload conditions from transient peaks. Consequently,
in a context of heavy-tailed traffic with unexpected spikes
and burst arrivals, it is extremely difficult to define the best
activation decision policy and load redistribution algorithm
for the load balancing process. The optimal policy would

1

achieve the best sensor load balance with the minimal num-
ber of load balancer activations.

We initially show that the activation policies that are
based on resource measures lead to unsatisfactory load dis-
tribution and excessive load balancer activations. It is in-
teresting to observe that this result is due to the extreme
variability of the samples and it is independent of the ac-
tivation/deactivation strategy that may be based on one or
two thresholds. With the goal of reducing the load repre-
sentation skews and to improve the load balancing process,
we propose and compare different models for load aggre-
gation for various measures of the samples. To the best of
our knowledge, this is the first paper studying aggregation
models and activation policies in the context of dynamic
load balancing for distributed NIDS. Any previously pro-
posed solution for NIDS [20, 5] evaluates the sensor load
conditions and takes decisions on the basis of monitored
samples. We show that even linear aggregations (Simple
Moving Average and Exponential Moving Average) that are
integrated with a double threshold mechanism for activa-
tion/deactivation lead to a consistent improvement of the
load balancing process and of the overall performance of
a distributed NIDS. Several experimental results achieved
through a prototype implementation show a reduction of
load balancer activations, a better stability of the sensor
loads, and a consequent decrement of the traffic that can-
not be examined with fully reliable properties.

The remaining part of the paper is organized as follows.
In Section 2, we focus on the static and dynamic traffic dis-
tribution mechanisms for NIDS architectures consisting of
multiple sensors. In Section 3, we consider and compare
load balancer activation policies based on resource mea-
sures and on two aggregation models that is, Simple Moving
Average and Exponential Moving Average. In Section 4,
we evaluate the benefits of load aggregation on the perfor-
mance of a distributed NIDS architecture where the load
balancer is based on a double threshold policy for activa-
tion/deactivation. In Section 5, we compare the contribu-
tions of this paper with respect to the state of the art. In
Section 6, we conclude the paper with some final remarks.

2 Static traffic splitting

The design of a distributed NIDS architecture is a dif-
ficult task that requires several choices. For example, the
incoming traffic can be distributed statically or dinamically
across different sensors. In this section we show that static
rules lead to severe imbalance conditions because the traffic
is unknown a priori. Hence, it is necessary to recur to mech-
anisms that can reassign some network traffic flows across
sensors.

We demonstrate through experimental results the draw-
backs of a static distribution and motivate the use of dy-

namic load balancing mechanisms that will be described
in Section 3. The results are obtained through a prototype
implementation of a distributed NIDS as in Figure 1, that
is detailed in [6]. It consists of two slicers, three sensors
based on theSnortintrusion detection system [21], and one
coordinator. The distributed NIDS are exercised through
the IDEVAL [15] traffic dumps that are considered standard
traces containing attacks. Each component of the architec-
ture runs on a different machine that is connected to the
others through Gigabit Ethernet adapters. The traffic is gen-
erated by multiple machines, where each of them executes
the tcpreplaytrace replaying software [22]. Each experi-
ment typically lasts for 1000 seconds.

Static splitting is a technique commonly adopted in
different contexts to distribute incoming traffic statically
among different nodes [14]. Splitting can be performed
on the basis of protocol information (IP addresses, TCP
ports) or more sophisticated application-level payload (sig-
natures). In this paper, we consider splitting based on TCP
and IP information. We have instrumented the populaript-
ablespacket filter framework [11] with a set ofslicing rules
for frame analysis, frame routing and MAC address rewrit-
ing. We partition evenly the IP space of the internal network
(27 different hosts) across the 3 sensors. Although each
NIDS sensor becomes responsible for the analysis of a sub-
set of 9 IP addresses, the resulting traffic is quite different
in terms of packets.

