
ORIGINAL ARTICLE

MIMOSA: context-aware adaptation for ubiquitous web access

Delfina Malandrino Æ Francesca Mazzoni Æ
Daniele Riboni Æ Claudio Bettini Æ
Michele Colajanni Æ Vittorio Scarano

Received: 26 October 2008 / Accepted: 9 March 2009 / Published online: 17 April 2009

� Springer-Verlag London Limited 2009

Abstract The ubiquitous computing scenario is charac-

terized by heterogeneity of devices used to access services,

and by frequent changes in the user’s context. Hence,

adaptation according to the user’s context and the used

devices is necessary to allow mobile users to efficiently

exploit Internet-based services. In this paper, we present a

distributed framework, named MIMOSA, that couples a

middleware for context-awareness with an intermediary-

based architecture for content adaptation. MIMOSA pro-

vides an effective and efficient solution for the adaptation

of Internet services on the basis of a comprehensive notion

of context, by means of techniques for aggregating context

data from distributed sources, deriving complex contextual

situations from raw sensor data, evaluating adaptation

policies, and solving possible conflicts. The middleware

allows programmers to modularly build complex adaptive

services starting from simple ones, and includes tools for

assisting the user in declaring her preferences, as well as

mechanisms for detecting incorrect system behaviors due

to a wrong choice of adaptation policies. The effectiveness

and efficiency of MIMOSA are shown through the devel-

opment of a prototype adaptive service, and by extensive

experimental evaluations.

Keywords Context-awareness � Adaptation �
Transcoding

1 Introduction

Until a few years ago, access to the Web was restricted to

users sitting in front of their desktop computer with a wired

Internet connection. However, the advent of handheld

devices and high-bandwidth wireless networks has radi-

cally changed the situation. In fact, nowadays users can

access the Web in virtually any context, using a myriad of

devices (such as PDAs, smartphones, pagers, and car

navigation systems) having different capabilities and input/

output modalities. As a consequence, users on the move

can now take advantage of Internet-based services for

getting information that are useful for accomplishing their

tasks, such as searching interesting locations, checking

travel timetables, and getting maps and directions. For this

reason, a hot research topic in the human–computer inter-

action area is the investigation of intelligent techniques for

tailoring the Web experience to the context of mobile users

(see, e.g., [2, 26, 30, 33, 44, 45]).

D. Malandrino (&) � V. Scarano

Dipartimento di Informatica ed Applicazioni ‘‘R.M. Capocelli’’,

Università di Salerno, 84084 Fisciano, Salerno, Italy

e-mail: delmal@dia.unisa.it

V. Scarano

e-mail: vitsca@dia.unisa.it

F. Mazzoni � M. Colajanni

Dipartimento di Ingegneria dell’Informazione, Università di

Modena e Reggio Emilia, 41100 Modena, Italy

e-mail: mazzoni.francesca@unimore.it

M. Colajanni

e-mail: colajanni@unimore.it

D. Riboni � C. Bettini

Dipartimento di Informatica e Comunicazione, Università degli

Studi di Milano, 20135 Milano, Italy

e-mail: riboni@dico.unimi.it

C. Bettini

e-mail: bettini@dico.unimi.it

123

Pers Ubiquit Comput (2010) 14:301–320

DOI 10.1007/s00779-009-0232-9

Unfortunately, this radical change in the Web usage has

not been appropriately supported by service providers. As a

matter of fact, even if in the last years several techniques

and delivery platforms have been proposed for supporting

tailoring of Web contents to different devices and usage

conditions (e.g., mobility), experience tells us that the vast

majority of Internet services does not support any form of

adaptation. Hence, being formatted for presentation in

wide, high resolution screens, most Internet services are

practically not accessible from small-screen handheld

devices. Moreover, their user interfaces—that are intended

to be accessed through a mouse—are not well suited for

devices having different input modalities, such as stylus,

softkeys, or directional pad. Performing Web content

adaptation on the client side can be unfeasible on many

resource-constrained handheld devices, and it is in general

costly in terms of network consumption; hence, a prag-

matical approach to this problem consists in the use of

intermediary adaptation components (called edge servers)

to transcode contents on the basis of the context. The idea

is, therefore, to implement and deploy any computing

transformation and adaptation algorithms at edge servers,

programmed to perform aggressive computation and stor-

age on behalf of clients. In particular, the context data that

must be considered for effectively adapting Internet ser-

vices to the user situation is wide and provided by different

distributed sources, and includes, among the others, device

capabilities, network characteristics, user current activity

and preferences, as well as information about possible user

disabilities.

