
Kernel-based Web switches providing content-aware routing

Mauro Andreolini
Department of Information, Systems and Production

University of Roma Tor Vergata

Roma, Italy 00133

andreolini@ing.uniroma2.it

Michele Colajanni
Department of Information Engineering

University of Modena

Modena, Italy 41100

colajanni@unimo.it

Marcello Nuccio
Department of Information Engineering

University of Modena

Modena, Italy 41100

nuccio.marcello@unimo.it

Abstract

Locally distributed Web server systems represent a cost-
effective solution to the performance problems due to high
traffic volumes reaching popular Web sites. In this paper,
we focus on architectures based on layer-7 Web switches
because they allow a much richer set of possibilities for
the Web site architecture, at the price of a scalability much
lower than that provided by a layer-4 switch. In this paper,
we compare the performance of three solutions for layer-
7 Web switch: a two-way application-layer architecture, a
two-way kernel-based architecture, and a one-way kernel-
based architecture. We show quantitatively how much better
the one-way architecture performs with respect to a two-
way scheme, even if implemented at the kernel level. We
conclude that an accurate implementation of a layer-7 Web
switch may become a viable solution to the performance
requirements of the majority of cluster-based information
systems.

1 Introduction

The ever increasing demand for complex, efficient ser-
vices offered through Web interfaces, and the constantly
growing number of Web users are putting a serious strain on
today’s Internet services. Unfortunately, upgrading a single
server does not represent a valid solution to the scalability
problem, because Web traffic is characterized by a contin-
uous growth. Many solutions based on caching and server
replication have appeared to face the scalability problem of
Web content delivery. In this paper, we focus onlocally

distributed Web-server systems, briefly Web clusters. For a
complete survey on the topic, see [7].

A Web cluster is a set of server machines that are hosted
together at the same location, and interconnected through a
high-speed LAN (see Figure 1).

Web switch
144.55.62.18

Authoritative DNS server
for www.site.org

Cluster−based Web system
www.site.org

Client

Local DNS server

HTTP request

Web server 1

Web server 2

LAN

Web server N

www.site.org

INTERNET

144.55.62.18

����
����
����
����

����
����
����
����

����
����
����

����
����
����
������

����
����
����
����

����
����
����
����

����
����
����

����
����
����
������

����
����
����
����
����

����
����
����
����
����

����
����
����

����
����
����
������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
���

��
��
��

Figure 1. Web cluster architecture.

The cluster is publicized through one site name and one
virtual IP address(VIP). This is typically the address of
a dedicated front-end node (also calledWeb switch) which
acts as an interface between the nodes of the cluster and the
rest of the Internet, thus making the distributed nature of the
site completely transparent to the users and client applica-
tions. In this architecture, the authoritative DNS server of
the Web site always maps the site name into the VIP ad-
dress. Hence, the Web switch receives all client requests



and routes them to a Web server node through some cen-
tralizeddispatching policy. Web clusters may be classified
according to the OSI protocol stack layer at which the Web
switch routes inbound requests. We distinguishlayer-4and
layer-7switches. A layer-4 Web switch works at TCP layer
and performs content-blind routing that is, it does not take
into account any content information in the client request
when taking dispatching decisions.

On the other hand, layer-7 Web switches can work with
application level information, thus allowing for a much
richer set of solutions for the Web cluster. For example,
in a cluster based on a layer-4 switch, the entire docu-
ment tree must be replicated among all servers or at least
shared through an NFS file server. A layer-7 switch permits
content-based routing with consequentcontent partitioning
solutions and the possible use of specialized servers [17].
Dynamic content partitioning also improves Web cluster
performance by increasing the cache hit rates of single
servers [14, 15]. Commercial products typically parse the
HTTP request either to partition the servers according to
the service type they handle or to provide persistent ses-
sion support, based on cookies or SSL identifiers. Another
important advantage of a layer-7 Web switch is that it can
implement more sophisticated admission control algorithms
that are of key importance for the next generation of Web
clusters, that will pass from high performance to differenti-
ated and guaranteed performance [5, 9, 18].