Figure 3 reports the network traffic (in Mbps) received
by each sensor during the experiment. The horizontal line
at Tmax=40Mbps denotes the maximum capacity of anal-
ysis of each sensor. Higher load causes packet drops that
correspond to a portion of traffic that cannot be analyzed for
intrusion detection alert. Figure 3 clearly shows that static
traffic splitting does not balance at all the sensor load. Sen-
sor 1 operates always beyond its maximum capacity, while
sensor 3 receives one fourth of the traffic that it could an-
alyze. The reason behind this severe imbalance is the ex-

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

T
ra

ffi
c

(M
bp

s)

Time (sec.)

sensor 1
sensor 2

sensor 3
Tmax

Figure 2. Static traffic splitting based on IP
addresses.

2

Table 1. Workload models characteristics.
min avg max stddev

packets per connection 1 31.34 130105 671.71
packet size 42 212.73 1514 443.68

treme variability of the numbers and sizes of the packets re-
lated to each subset of IP addresses. The considered work-
load model reflects the typical behavior of a real network
traffic. In Table 1 we present some statistics about two im-
portant parameters that influence the amount of work per-
formed by each sensor: the number of packets per connec-
tion and the size of network packets. We can see that the
standard deviation of the number of packets per connection
is 20 times higher than its average, which indicates a very
high dispersion. Since a sensor analyzes all packets per-
taining to a connection, the amount of work corresponding
to a subset of IP addresses can be (and usually is) very vari-
able. A similar consequence holds for the packet size. As
a sensor analyzes the whole payload of a packet to detect
anomalies, different payload sizes imply different amounts
of work. Static traffic slicing rules do not (and cannot) take
into account connection lengths or packet sizes. Hence, dif-
ferent sensors can be subject to extremely variable amounts
of received traffic and consequent work. These considera-
tions motivate the need for the integration of a dynamic load
balancer into the distributed NIDS architecture.

3 Dynamic load balancing

Balancing the load of multiple sensors that are subject
to highly variable traffic is a difficult problem. Multiple
alternatives may characterize a load balancer mechanism,
such as: theactivation strategythat triggers the load balanc-
ing process, theselection policythat chooses the amount of
traffic to be moved from one sensor to another, thelocation
policy that decides the new target sensor(s), thedeactiva-
tion strategythat stops the load balancing process and the
sensor loadthat may be evaluated in terms of one or mul-
tiple different resources, performance metrics and possible
aggregations of the resource samples.

3.1 Alternative policies

The simplest activation/deactivation scheme is based on
a single threshold: a load balancing action is triggered
whenever the last load information used by the coordinator
overcomes a static threshold. The single threshold model
has been widely adopted (just to cite an example in [17]),
and its oscillatory risks of continuous activation and deacti-
vation phases are well known, especially in highly variable
environments, such as those considered in this paper.

The risks of false alarms can be reduced through sev-
eral schemes, for example by signaling an alarm only when
multiple samples overcome the threshold or enlarging the
observation period. In this paper, we consider another pop-
ular scheme that is based on adouble threshold, where the
load balancer is activated when the load of at least one sen-
sor is above thehigh thresholdthat represents the activation
threshold. Thelow thresholdis used for a twofold purpose
because it denotes the deactivation threshold and the NIDS
sensors that are suitable for receiving traffic slices from the
overloaded sensor(s).

Once the load balancer has been activated, there are
many feasible selection and location policies. When the
load balancing mechanism has been activated, we choose to
move onetraffic sliceof one internal network host from the
overloaded sensor to other underloaded sensor(s) through a
round-robin algorithm. We find convenient to consider this
simple, yet stable and efficient policy that minimizes the
computational overhead of the load balancing process.

An open issue is that any load balancing mechanism re-
quires a representation of the sensor load. Choosing a good
representation is a problem by itself, because there are many
critical hardware and software resources at each sensor node
(CPU, disk, network, memory, open file and socket descrip-
tors). Typically, the resource load or status can be mea-
sured through several system monitors (e.g., sysstat [10]
that yields instantaneous measures of CPU utilization, disk
and network throughput at regular time intervals). In this
paper, the load of a sensor is measured in terms of received
network traffic (in Mbps), which is a common solution in
the context of distributed NIDS systems [20, 5]. Initially,
we use a representation of the sensor load based on peri-
odic samples and then we pass to consider linear aggrega-
tion models applied to the resource load samples.