Recently, several systems for Web content transcoding

(e.g., [9, 24, 35, 41, 42, 46]), as well as several architec-

tures for context-awareness (e.g., [10, 16, 20, 22, 29, 43])

have been proposed; however, an integrated solution for

Web adaptation based on a comprehensive notion of con-

text has not yet been devised. In particular, existing solu-

tions consider only a restricted set of context data

(typically, the capabilities of the used device), and lack

mechanisms for retrieving and dynamically deriving a

comprehensive set of context data. We claim that a wider

set of context data must be considered to effectively per-

form adaptation in ubiquitous computing scenarios; e.g.,

since handheld devices equipped with sensors such as

accelerometers are becoming more and more common

(e.g., Apple’s iPhone and OpenMoko’s Neo 1973), tech-

niques for deriving the user’s situation (e.g., activity) on

the basis of sensor data must be integrated into the adap-

tation process.

In this paper, we propose a novel framework, named

MIMOSA, that couples a middleware for context-aware-

ness [6] with an intermediary architecture for Web trans-

coding [11] in order to provide a comprehensive solution to

the addressed problem. The main contributions of our work

are:

• A framework for ubiquitous Web adaptation based on a

comprehensive notion of context;

• Tools for assisting the user in declaring her preferences,

as well as mechanisms for detecting incorrect system

behavior due to a wrong choice of adaptation policies;

• A working implementation of the proposed framework,

and extensive performance evaluations.

The rest of this paper is organized as follows. In Sect. 2,

we discuss related work. Section 3 presents an overview of

the MIMOSA framework. Section 4 describes the software

implementation. Section 5 presents the adopted mecha-

nisms for user support. Section 6 illustrates a prototype

context-aware service that takes advantage of MIMOSA.

Section 7 presents the experimental evaluation. Finally,

conclusions are drawn in Sect. 8.

2 Related work

The issue of adapting Web contents to the network context

and device capabilities has been extensively addressed in

the last years. Proposed solutions can be broadly classified

into three main categories: client-side, server-side, and

intermediary-based adaptation systems.

In the client-side approach, adaptation is demanded to

the client device itself; typically, adaptation is performed

by the Web browser. We believe that client-side adaptation

is not appropriate for network- and resource-constrained

devices, since (a) it does not determine a reduction in

network consumption, and (b) it burdens the client device

with computationally intensive tasks such as transcoding of

multimedia resources.

Server-based approaches essentially consist in adding

content adaptation services to traditional Web server

functionalities. Multimedia content transformation is typi-

cally generated off-line at content creation time, often

involving a human designer to hand-tailor the content for

the specific requirements of a few classes of devices (e.g.,

desktop computer, personal digital assistant, and phone).

The multiple variants of the same resource are stored on the

server, and selected at the time of the service request by

analyzing the HTTP request headers. Usually, the most

appropriate Web page markup is generated on-the-fly by

applying XSLT transformations to XML-based descrip-

tions of the page content and structure. As an example, the

personalization scheme of the IBM WebSphere Portal [24]

is based on the creation of Web pages and services using

XDIME, a proprietary XML-based device-independent

markup language. Depending on the specific device,

302 Pers Ubiquit Comput (2010) 14:301–320

123

XDIME contents are transformed by proper predefined

XSLT stylesheets into the most appropriate format (e.g.,

WML, XHTML Basic, etc.), evaluating policies that take

into account the capabilities of the particular device that

issued the request. The framework also includes a reposi-

tory of mobile device profiles describing the capabilities of

a broad range of terminals. Similar solutions are provided

by other well-known application servers like BEA Web-

logic and OracleAS Wireless. As an alternative, also on-

the-fly multimedia content adaptation and delivery has

been proposed [35].