The drawback is that content-based routing introduces
non negligible overheads on the Web switch. This compo-
nent, if not well implemented, may become the bottleneck
of the whole Web cluster. These considerations have se-
riously limited the diffusion of layer-7 Web switches that
cannot guarantee a performance level comparable to that
of layer-4 switches. To address this problem, some archi-
tectural alternatives are proposed in [15, 6, 17] which try
to combine the advantages of content-blind with those of
content-aware distribution. This paper aims also to demon-
strate that, although layer-7 switch performance cannot be
comparable to that of layer-4 switches, an accurate kernel-
based Web switch can provide a throughput that is sufficient
to the majority of content providers, to the extent that the
bottleneck can be moved from the Web switch to the Inter-
net connection of the cluster.

There are two main characteristics to classify layer-7
Web switches. The first concerns the implementation layer:
kernel-based or application-based.

The second considers the flow of the packet traffic be-
tween the client and the Web cluster. The main difference
lies in the backward flow, because all inbound packets must
pass through the Web switch. Intwo-wayarchitectures,
the outbound packets pertaining to a response pass again
through the Web switch. This mechanism can be imple-
mented at the kernel- or application-layer.

In one-way architectures, the servers send response
packets directly to the client. One-way architectures are ex-
pected to be more efficient than two-way solutions, since
they limit the risks of system bottleneck at the Web switch
due to forward and backward handling of each packet. On
the other hand, one-way architectures working with a layer-
7 Web switch require a much more complex kernel-based
implementation that affects both the switch and each Web
server. The motivation is that the distributed architecture
of the cluster must remain transparent to both the user and
client application. Hence, each Web server must be able to
change the response packets in such a way that they seem
coming from the Web switch which must remain the only
official interface for the clients.

Table 1 shows some combinations of alternative archi-
tectures for content-aware Web switches, that are proposed
in literature and by the same authors: layer-4 vs. layer-7,
kernel- vs. application-layer implementation, one-way vs.
two-way schemes. The main focus of this paper is to pro-
vide a fair comparison among different 7-layer prototypes
running on the same platform that is, identical hardware and
operating system. The main results are as following.� We quantify the performance differences between a

kernel-based and an application-based implementation
of a two-way architecture. We see that a kernel-based
Web switch can sustain a number of connections which
is significantly higher (almost four times) than that of
an application-based switch.� We then pass to consider the impact of one-way vs.
two-way solutions, both of them implemented at a ker-
nel level. We see that one-way architecture performs
much better (almost two times) than two-way solu-
tions.� If we compare a one-way kernel-based solution and a
two-way application-based implementation , the per-
formance ratio is as good as eight to one. With
similar results, that are obtained through inexpensive
PC/Linux machines instead of dedicated network com-
ponents , layer-7 routing becomes a viable solution for
the performance requirements of the majority of Web
content providers using cluster-based architectures.

The rest of this paper is organized as following. Sec-
tion 2 describes the design and implementation of a two-
way Web cluster solution operating at the kernel level, while
Section 3 outlines the kernel-based one-way architecture.
Section 4 evaluates the performance of different Web clus-
ter implementations. Section 5 concludes the paper with
some final remarks.



Table 1. Content aware Web switches.
Name Scheme Switch implementation Server implementation References Name

TCP Gateway two-way application level n.a. [6, 11] ClubWeb-2w-a
two-way kernel level n.a. here ClubWeb-2w-k

TCP Splicing two-way kernel level application level [6, 10]

TCP Handoff one-way FreeBSD kernel FreeBSD kernel [6, 16] ScalaServer
one-way Linux kernel Linux kernel [3] ClubWeb-1w

2 Two-way kernel-based Web cluster

In this section we propose the architectural design of a
two-way kernel-based Web switch based on the TCP Gate-
way scheme, where the switch acts basically as a proxy
server. As soon as a client request arrives, the Web switch
chooses the Web server by applying some content-aware
dispatching policy and transmits the request to it. If nec-
essary, a new TCP connection is established with the server.
The response is sent to the Web switch, which directs it back
to the client.

The proposed prototype is called two-way cluster-based
Web System orClubWeb-2w-k. This architecture, based
on the kHTTPd server [12], has been designed and im-
plemented as a loadable kernel module in the Linux oper-
ating system, kernel version 2.4. For symmetry reasons,
the application-based switch based on the TCP Gateway
scheme [11] is calledClubWeb-2w-a.

The overall design of the Web switch is thread-oriented.
A bunch of main daemonsare responsible for handling
client requests. These daemons are spawned by amanage-
ment daemonwhich acts as the interface between the ad-
ministrator and the main daemons.