3.2 Policies based on resource samples

MWe initially consider the two activation schemes based
on single and double threshold that use the network traffic at
each sensor as their measure of the sensor load. The traffic
is sampled every second, although different time intervals
do not change the main results and conclusions. Figures 3
(a) and (b) report the traffic on each of the three sensors
during the experiment. The horizontal line set to 40 Mbps
in Figure 3 (a), and to 40 Mbps and 28 Mbps in Figure 3
(b) denote the activation/deactivation thresholds for thedy-
namic load balancing mechanism. Comparing the results in
Figure 2 referring to static traffic splitting with those in Fig-
ures 3, we can see that the introduction of a dynamic load
balancer improves substantially the sensor load balance. To
quantify the benefits of dynamic load balancing, we com-
pute three indexes that are related to the performance and
to the efficiency of the distributed NIDS: the load balance
metric, the packet loss percentage and the number of sensor

3

(a)
Activation/deactivation scheme based on

single threshold.

(b)
Activation/deactivation scheme based on

double threshold.

Figure 3. Dynamic load balancing based on resource samples.

overload signals.
Theload balance metric[3] (LBM) measures the degree

of load balancing across different nodes. Let us define the
load of the sensori (of n sensors) at thejth observation (of
the observation periodm) asloadi,j andpeakloadj as the
highest load on any sensor at thejth observation. The LBM
is defined as follows:

LBM =

∑

1≤j≤m

peak loadj

(
∑

1≤j≤m

∑

1≤i≤n

loadi,j)/n
(1)

Note that the value of the LBM can range from 1 to the
number of sensorsn. Smaller values of the LBM indicate a
better load balance than larger values.

The packet loss percentage is the ratio between not ana-
lyzed and received packets for all sensors, that is,

∑n

j=1 fj
∑n

j=1 fj + rj

(2)

wheren is the number of sensors,fj is the number of pack-
ets not analyzed by sensorj andrj is the number of packets
received by sensorj.

We also consider the number of overload signals gener-
ated by each sensor, that lead to the invocation of the dy-
namic load balancing mechanism.

Table 2 reports the three performance results for the
static traffic splitting, dynamic single threshold and dy-
namic double threshold distribution mechanisms. The LBM
values show that the dynamic load balancing schemes im-
prove sensor load significantly. The packet loss percentage
drops from 40% to 20% when moving from a static to a
dynamic load balancer, and to 13% if we consider a dou-
ble threshold activation mechanism. This implies an im-
provement in the efficiency of the network traffic analysis.
Furthermore, the number of overload signals decreases by

a factor of at least 2.4. This result is important because it
denotes that there are fewer critical load conditions. How-
ever, there are still many invocations of the dynamic load
balancer (357 and 321 in the single and double threshold
strategy, respectively). We think that the main motivation
for these high numbers is due to an inappropriate represen-
tation of the sensor load that is based on direct measures.
For this reason, we propose some load aggregation models
that should reduce the dispersion of load information sam-
ples and yield a cleaner view of sensor status.

Table 2. Evaluation of load distribution mech-
anisms.

Dynamic Dynamic
Static Single Double

Threshold Threshold
LBM 1.88 1.41 1.36

Packet loss 40% 20% 13%
percentage

Overload signals 861 357 321

3.3 Policies based on aggregation models

We think that in the context of a distributed NIDS archi-
tecture subject to heavy-tailed distributed traffic, the use of
direct resource samples as a measure of sensor load infor-
mation is inappropriate because they tend to signal continu-
ous variations between the need of activation and deactiva-
tion. For this reason, we consider some load aggregations
that allow us to obtain a more representative view of the
load status from monitored raw data. The goal of a load
aggregation model is twofold: to filter outlier values and to
reduce the variability of resource samples, such as the net-
work traffic measured at each sensor.