Server-side adaptation systems offer an efficient solu-

tion to the addressed issue; however, the practical consid-

eration that—at the time of writing—the vast majority of

Web portals does not provide any form of adaptation

brought us to prefer the intermediary-based approach. As a

matter of fact, pure intermediary-based approaches do not

need any form of cooperation by the external Web servers,

since adaptation is performed by systems that lay between

the server and the client nodes.

Intermediary-based approaches to Web content adapta-

tion have been the focus of several research proposals.

Some systems (e.g., RabbIT [42], Muffin [9], WBI [3],

WebCleaner [53], Privoxy [41]) provide content adaptation

without considering any user/device profile, but only

allowing simple services configuration mechanisms. More

sophisticated architectures support location- and context-

aware adaptation of Internet services. An example of

middleware that supports location-aware applications for

mobile users is Nexus [15]. The user interface, running on

mobile devices, is used to interact with the Nexus platform,

which is composed by communication facilities (for

accessing information sources through wireless networks),

distributed data management (for multiple representation

of spatial data), and sensor elements (for system position-

ing). The focus of the Nexus platform is on location-aware

services, while MIMOSA addresses a wider set of context

data (including location). MIMOSA considers elements

such as the available bandwidth, battery level, and CPU

usage, to dynamically tailor Web contents to the capabili-

ties of the client devices, whereas only a subset of these

constraints is addressed by NEXUS. The user interface,

running on the mobile device, provides support to adapt

devices with different levels of computing power, memory,

and network connection, but at the same time, it exhibits all

drawbacks of the client-side approaches.

A software infrastructure aimed at simplifying the

development of self-adaptive applications is presented in

[21]. The proposed infrastructure provides high-level

abstractions for representing, reasoning with, and exploit-

ing context information and preferences for the adaptation

of services. Even if the underlying context model of this

infrastructure shares some common features with ours, the

approach to adaptation is different, since in MIMOSA

adaptation is performed by intermediary proxies.

The SCaLaDE [5] middleware (as well as its predeces-

sor CARMEN [4]) aims at supporting mobility-enabled

Internet services. SCaLaDE is able to dynamically adapt

contents in response to modifications concerning context

and location awareness, user preferences, and available

resources, without affecting the implementation of the

service application logic. To realize a separation between

the service management and the service application logic,

SCaLaDE exploits a policy-driven approach, by taking

decisions according to events triggered at the provision

time. Policies are expressed in the Ponder language [13],

which turns out to be a good choice for the class of policies

used in this middleware; on the other hand, the policy

language adopted by the MIMOSA CONTEXT-AWARENESS

FRAMEWORK is well suited for adaptation rules, since it is

extremely efficient and has mechanisms for solving con-

flicts (more details will be given in Sect. 3.1.2).

MASHA [46] is a middleware for adaptation of Web

sites driven by user and device profiles. In this system,

customization is based on content selection, performed on

the basis of users’ interests and device capabilities. Users’

interests are calculated by statistical analysis of Web

navigation logs. In our work, we use a similar technique for

detecting adaptation misbehaviors. In addition, MIMOSA

allows users to explicitly express policies regarding their

adaptation preferences, while in MASHA adaptation

directives are defined server-side. Another difference with

respect to our work is that MASHA requires Web sites to

cooperate in the customization process, since Web

resources must be semantically annotated in order to cal-

culate users’ interests and to perform content selection. On

the other hand, our adaptation approach does not require

any form of cooperation by external Web sites, making it

feasible for virtually any resource published on the Web.

The VESPER [37] architecture provides functionalities

to adapt contents according to network and client capa-

bilities, by also controlling the quality of the provided

services in the case of changes in network conditions. The

adaptation component realizes these tasks by analyzing

profiles describing personal preferences of users. While

VESPER only takes into account a restricted set of context

parameters, that is, device capabilities and network status

conditions, MIMOSA instead is able to address a wider set

of context data, as an example socio-cultural context data.

Finally, while both systems provide policies to dynamically

infer user preferences, only MIMOSA is able to provide a

mechanism for their conflict resolution.

MoCA [47] is an intermediary architecture whose main

goal is to provide collaborative applications in mobile

environments. The MoCA framework was designed for

supporting these applications with functionalities like

Pers Ubiquit Comput (2010) 14:301–320 303

123

caching management, transcoding, and data compression.