2.1 The management daemon

Figure 2 shows the design of the management daemon,
which is responsible for spawning main daemons that han-
dle client requests. The management daemon is created as
soon as the kernel loadable module is inserted by means
of the insmodcommand. It then waits for a specificstart
command which enables Web switch operations. Once the
cluster is activated, the necessary amount of memory for
all future main daemons is allocated. The allocation is left
to the management daemon and not to each main daemon
because this makes the overall design simpler and avoids
potential troubles due to resource synchronization among
the main daemons. Once the memory is allocated, a server
socket is initialized to accept client requests. Then, the pre-
configured number of main daemons is created and initial-
ized. The management daemon waits for further configu-
ration commands. During this period, some threads which
exited abnormally (e.g., due to a SIGKILL) are generated

Wait configuration command

Allocate memory

Initialize socket

Generate threads

Release socket

Release memory

Wait for thread

Wait for thread Release memory Release socket

start

stop unload

unload

Figure 2. The Management daemon.

again. This ensures that a sufficient number of main dae-
mons is always active. Another duty of the management
daemon is that of permitting the selection of the Web switch
dispatching policy, which may be chosen even at runtime.

A stopcommand causes the clean termination of all main
threads. The server socket is then released. Anunloadcom-
mand de-allocates the main memory and unloads the kernel
module.

2.2 The main daemon

The main daemon is responsible for handling client
HTTP requests. Generally, more main daemons are
spawned by the management daemon in order to enhance
the performance of the Web cluster. A main daemon is
created as soon as astart command is issued. After the
creation, the main daemon enters the wait queue which is
associated with the listening socket, and it is woken up at
the occurrence of one of the following events: suspension
timeout, data arrival, signal delivery.

A main daemon is periodically woken up (after a sus-
pension timeout) for checking the presence of any data or
some administration command. Once reached the socket
wait queue, the main daemon enters the request handling
loop, which is left only when the Web cluster is shutdown
or a serious error occurs.

The request handling loop follows an event-driven de-



sign. The operations executed for handling client requests
are subdivided intophases. A main daemon is not oriented
to satisfy one client request at a time, but all requests that
exist in a given phase. To this purpose, each main dae-
mon has a wait queue for each phase. All requests queued
at the first phase are processed before handling requests at
the second phase. Clearly, requests having their first phase
completed are moved into the second phase queue. This
pipeline-oriented approach is much more efficient than that
presented in Apache [4], where each thread (or process)
would handle sequentially the phases of a single client re-
quest. When a client request leaves the last phase of the
pipeline, it can be considered completed; its per-request al-
located resources are released.

Each main daemon can access only its own set of queues.
This implies that a thread is responsible for the execution of
all phases of a client request. Sharing queues among mul-
tiple threads would introduce synchronization and concur-
rent access issues that severely affect the Web switch perfor-
mance. A brief description of the different phases follows.

In the AcceptConnectionsphase, the main daemon
checks the presence of connection requests on the socket,
and accepts them. For each inbound client request, the nec-
essary data structures are allocated and initialized. Then,
the accepted requests are queued into the next phase queue.
If the number of active TCP connections exceeds the pre-
configured threshold, further client connection requests are
refused. This is necessary to prevent overload situations and
DoS attacks.

In theHandleRequestphase, the main daemon waits for
a client HTTP request. If no data is available, it processes
every queued request. Once a client request is available,
it is parsed to extract application layer information which
is necessary for content-aware routing. The request is then
queued into the next phase. Malformed or too large HTTP
requests are immediately dropped.

In the HandlePolicyphase, a Web server is chosen ac-
cording to the previously parsed application content. If the
Web servers are overloaded, the request is dropped.

In the HandleDispatchphase, a TCP connection is
opened with the chosen Web server for sending the client
request. From now on, the Web switch acts as a gateway
between the client and the Web server, in the sense that it
handles all traffic between the two end-points. When one of
the two peers closes the connection, the Web switch handles
the connection by closing it at the other peer, and frees up
the allocated system resources.

An event-driven approach has several advantages, but
has the following main problem. If a main daemon is busy
at a given phase, it is not able to handle requests waiting
in other phases, thus limiting responsiveness. For this rea-
son, we have introduced a bound on the maximum number
of accepted connections in the AcceptConnections phase.

Management
daemon (2)

Main
daemon (3)

Main
daemon

Main
daemon

Main
daemon

HTTP request (1)

Three−way handshake (4)

Client ServerWeb Switch

HTTP request (5)

HTTP response (6)

ACK

HTTP response (7)

ACK (8)

TCP close (10)

TCP close (9)

Figure 3. Operations of the TCP Gateway
mechanism.