4

Let us suppose that at timeti, a load aggregationmodel
can count on a set ofn previously obtained resource sam-
plesS(i, n) = (si−n+1, . . . , si) to compute a representa-
tion of the load conditions of a sensor. A continuous appli-
cation of this model produces a sequence of load values that
should yield a cleaner trend of the sensors load conditions.

As load aggregation models we consider the class of
moving averagefunctions. We think that these linear func-
tions, that are commonly used as trend indicators, are suf-
ficient to smooth out resource mDeasures, reduce the effect
of out-of-scale values, and are fairly easy to compute at run-
time. In this paper, we count on two classes of moving av-
erage functions: theSimple Moving Average(SMA) and the
Exponential Moving Average(EMA) that use uniform and
non-uniform weighted distributions of the past samples, re-
spectively. As we are interested to run-time models in a con-
text of highly variable systems, we cannot consider other
popular linear auto-regressive models, such as ARMA and
ARIMA [7, 23], because in the considered extremely vari-
able workload scenario they would require frequent updates
of their parameters. These operations are computationally
too expensive and inadequate to support run-time decision
systems.

Simple Moving Average (SMA). It is the unweighted
mean of then resource measures of the vectorS(i, n), that
is evaluated at timeti (i > n), that is,

SMA(S(i, n)) =

∑

i−(n−1)≤j≤i

sj

n
(3)

An SMA-based representative function evaluates a new
SMA(S(i,n)) for each samplesi during the observation pe-
riod. The number of considered resource measures is a pa-
rameter of the SMA model, hence hereafter we use SMAn

to denote an SMA representative function based onn sam-
ples. As SMA models assign an equal weight to every re-
source measure, they tend to introduce a significant delay in
the trend representation, especially when the size of the set
S(i, n) increases. The EMA models are often considered
with the purpose of limiting this delay effect.

Exponential Moving Average (EMA). It is the
weighted mean of then resource measures of the vec-
tor S(i, n), where the weights decrease exponentially. An
EMA based functionS(i, n), at timeti, is equal to:

EMA(S(i, n)) = α∗si+(1−α)∗EMA(S(i−1, n)) (4)

where the parameterα = 2/(n+1) is thesmoothing factor.
The initial EMA(S(i,n)) value is set to the arithmetical mean
of the firstn measures:

EMA(S(i, n)) =

∑

0≤j≤n

sj

n
(5)

Similarly to the SMA model, the number of considered
resource measures is a parameter of the EMA model, hence
EMAn denotes an EMA function based onn samples.

4 Performance results

We will see that, through an appropriate choice of the
sample vector sizes, load aggregation based on SMA or
EMA models can lead to a significant reduction of the load
balancer activations and of the packet loss percentage. All
results presented in this section refer to the double threshold
activation scheme that has been demonstrated to perform
always better than the single threshold scheme in terms of
LBM, packet loss percentage and number of load balancer
activations. We give a quantitative analysis for both aggre-
gation models by evaluating three important factors: qual-
ity (represented by a low value of LBM), overhead (repre-
sented by a low number of load balancer activations) and
efficacy (represented by a low packet loss percentage and a
low number of not analyzed packets).

In Figure 4(a) we report the results of the LBM for the
SMA and EMA-based load aggregations and different sizes
of the sample vector. The worst balancing performance
(LBM = 1.2) is obtained for small values of the sample
vector history (n = 10 in our experiments). If we con-
sider larger sample vectors, we initially observe an improve-
ment of the load balancing process for both load aggrega-
tion models (LBM = 1.1 at n = 20 for the SMA model,
LBM = 1.06 at n = 30 for the EMA model). Further in-
crements of the sample vector history do not improve load
balancing.

Let us now consider Figure 4(b) that reports the num-
ber of load balancing activations as a function of the sample
vector size. Some of the previous considerations are still
valid for both the SMA and EMA models. In particular,
for small values ofn, the load balancing process is acti-
vated very often (over 150 times in then = 10 case), while
higher values ofn do not necessarily reduce the number of
activations (for example, we measured 150 activations us-
ing the SMA40 model). However, if we consider the SMA
model, while in Figure 4(a) the LBM remains almost con-
stant forn in [30, 40], the overhead of a load balancer based
on the SMA model increases abruptly. The reason of this
behavior is straightforward. With increasing values ofn,
the SMA model introduces delays in the representation of
sensor load. This, in turn, implies a reduced ability of the
load balancer to react to sudden changes in the traffic dis-
tribution, which could lead more easily to sensor overload.
The load balancer must be activated more often in order to
mitigate this overload.