MoCA collects context data from client systems and net-

work infrastructure, in order to trigger appropriate adap-

tations. In particular, MoCA allows to develop and

customize proxies according to specific needs. This choice

simplifies the development of distributed and context-

aware applications that need reconfigurations according to

users’ needs and changing conditions in mobile environ-

ments. While MIMOSA is mainly addressed to the adap-

tation of existing Web contents, MoCA is mainly intended

to support collaborative applications in mobile networks.

Another difference with respect to our work is that MoCA

only takes into account a restricted set of context param-

eters (i.e, device capabilities, network status, and indoor

location). On the other hand, MIMOSA supports a much

wider set of context data including, among the others,

particular type of disabilities (e.g., color blindness, physi-

cal disabilities), geographic location, and current activities.

These data can be profitably exploited for providing a more

effective adaptation of Web resources to the users’ situa-

tion. Moreover, while in MoCA, the adaptation directives

are set by the application developer, MIMOSA allows

users to express their preferences regarding the adaptation

services by means of policies.

The MobiGATE framework, Mobile GATeway for the

Active deployment of Transport Entities [55], exploits the

use of intermediaries to facilitate the adaptation across

wireless and mobile environments. Its main goal is to

address the challenges related to the implementation and

the deployment of service entities, called streamlets, that

provide content adaptation functionalities and that can be

reconfigured according to changes in mobile environ-

ments. The MobiGATE framework exhibits a clear

distinction between computation and composition, by

envisioning an execution environment for scheduling

streamlets and a coordination environment for the inter-

action and the composition of streamlets. Each streamlet

encapsulates the application logic and is specialized for a

specific task, such as scaling/dithering of images in a

particular format, translation among different data for-

mats, and so on. The composition and coordination of the

streamlets is managed by using a coordination language

that provides rich constructs to support the definition of

compositions, with constrained type validation and

checking. Like MIMOSA, the main goal of the Mobi-

GATE framework is to provide an effective solution for

the adaptation of Internet services according to different

context conditions. In addition to the easy composition

and programming of adaptation services, MIMOSA also

provides a mechanism to retrieve a comprehensive

description of the user context and to derive the most

appropriate adaptation service according to the context

data and adaptation policies. Finally, MIMOSA provides

mechanisms for conflict resolution and for assisting users

in defining profiles and customizing services.

Finally, the adaptation to cope with the variability of

user devices is also addressed by the framework described

in [27]. This framework is composed by three main com-

ponents: the client tier, the context-aware service tier, and

the repository service tier. Front-end modules running on

clients are able to send to the servers context profiles to

inform them about their capabilities. The context-aware

service tier includes at least a CAAS server that supports

the migration of agent, execution of back-end modules, and

application adaptation (i.e., transcoding applications). To

adapt functions of applications to the context of user

devices, this framework uses CC/PP and UAProf, while in

the MIMOSA framework, we extended CC/PP vocabular-

ies for describing features like users’ personal information,

interests, locations, actions, surrounding environments.

They also developed an attribute-based component deci-

sion algorithm to choose the components suitable for the

context of the user’s devices. In MIMOSA, we have

defined policies to determine the value of profile attributes

on the basis of the values of other profile attributes. These

policies are expressed in terms of a logic programming

language. Finally, context data retrieved from these dis-

tributed profile managers are merged before policy evalu-

ation, and possible conflicts are solved before invoking the

requested services with the derived service parameters,

whereas neither conflicts nor consistency between CC/PP

profiles and back-end modules have been contemplated in

the described framework.

3 The MIMOSA framework

In this section, we describe MIMOSA, a distributed

framework whose main goal is to adapt Web contents to

the heterogeneity of networks and client devices as well as

to variation in users’ environments. Figure 1 shows the

MIMOSA architecture, its components and how data flow

through them for any user request. In order to provide the

system with the user’s identification and with the infor-

mation required to retrieve distributed context data and

policies, the client request is intercepted by a LOCAL PROXY

that runs on the user device and adds custom fields into the

HTTP headers. In Step 1, the request is forwarded to the

CONTEXT AWARENESS MODULE. Then, context data are

retrieved from distributed CONTEXT SOURCES by the DISTRIB-

UTED CONTEXT RETRIEVAL module, and aggregated by the

AGGREGATOR module (Step 2). These data, together with the

adaptation policies, are provided to the REASONER engine,

which is in charge of performing policy evaluation. The

resulting aggregated set of context data—which includes

the list of content adaptation services to be applied, as well

304 Pers Ubiquit Comput (2010) 14:301–320

123

as their parameters—is inserted into the HTTP headers.