When this threshold has been reached, the corresponding
main daemon handles the next phase and does not accept
connections anymore (although it would be possible). This
mechanism increases the responsiveness of the entire Web
cluster because the flow among pipeline phases is faster.
Moreover, concurrent main daemons accept connections si-
multaneously; if one main daemon is blocked at one phase,
it would unbalance the load of the other main daemons.

2.3 The TCP Gateway mechanism

We present a detailed description of the operations per-
formed by the TCP Gateway mechanism in ClubWeb-2w
referring to Figure 3.

As soon as an HTTP request sent by the client (1) is
received at the Web switch, the management daemon as-
signs a new main daemon to it (2). The main daemon se-
lects a Web server according to some content-aware dis-
patching policy (3) and establishes a TCP connection with
that server (4). Then, the HTTP request is sent to the cho-



sen Web server over the newly established connection (5).
In case of a server failure, the main daemon closes the
client-switch connection. However, in most cases, the Web
server builds the response and starts sending data to the Web
switch (6). The main daemon directs those response pack-
ets to the client (7). Client ACKs to response packets are
sent to the Web switch, which directs them to the appropri-
ate server through the main daemon (8). When the server
closes its TCP connection with the Web switch (9), the main
daemon closes the corresponding TCP connection with the
client (10).

3 One-way kernel-based Web cluster

In this section we outline the functional mechanism of
a one-way layer-7 Web switch based on the TCP Handoff
approach, also calledClubWeb-1w. A detailed technical de-
scription of this kernel-based switch can be found in [3].
This prototype is the first that has been designed and imple-
mented as an extension of the TCP/IP stack for the Linux
operating system, kernel version 2.4, while a previous im-
plementation was based on the FreeBSD kernel [6].

With one-way architectures, the Web switch accepts a
client connection request, parses the HTTP request, chooses
a Web server according to a well defined content aware pol-
icy and, finally, transfers the TCP connection to that server
(along with the application-layer content). Response pack-
ets are directly sent to the client by the server that bypasses
the Web switch. Client ACKs are sent to the Web switch,
which directs them to the appropriate server, in order to pre-
serve the semantics of the TCP protocol.

The main components of the Web cluster (dispatcher
module,forwardingmodule and theTHOPhandoff proto-
col module) are summarized below.

The dispatcher module is responsible for parsing the
HTTP requests and choosing a Web server according to
some content-aware dispatching policy. The dispatcher is
invoked during the processing of TCP segments containing
application-layer requests on a configurable port.

The forwarder module intercepts Ethernet frames be-
longing to an already transferred TCP connection and trans-
mits them to the appropriate Web server. This operation
requires the extraction of IP addresses and TCP port fields
from each incoming frame. This information is used to ac-
cess a hash table of already transferred TCP connections. If
a connection is found in that table, the frame is sent directly
to the destination server. Otherwise, it is sent to the higher
levels of the TCP/IP stack for usual processing, because it is
either a new connection request or a frame for another ser-
vice. The solution adopted by the forwarder module reduces
the overhead due to TCP/IP processing (mainly, checksum
verifications).

The THOP protocol implements the necessary messages

for synchronizing the phases of a TCP connection transfer
between the Web switch and a server. A THOP packet is en-
capsulated into an IP datagram. It contains a given message
which triggers an appropriate action or notifies an event at
the receiver. The current implementation defines messages
for the following operations:� Encapsulation and transmission of the complete state

of a TCP connection (including the client request) to a
given Web server.� Notification of TCP connection closefrom a Web
server, so that the Web switch can delete the corre-
sponding entry from the table of transferred connec-
tions.� Notification of TCP connection duplication failure
from a Web server. This message may be used also
as a notification of server overload.