The impact of load balancing instability on the perfor-
mance of the sensors is shown in Figure 4(c) and (d), that
report the packet loss rate and the number of not analyzed

5

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 10 15 20 25 30 35 40

Lo
ad

 b
al

an
ci

ng
 m

et
ric

Sample vector size

SMA model
EMA model

(a) LBM

 0

 50

 100

 150

 200

 250

 10 15 20 25 30 35 40

Lo
ad

 b
al

an
ce

r
ac

tiv
at

io
ns

Sample vector size

SMA model
EMA model

(b) Load balancer activations

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40

P
ac

ke
t l

os
s

pe
rc

en
ta

ge

Sample vector size

SMA model
EMA model

(c) Packet loss percentage

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 8e+06

 10 15 20 25 30 35 40

N
ot

 a
na

ly
ze

d
pa

ck
et

s

Sample vector size

SMA model
EMA model

(d) Not analyzed packets

Figure 4. Performance results as a function of the sample vec tor size.

packets as a function of the sample vector size, respectively.
Inefficiencies in the load balancing process can quickly turn
to sensor overload and considerable packet loss (up to 13%
when using the SMA10 model).

All the Figures 4 lead to an important conclusion about
the sample vector size: for each considered load aggrega-
tion model, there exists a value ofn that optimizes quality,
overhead and efficacy. The reason of this behavior is simple.
For small values ofn, load aggregation models present os-
cillations and lead to false detections and packet losses. For
high values ofn, the SMA and the EMA models are not able
to react quickly enough to load condition changes of the
sensors. Hence, in the initial part of the experiment, where
one sensor receives all incoming traffic and the other two
sensors are idle, the load balancing process is slower. As
a consequence, a transient unbalance state may last longer
because the initially overloaded sensor passes traffic to the
other sensors too slowly. This explains the high packet loss
percentages of the most overloaded sensor and the very low
packet loss percentage of the initially offloaded sensor.

In the considered scenario, the best dynamic load bal-
ancers are based on the SMA20 and the EMA30 load aggre-
gation models. From these and other not shown results re-
lated to different scenarios, we can conclude that the EMA
is not only the best load aggregation model, but also the
most stable. The stability of EMA is a consequence of its
low sensitivity with respect to the sample vector size, pro-

vided thatn is chosen sufficiently high (n > 20 in our sce-
narios). On the other hand, the SMA load model shows a
higher dependency on the sample vector size.

In Table 3 we summarize all performance metrics for
the best load balancers based on double threshold activation
and aggregated load models, namely SMA20 and EMA30.
We also include the load balancer based on samples and a
static splicing NIDS. The benefits of dynamic load balanc-
ing based on aggregation models are clear: the number of
sensor overloads reduces considerably, ranging from a fac-
tor of 2.6 when passing from a static to a dynamic strategy.
If we consider the effects of load aggregation, sensor over-
load signals drop by a factor of 40 and over. Moreover, the
load balancer activations drop by a factor of 7 when consid-
ering linear aggregation models instead of resource sample
representations. Finally, a dynamic load balancing strategy
improves the LBM of at least 30% with respect to static
traffic splitting. If we consider load aggregations, the im-
provement is about 40%. The exponential moving average
EMA30 shows the best performance in terms of load bal-
ance and packet loss. It is worth to note that its results are
achieved through the minimum number of load balancer ac-
tivations.