Then, the request is sent to the ADAPTATION MODULE (Step 3),

which retrieves the requested resource from the external

Web sources (Step 4), and invokes the content adaptation

services according to the aggregated context data. Finally,

the adapted resource is sent back to the user’s device.

3.1 Context aggregation and reasoning

In order to retrieve a comprehensive description of the

context describing the user request, and to derive the most

appropriate adaptation service parameters on the basis of

context data and adaptation policies, MIMOSA takes

advantage of a customized version of the CARE [6] mid-

dleware for context awareness. In particular, context data

aggregation and reasoning (including conflict resolution) is

performed by means of logic programming techniques and

ontological reasoning. An exhaustive description of the

adopted technical solutions is outside the scope of this

paper, and can be found in [1] and [7]; however, in this

section, we recap the basic mechanisms of context aggre-

gation and reasoning.

3.1.1 Overview

Figure 2 shows an overview of the middleware for context

aggregation and reasoning. We call profile a subset of

context information collected and managed by a certain

entity. Profiles are managed by three entities, namely: the

user with her devices, the network operator with its

infrastructure, and the service provider. Each entity has a

dedicated profile manager (called UPM, OPM, and SPPM,

respectively) to handle its own context data. The mid-

dleware includes ontology services for managing and

reasoning with socio-cultural context data. Adaptation and

personalization parameters are determined, at the time of

the service request, by policy rules defined by both the

user and the service provider, and managed by their

respective profile managers. For instance, users can

declare policies that determine the activation of certain

adaptation services on the basis of context (e.g., ‘‘down-

grade image quality if the bandwidth is low’’). The CON-

TEXT PROVIDER module is in charge of calculating the

aggregated context information that will be used by the

application logic for the adaptation services. In particular,

it retrieves context data from the profile managers, and

evaluates adaptation policies solving possible conflicts

arising among context data and/or policies.

3.1.2 Representation of context data and policies

Essentially, context data are represented adopting the

CC/PP [28] specification, and can possibly contain refer-

ences to ontological classes and relations. However, for the

sake of this paper, we can consider profiles as sets of

attribute/value pairs. Each attribute semantics is defined in

a proper vocabulary, and its value can be either a single

value, or a set/sequence of single values.

Well-known CC/PP vocabularies such as UAProf [39]

provide attributes for describing device capabilities.

However, in order to support a very accurate adaptation of

Internet services with respect to the users’ situation, a

wider set of context attributes is needed. For this reason,

we have extended CC/PP by defining new vocabularies for

describing features such as users’ personal information,

interests, location, current action, surrounding environ-

ment. Moreover, we have defined new vocabularies for

representing the users’ preferences with respect to the

Fig. 1 The MIMOSA

architecture and the data flow

among its components

Pers Ubiquit Comput (2010) 14:301–320 305

123

activation parameters of each adaptation service provided

by MIMOSA. Figure 3 shows an excerpt of the vocabulary

for representing preferences regarding the ‘‘DeleteImage’’

service.

Policies are logical rules that determine the value of

profile attributes on the basis of the values of other profile

attributes. Hence, each policy rule can be interpreted as a

set of conditions on profile data that determine a new value

for a profile attribute when satisfied. Policies are expressed

by means of a restricted logic programming language for

which a linear-complexity inference engine exists. Exper-

imental results have shown that the evaluation of policy

rules is executed in few milliseconds [7].