A description of the operations performed by the TCP
Handoff mechanism in ClubWeb-1w follows. The first part
of the HTTP request sent by the client is intercepted by the
forwarder module on the Web switch, as the TCP connec-
tion has not yet been transferred. The forwarder module
delivers the request to the higher layers. The TCP protocol
issues a call to the dispatcher module upon the arrival of the
application-layer data. The dispatcher parses the HTTP re-
quest and chooses a Web server according to some content-
aware dispatching policy, such as LARD [14], CAP [8],
FLEX [1]. The TCP protocol sends a message to the cho-
sen Web server, containing the TCP connection state. The
identifiers of the TCP connection, such as IP addresses and
TCP ports, are packed into a structure and inserted into a
mapping table containing (active) transferred connections.
In such a way, the Web switch is able to forward succes-
sive client packets referring to already established connec-
tions. The Web server may reply with a drop message, if it
is not able to fulfill the request for whatever reason. In this
case, the Web switch removes the appropriate entry from the
mapping table and aborts the TCP connection. In the ma-
jority of cases, the Web server accepts the TCP connection,
then it builds the response and starts sending data directly
to the client. Client ACKs sent to the Web switch are inter-
cepted by the forwarder module of the Web switch, which
analyzes the IP and TCP headers to extract all information
necessary to perform the lookup in the mapping table. If an
entry is found, the packet is forwarded to the correspond-
ing Web server. As the server closes the TCP connection,
it notifies this event to the Web switch with an appropriate
THOP message. The Web switch removes the appropriate
entry from the mapping table of transferred connections.

It is worth noting that, unlike the ScalaServer architec-
ture [6], no control connection between the Web switch and



the server is used. This allows us for a lighter TCP connec-
tion transfer that consumes less resources. The limit of our
solution is that only one Web switch may be active at a time
in the Web cluster. However, for availability purposes, it is
possible to configure two machines in the LAN as switches
and let one behave as a backup machine, if the first one fails.

4 Experimental results

In this section we evaluate the performance and scalabil-
ity of the two proposed kernel-based Web cluster architec-
tures and compare them with the basic TCP Gateway solu-
tion. The analysis of the Web cluster performance is divided
in two main parts: first, we compare the overheads due to
application-based vs. kernel-based solutions and the over-
heads due to one-way vs. two-way mechanism. Then, we
analyze the performance of the Web cluster under a realistic
workload.

Every prototype is implemented on inexpensive
PC/Linux machines. Hence, performance comparisons
with dedicated (and expensive) commercial products are
beyond the scope of our research. Other possibly interest-
ing comparisons with public domain solutions, especially
the ScalaServer architecture [6], were impossible because
of incompatibility of their kernels with the versions for
present PC hardware.

4.1 Testbed architecture

We have implemented both ClubWeb-2w-k and
ClubWeb-1w as extensions of the Linux kernel, release
2.4.17, while ClubWeb-2w-a has been implemented as
a Reverse Proxy Server through the Apache module
mod_rewrite[11]. The testbed architecture is based on
off-the-shelf hardware and software components. The
clients and servers of the system are connected through a
switched 100Mbps Ethernet. The cluster is made up of a
Web switch and up to five Web servers. Each machine is a
Dual PentiumIII-833Mhz PC with 512MB of memory. All
nodes of the cluster use a 3Com 3C905C 100bTX network
interface. They are all equipped with a Linux operating
system, while Apache 1.3.26 is used as the Web server
software.

We used a modified version of thehttperf tool [13] (ver-
sion 0.8). This software has been enriched with a support
for measuring the 90-percentile and cumulative distribu-
tions of page response times.

4.2 Overhead analysis

For the overhead and scalability analysis of the Web
switch, it is important that the Web servers provide the

1

10

100

1000

10000

200 400 600 800 1000 1200

M
e
a
n
 r

e
sp

o
n
se

 t
im

e
 [
m

s]

Connections per second

single server
ClubWeb-2w-k,1 server
ClubWeb-2w-a,1 server

Figure 4. Overheads of kernel-based vs.
application-based mechanism.

1

10

100

1000

10000

200 400 600 800 1000 1200

M
e
a
n
 r

e
sp

o
n
se

 t
im

e
 [
m

s]

Connections per second

single server
ClubWeb-1w,1 server

ClubWeb-2w-k,1 server

Figure 5. Overheads of one-way vs. two-way
mechanism.

fastest response possible. For this reason, the clients re-
quest one static file of approximately 1500 bytes using an
increasing number of HTTP/1.0 (equivalent to TCP) con-
nections. In this way the file is always served by the disk
caches. This choice is motivated by the need of finding out
how much overhead the switch imposes over the standard
TCP protocol. To quantify the overhead of the content-
aware mechanisms, we also show the response time of a
request provided by a server that is directly connected to
the client without Web switch.