6

Table 3. Evaluation of load distribution mechanisms.
Static strategy Dynamic load balancing
Static traffic Sample-based SMA20-based EMA 30-based

splitting model model model
LBM 1.88 1.36 1.10 1.07

Packet loss percentage 40% 13% 11% 10%
Not analyzed packets 20971154 7780001 6422771 5641611

Sensor overload signals 861 321 43 40

5 Related work

Detecting significant and permanent load changes of a
system resource is at the basis of most run-time decisions
for the management of distributed systems. Some examples
of applications include load balancers [2], overload and ad-
mission controllers [13], request routing mechanisms and
replica placement algorithms [18]. The common method
to represent resource load values for run-time management
systems is based on the periodic collection of samples from
server nodes and on the subsequent use of these values.
Some low-pass filtering of network throughput samples has
been proposed in [19], but the large majority of proposals
detect load changes and predict future values on the basis
of some functions that work directly on resource measures.
Even the proposals that adopt a control theoretical approach
to prevent overload or to provide guaranteed levels of per-
formance in Web systems [13] refer to single resource sam-
ples (e.g., the CPU utilization or the average Web object
response time) as feedback signals. On the other hand, we
think that in the proposed scenario of a distributed NIDS,
characterized by high instability and variability of network
bandwidth samples, real-time management decisions that
are based on the direct use of single samples may lead to
risky when not completely wrong actions. Our preliminary
experimental results show the impossibility of deducing a
representative view of a system resource from collected raw
measures that are characterized by very large variability.

To demonstrate our hypotheses, we implemented a real
small-scale distributed NIDS but the results obtained from
this prototype could be extended using larger scale simula-
tions [9,8].

There are many studies on the characterization of re-
source loads, albeit related to systems that are subject to
quite different workload models with respect to those con-
sidered in this paper. Hence, many of the previous results
cannot be applied directly to the proposed distributed NIDS
system. For example, the authors in [16] evaluate the ef-
fects of different load representations on job load balanc-
ing through a simulation model that assumes a Poisson job
inter-arrival process. Dinda et al. [7] investigate the pre-
dictability of the CPU load average in a UNIX machine sub-
ject to CPU-bound jobs. The adaptive disk I/O prefetcher

proposed in [23] is validated through realistic disk I/O inter-
arrival patterns referring to scientific applications. On the
other hand, the workload features considered in all these
pioneer papers differ substantially from the load models
characterizing Web-based servers that show high variabil-
ity, bursty patterns and heavy tails even at different time
scales.

The focus on run-time operations is another key differ-
ence of this paper with respect to previous literature. The
common method for investigating the efficacy of load repre-
sentation for run-time management tasks is off-line analysis
of samples collected from access or resource usage logs [7].
In this paper, the need for run-time decision supports in a
highly variable context has led to evaluate the feasibilityof
simple yet effective load aggregation models, and possibil-
ity of integrating them into our distributed NIDS.

6 Conclusions

A fully reliable and stateful network traffic analysis re-
quires NIDS that are able to handle the ever increasing ca-
pacities of present and future network technologies. In this
context, distributed architectures with some suitable traf-
fic shaping and load balancing mechanisms appear as the
most valuable solution for high speed traffic analysis, due
to their intrinsic scalability. However, in a context of high
traffic with heavy tailed characteristics, load balancing is
a non trivial task that requires adequate solutions at the
level of activation mechanisms and load representation. We
show that direct resource measures offer instantaneous load
views, but they are of little help for distinguishing over-
load conditions from transient peaks, thus making the ac-
tivation/deactivation load balancing process extremely un-
stable. We propose and implement different linear models
for sample aggregation that reduce the skewness of the load
representation and improve the load balancing process. We
show that even simple, linear aggregations can lead to a con-
sistent performance improvement of the entire distributed
NIDS architecture. There are two main consequences of an
improved sensor load balance: the reduction of activations
of the dynamic balancing mechanisms and the reduction of
packet losses experienced by the NIDS sensors.

7

References

[1] M. Arlitt, D. Krishnamurthy, and J. Rolia. Charac-
terizing the scalability of a large web-based shopping
system.IEEE Trans. Internet Technology, 1(1):44–69,
Aug. 2001.