Example 1 Consider the case of a FilterImg service for

image transcoding, which determines the type of adaptation

to apply on the basis of network conditions and available

Fig. 2 Middleware for context

aggregation and reasoning

Fig. 3 An excerpt of the CC/PP

vocabulary for representing

preferences regarding the

‘‘DeleteImage’’ service. Here,

we only show the vocabulary

entry for the ‘‘height’’ attribute

parameter, as the same coding is

required for the ‘‘width’’

parameter

306 Pers Ubiquit Comput (2010) 14:301–320

123

memory on the user’s device. These parameters are

determined by the evaluation of the following policy rules:

R1: ‘‘If AvBandwidth C 128 kbps And Bearer =

‘UMTS’

Then SetNetSpeed = ‘high’’’

R2: ‘‘If NetSpeed = ‘high’ And AvMem C 4 Mb

Then SetFilterImg:Downgrade = ‘off’’’

R3: ‘‘If NetSpeed = ‘high’ And AvMem \ 4 Mb

Then SetFilterImg:Downgrade = ‘20%’’’

R4: ‘‘If NetSpeed!=‘high’ Then SetFilterImg:

Downgrade=‘50%’’’

The value of the NetSpeed attribute is determined by

rule R1 on the basis of the current available bandwidth

(AvBandwidth) and Bearer. Rule R2 deactivates the image

quality downgrading service in the case the available

bandwidth is high and the device has a sufficient amount of

free memory. Rule R3 instructs the adaptation service to

slightly downgrade the image quality when the available

bandwidth is high but the device runs out of memory.

Finally, rule R4 is used to strongly downgrade image

quality when the network is congested.

We point out that the rules shown above are rather

naı̈ve, and used just for the sake of this example in order to

illustrate the basic system behavior.

3.1.3 Context aggregation, policy evaluation, and conflict

resolution

Once the CONTEXT PROVIDER has obtained profile data from

the other profile managers, at first this information is

passed to the MERGE module (Fig. 2), which is in charge

of merging profiles. Conflicts can arise when different

values are provided by different profile managers for the

same attribute. For example, suppose that the OPM pro-

vides for the AvBandwidth attribute a certain value x,

while the SPPM provides for the same attribute a different

value y, obtained through some probing technique. In

order to resolve this type of conflict, the CONTEXT PRO-

VIDER has to apply a resolution rule at the attribute level.

These rules (called profile resolution directives) are

expressed in the form of priorities among entities, which

associate to every attribute an ordered list of profile

managers. We recall that UPM, OPM, and SPPM are abbre-

viations for the user, network operator, and service pro-

vider profile managers, respectively.

Example 2 Consider the following profile resolution

directives, set by the provider of the transcoding service

cited in Example 1:

PRD1: setPriority AvBandwidth = (OPM, SPPM, UPM)

PRD2: setPriority FilterImg:Downgrade = (UPM,

SPPM)

In PRD1, the service provider gives highest priority to

the network operator for the AvBandwidth attribute, fol-

lowed by the service provider and by the user. The absence

of a profile manager in a directive (e.g., the absence of the

OPM in PRD2) states that values for that attribute provided

by that profile manager should never be used. The conflict

described above is resolved by applying PRD1. In this

case, the value x is chosen for the available bandwidth. The

value y would be chosen in case the OPM did not provide a

value for that attribute.

The semantics of priorities actually depends on the type

of the attribute. A more in-depth discussion of the merge

mechanism can be found in [7].

Once conflicts between attribute values provided by

different profile managers are resolved, the resulting

merged profile is used for evaluating policy rules. Since

policies can dynamically change the value of an attribute

that may have an explicit value in a profile, or that may be

changed by some other policies, they introduce non-trivial

conflicts. The intuitive strategy is to assign priorities to

rules having the same head predicate on the basis of its

profile resolution directive. Hence, rules declared by the

first entity in the profile resolution directive have higher

priority with respect to rules declared by the second entity,

and so on. When an entity declares more than one rule with

the same head predicate, priorities are applied considering

the explicit priorities given by that entity. Details on rule

conflict resolution can be found in [7].

Example 3 Consider the set of rules shown in Example 1

and profile resolution directives shown in Example 2.

Suppose that R2 and R3 are declared by the user, and R4 is

declared by the service provider. Since the user declared

two rules with the same attribute in the head, she has to

declare an explicit priority between R2 and R3. Suppose

the user gives higher priority to R2 with respect to R3.