The results shown in Figure 4 confirm the great bene-
fits of a kernel-based implementation over an application-
based one. We have chosen to compare only two-way solu-



tions, so the difference is imputable mainly to the overhead
of context switching in the application-based solution. The
switch of ClubWeb-2w-a thrashes at 400 connections per
second, while ClubWeb-2w-k limits its performance at 800
connections per second (that is, the double with respect to
the application-based solution). This is indicative of theper-
formance difference obtainable from a pure kernel imple-
mentation. Moreover, considering the performance of both
switches in the non-saturation zone (that is, at a connec-
tion rate lower than 400 connections per second), the perfor-
mance ratio between kernel-based two-way implementation
and application-based two-way implementation is approxi-
mately four to one. Finally, the overhead of a content-aware
two-way solution with respect to a single server is at least
of a factor two. We confirm the intuition that two-way solu-
tions introduce a sensible overhead at the Web switch, due
mainly to the processing of response packets.

Figure 5 reports a comparison between one-way and
two-way mechanisms. We notice that the proposed content-
aware mechanism (ClubWeb-1w) has a negligible impact on
the overall performance of a Web server. The overhead of
ClubWeb-1w is quite low with respect to the single server:
it reaches a maximum of 11% at the knee of the curve (1000
connections per second). This result is remarkable because
it shows the efficiency of our Web switch implementation
even on SMP architectures, that to the best of our knowl-
edge has never been reported in literature. It is interest-
ing to note that, even when the server is under critical load
conditions, the mechanisms of ClubWeb-1w allow the sys-
tem to follow the performance behavior of the single Web
server architecture with no intermediaries. ClubWeb-2w-k
has lower capacity (it thrashes at 800 connections per sec-
ond, 20% less than ClubWeb-1w) and shows a significant
overhead (72%) in its non-saturation zone (that is, at less
than 900 connections per second). We thus confirm (in the
best case, with a very small file) the overheads of a two-
way mechanisms with respect to a one-way solution. The
situation worsens when the requested file sizes are bigger,
because of the greater size of the server responses.

4.3 Performance results for realistic workload

In the following set of experiments we evaluate the
performance of the proposed architectures under realistic
workload conditions, including user sessions, user think-
time, embedded objects per Web page, reasonable file sizes
and popularity. We run different tests using the HTTP/1.0
protocol, and the Client Aware Policy (CAP) as the dis-
patching algorithm [8]. The workload consists of a mix of
static and dynamic documents. The dynamic portion of the
workload is implemented by means of CGI scripts which
emulate various services: queries to databases, cyphering,
and e-commerce transactions. A more detailed description

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

P
ag

e 
re

sp
on

se
 ti

m
e 

[s
]

Clients per second

ClubWeb-1w
ClubWeb-2w-k
ClubWeb-2w-a

Figure 6. 90-perc. of page response time.

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

C
lu

st
er

 th
ro

ug
hp

ut
 [M

bp
s]

Clients per second

ClubWeb-1w
ClubWeb-2w-k
ClubWeb-2w-a

Figure 7. Throughput of the Web cluster.

is given in [2].
The experimental results for increasing number of client

requests are reported in Figure 6 (90-percentile of page re-
sponse time, including the base HTML file and its embed-
ded objects) and Figure 7 (throughput in Mbps). An im-
portant premise is that in all tests the CPU utilization of the
ClubWeb-1w Web switch was never higher than 0.4, hence
this switch never represents the bottleneck of the whole sys-
tem.

From the figures we deduce that ClubWeb-1w is able to
reach a throughput of 85 Mbps, that actually corresponds
to the maximum real throughput of the testbeb network
(100Mbps Ethernet). Hence, the bottleneck of the cluster is
represented by the network capacity. This behavior is even
more evident for the HTTP/1.1 protocol, that we cannot re-
port due to space limitations.

The performance gap between kernel-based and



application-based solutions is also evident. ClubWeb-2w-a
is affected by context-switching overheads which make the
switch the cluster bottleneck. This, in its turn, impacts on
the cluster throughput, which is degraded of at least a factor
of two with respect to the kernel-based solutions.

The performance gap between one-way and two-way ar-
chitectures is even more pronounced. The saturation of the
two-way prototypes limits their throughput to at least one
fourth with respect to the one-way solution.