[2] J. Bahi, S. Contassot-Vivier, and R. Couturier. Dy-
namic load balancing and efficient load estimators for
asynchronous iterative algorithms.IEEE Trans. Par-
allel and Distributed Systems, 16(4):289–299, Apr.
2006.

[3] R. B. Bunt, D. L. Eager, G. M. Oster, and C. L.
Williamson. Achieving load balance and effective
caching in clustered Web servers. InProc. of WCW,
San Diego, CA, USA, USA, Apr. 1999.

[4] J. Challenger, P. Dantzig, A. Iyengar, M. Squillante,
and L. Zhang. Efficiently serving dynamic data at
highly accessed Web sites.IEEE/ACM Trans. on Net-
working, 12(2):233–246, Apr. 2004.

[5] I. Charitakis, K. Anagnostakis, and E. Markatos. An
active traffic splitter architecture for intrusion detec-
tion. In Proc. of MASCOTS), page 238, Orlando, FL,
2003. IEEE Computer Society.

[6] M. Colajanni and M. Marchetti. A parallel architec-
ture for stateful intrusion detection in high traffic net-
works. InIn Proc. of the IEEE/IST MonAM, 2006.

[7] P. Dinda and D. O’Hallaron. Host load prediction us-
ing linear models.Cluster Computing, 3(4):265–280,
Dec. 2000.

[8] A. M. Dobber, G. M. Koole, and R. D. van der Mei.
Dynamic load balancing for a grid application. InIn
Proc. of HiPC, 2004.

[9] D. Gao, Y. Shu, S. Liu, and O. Yang. Delay-based
adaptive load balancing in mpls networks. InIn Proc.
of ICC, 2002.

[10] S. Godard. Sysstat: System perfor-
mance tools for the Linux OS, 2004.
http://perso.wanadoo.fr/sebastien.godard/.

[11] Iptables, 2005. – http://www.netfilter.org/.

[12] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
crowds and denial of service attacks: characterization
and implications for CDNs and Web sites. InProc. of
WWW), Honolulu, HW, May 2002.

[13] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: a
self-tuning controller for managing the performance
of 3-tiered sites. InProc. of IWQOS2004, Montreal,
CA, June 2004.

[14] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer.
Stateful intrusion detection for high-speed networks.
In Proceedings of the IEEE Symposium on Research
on Security and Privacy, Oakland, CA, May 2002.
IEEE Press.

[15] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and
K. Das. Analysis and results of the 1999 DARPA off-
line intrusion detection evaluation. InRAID ’00: Pro-
ceedings of the Third International Workshop on Re-
cent Advances in Intrusion Detection, pages 162–182,
London, UK, 2000. Springer-Verlag.

[16] M. Mitzenmacher. How useful is old informa-
tion. IEEE Trans. Parallel and Distributed Systems,
11(1):6–20, Jan. 2000.

[17] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, and E. M. Nahum. Locality-
aware request distribution in cluster-based network
servers. InProc. of ACM ASPLOS, San Jose, CA,
USA, Oct. 1998.

[18] M. Rabinovich, X. Zhen, and A. Aggarwal. Comput-
ing on the edge: a platform for replicating internet ap-
plications. InProc. of WCW, Hawthorne, NY, USA,
2003.

[19] A. Sang and S. Li. A predictability analysis of network
traffic. In Proc. of INFOCOM, 2000.

[20] L. Schaelicke, K. Wheeler, and C. Freeland.
SPANIDS: a scalable network intrusion detection
loadbalancer. InIn Proc. of CF, New York, NY, USA,
2005. ACM Press.

[21] Snort home page, http://www.snort.org.

[22] Tcpreplay home page,
http://tcpreplay.sourceforge.net.

[23] N. Tran and D. Reed. Automatic ARIMA time se-
ries modeling for adaptive I/O prefetchingp.IEEE
Trans. Parallel and Distributed Systems, 15(4):362–
377, Apr. 2004.

8

http://www.netfilter.org/

	Introduction
	Static traffic splitting
	Dynamic load balancing
	Alternative policies
	Policies based on resource samples
	Policies based on aggregation models

	Performance results
	Related work
	Conclusions