Since the UPM has higher priority with respect to the SPPM,

according to the profile resolution directive regarding Fil-

terImg:Downgrade (i.e., PRD2 in Example 2), if p(R) is the

priority of rule R, we have that:

pðR2Þ[pðR3Þ[pðR4Þ

The intuitive evaluation strategy is to proceed, for each

attribute A, starting from the rule having the predicate A() in

its head with the highest priority, and continuing considering

rules on A() with decreasing priorities till one of them fires. If

none of them fires, the value of A is the one obtained by the

MERGE module on A, or null if such a value does not exist.

3.2 Provisioning of adaptation services

To provide adaptation services, MIMOSA exploits many

internal components (derived from the SISI framework

Pers Ubiquit Comput (2010) 14:301–320 307

123

[11]) to intercept user requests, fetch the origin Web

resources and apply contents adaptation, if required. These

components are part of the CONTENT ADAPTATION MODULE

within the MIMOSA framework.

The CONTENT ADAPTATION MODULE provides many already

implemented content adaptation services, that may be

classified in three main categories: accessibility services,

annoyance filtering services and personalized ubiquitous

computing services.

The first category includes services whose main goal is

to promote Web accessibility and improve the navigation

on the Web for users with disabilities. Examples include

services that add a toolbar containing the LINK attributes

on top of each HTML page, or a numeric Access Key to

any link in a Web page in such a way to make it accessible

through a simple combination of keyboard keys,

ALT?Access Key?Return, and finally services that mod-

ify the structure, by reorganizing links in a table, or the

presentation of a Web page, by modifying, for example,

text color and size, to make Web content more accessible

for users with visual disabilities (i.e low and color defi-

ciency vision).

The second category includes a set of services whose

main goal is to get rid of particularly annoying abuse

during the navigation on the Web. They provide func-

tionalities for removing advertisement, banners, JavaScript

code, for disabling unsolicited pop-up windows, and so on.

In addition, they also provide mechanisms for protecting

users by avoiding some other users to steal their identities

or malicious software to track and collect their personal

information.

The third category includes services that provide func-

tionalities for context-aware adaptation and personaliza-

tion. For example, it includes services for geo-localization

or services that are able to provide alternate contents for

Web resources before their delivery to end users (the goal

is to change the behavior of the origin Web server

according to the capabilities of the requesting devices

through the content selection mechanism) [14, 19]. Other

examples for matching both client capabilities and users’

preferences include functionalities for image color depth

reduction, resizing, quality downgrade, color to grey con-

version, colorblindness filtering [23] (to modify any color

in Web pages, by increasing contrast and lightness, in order

to make them accessible for users with such a disability).

Content adaptation services, developed through the Perl

programming language, are very simple to implement as

programmability represents one of the main strengths of

the CONTENT ADAPTATION MODULE. The CONTENT ADAPTATION

MODULE programming model, as intermediate level between

the underlying system and the provided functionalities, has

been designed to provide a transparent support for a quick

development and an easy deployment of new content

adaptation services. By exploiting the CONTENT ADAPTATION

MODULE programming model, based on APIs and internal

functions, programmers can focus on the design of the

functionality, and its application logic, without taking care

of any issue of the underlying infrastructure that will host

these services (i.e. scalability, profile management,

authentication, and so on).

The CONTENT ADAPTATION MODULE also provides a very

efficient mechanism to chain adaptation services so that

complex services can be easily obtained by chaining many

simple services. For instance, a translation service from

French to English might be chained to a service of image

quality reduction and resizing to match both network

available bandwidth and device capabilities besides user’s

preferences.

4 Software architecture

In this section, we present the software implementation of

MIMOSA, and the protocols adopted for the communica-

tions among its distributed modules.

4.1 Implementation

The overall software architecture of MIMOSA is shown in

Fig. 4. In the following, we illustrate the software imple-

mentation of the main modules of MIMOSA, outlining

their tasks and the relationships with other modules. We

also briefly motivate our choices of languages/frameworks

in MIMOSA in order to combine efficiency (MIMOSA

works on the HTTP request/response path and must not

impact on the user’s perceived latency) and extensibility

required by a dynamic environment composed by hetero-

geneous client devices, networks and services.