5 Conclusions

The importance of content-aware routing lies in the pos-
sibility of implementing sophisticated request dispatching
algorithms and access control policies, that are important
for present and future cluster-based Web architectures. On
the other hand, content-aware mechanisms implemented
at the front-end Web switch have been always considered
a limit on the scalability of the Web clusters. We have
presented the high level design of a one-way and a two-
way Web cluster, that are implemented at the kernel level.
Our experimental results confirm that two-way architectures
where both inbound and outbound packets flow through the
Web switch have a system bottleneck in this front-end. On
the other hand, we show that with current off-the-shelf PC
hardware it is possible to implement a one-way Web clus-
ter that performs very well under realistic workload condi-
tions. This moves the bottleneck of the system throughput
from the Web switch to the Internet connection, at least in
the large majority of Web clusters that for economic reasons
does not use bandwidth connections larger than T3 or OC3.

References

[1] V. Agarwal, G. Chafie, N. Karnik, A. Kumar, A. Kundu,
J. Shahabuddin, and P. Varma. An architecture for virtual
server farms. Research Report RI 01006, IBM Research,
Apr. 2001.

[2] M. Andreolini, M. Colajanni, and R. Morselli. Performance
study of dispatching algorithms in multi-tier web architec-
tures. ACM Sigmetrics Performance Evaluation Review,
30(2):10–20, 2002.

[3] M. Andreolini, M. Colajanni, and M. Nuccio. Scalability
of content-aware server switches for cluster-based web in-
formation systems. InProceedings of the 12th International
World Wide Web Conference, Budapest, May 2003.

[4] Apache Server Foundation. Apache HTTP Server Project.
http://www.apache.org.

[5] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves:
A mechanism for resource management in cluster-based net-
work servers. InProceedings of the ACM International Con-
ference on Measurement and Modeling of Computer Systems
(SIGMETRICS 2000), pages 90–101, Santa Clara, CA, June
2000.

[6] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scal-
able content-aware request distribution in cluster-basednet-
work servers. InProceedings of the 2000 USENIX Annual
Technical Conference, San Diego, CA, June 2000.

[7] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The
state of the art in locally distributed web-server system.ACM
Computing Surveys, 34(2), June 2002.

[8] E. Casalicchio and M. Colajanni. A client-aware dispatching
algorithm for Web clusters providing multiple services. In
Proceedings of the 10th International World Wide Web Con-
ference, pages 535–544, Hong Kong, May 2001.

[9] X. Chen and P. Mohapatra. Providing differentiated service
from an Internet server. InProceedings of the 8th IEEE In-
ternational Conference on Computer Communications and
Networks, pages 214–217, Boston, MA, Oct. 1999.

[10] A. Cohen, S. Rangarajan, and H. Slye. On the performance
of TCP splicing for URL-aware redirection. InProceedings
of the 2nd USENIX Symposium on Internet Technologies and
Systems, Boulder, CO, Oct. 1999.

[11] R. Engelschall. Load balancing your web site.Web Tech-
niques Magazine, 3, May 1998.

[12] kHTTPd: a kernel http daemon.http://www.fenrus.
demon.nl/.

[13] D. Mosberger and T. Jin. httperf - A tool for measuring web
server performance. InProceedings of Workshop on Internet
Server Performance, Madison, Wisconsin, 1998.

[14] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-aware request
distribution in cluster-based network servers. InProceed-
ings of the 8th ACM Conference on Architectural Support
for Programming Languages and Operating Systems, pages
205–216, San Jose, CA, Oct. 1998.

[15] J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias. Design
alternatives for scalable Web server accelerators. InPro-
ceedings of the 2000 IEEE International Symposium on Per-
formance Analysis of Systems and Software, pages 184–192,
Austin, TX, Apr. 2000.

[16] W. Tang, L. Cherkasova, L. Russell, and M. W. Mutka. Mod-
ular TCP handoff design in STREAMS-based TCP/IP im-
plementation. InProceedings of the 1st International Con-
ference on Networking, Lecture Notes in Computer Science
2049, pages 71–80, Colmar, France, July 2001.

[17] C. S. Yang and M. Y. Luo. Efficient support for content-
based routing in web server clusters. InProceedings of the
2nd USENIX Symposium on Internet Technologies and Sys-
tems, Boulder, CO, Oct. 1999.

[18] H. Zhu, H. Tang, and T. Yang. Demand-driven service differ-
entiation in cluster-based network servers. InProceedings of
the 20th IEEE International Conference on Computer Com-
munications (INFOCOM 2001), pages 679 –688, Anchor-
age, AK, Apr. 2001.