4.1.1 Client-side modules

The LOCAL PROXY on the client system is the application that

adds custom fields to the HTTP request headers, thus

providing the CONTEXT PROVIDER with the user’s identifica-

tion, and with the references of her user profile manager

and network operator profile manager. The modules exe-

cuted on the user device are developed using C# for the

.NET (Compact) Framework. A command-line proxy is

also available for Linux clients and it is a customized

version of the well-known Squid Web proxy [49].

4.1.2 Context-awareness module

With regard to the CONTEXT AWARENESS MODULE, we have

chosen Java as the preferred programming language;

however, the most computational intensive algorithms have

308 Pers Ubiquit Comput (2010) 14:301–320

123

been developed in C, and integrated into the corresponding

modules using Java Native Interface. The PROFILE MEDIATOR

PROXY (PMP) is a server-side Java proxy that is in charge of

intercepting the HTTP requests from the user’s device, and

of communicating the user’s profile (retrieved from the

CONTEXT PROVIDER) to the ADAPTATION MODULE. In order to

relieve the modules of MIMOSA from the burden of

parsing RDF documents, CC/PP profiles are represented by

means of Java classes. Similarly, adaptation policies are

serialized into Java objects according to specifically

defined classes.

Context data retrieved from the distributed profile

managers are merged before policy evaluation by a devoted

software module; since our conflict resolution algorithm is

not computationally intensive, the MERGE module has been

developed in Java. On the other hand, the evaluation of

policies expressed in a logic programming language can

pose serious performance issues. For this reason, we have

developed an ad-hoc INFERENCE ENGINE for our restricted

logic programming language, using the C programming

language. As illustrated in [7], policy evaluation with this

inference engine is particularly efficient—its complexity

being linear with the policy set size—and our ad hoc

engine outperforms an optimized reasoner for a logic

programming language having higher expressivity than

ours.

The profile managers are developed in Java; context data

and policies are stored by the profile managers into ad-hoc

repositories that make use of the MySQL DBMS [38].

4.1.3 Adaptation module

The ADAPTATION MODULE has been developed on top of

Apache Web Server (v. 2.0) [50] and mod_perl (v. 2.0)

[34]. This software architecture consists of different com-

ponents whose main goals are: intercept the HTTP requests

coming from the PMP, fetch the requested Web pages from

the external Web sources and apply transformations on

them according to the directives obtained by the CONTEXT

AWARENESS MODULE, forward this data to other internal

components or, if no other adaptation is required, forward

the adapted Web page back toward the client.

The main strengths of the ADAPTATION MODULE are

programmability, extensibility and efficiency, as new

functionalities can be easily programmed and deployed

without performance degradation since the robustness of

the Apache Web server.

In the Apache server programming environment, each

HTTP request is processed in sequential phases, and at

each phase different decisions can be taken about the

request. Therefore, in addition to its robustness and its

wide popularity, the Apache Web server was the best

solution for the implementation of the MIMOSA’s

ADAPTATION MODULE components also because of its

flexibility in taking decisions based on the current

request. These components, because of their Perl imple-

mentation, are integrated into Apache through the

mod_perl mechanism. mod_perl is an interface to the

Apache C API and its main goal is to ensure a quick and

CLIENT SYSTEMS PROFILE

MEDIATOR

PROXY

(Java)

ADAPTATION MODULE

CONTEXT PROVIDER

MERGE (Java)

OPM

TRIGGER
MONITOR

(Java)CONTEXT
DATA

SPPM

TRIGGER
MONITOR

(Java)CONTEXT
DATA

POLICY
REPOSITORY

ONTOLOGY REASONER
(Racer)

UPM

TRIGGER
MONITOR

(Java)CONTEXT
DATA

POLICY
REPOSITORY

ONTOLOGY REASONER
(Racer)

IE (C library)

TRIGGERS

ONTOLOGY REASONER (Racer)

PROFILE
REFERENCES

(HTTP)

N
E

T
W

O
R

K
 O

P
E

R
A

T
O

R

TRIGGERS
(socket)

PROFILE,
UPDATES
(socket)

USER DEVICE

LO
C

A
L

 P
R

O
X

Y
 (

C
#)

TRIGGER
MONITOR (C#)

UPM INTERFACE (C#)

TRIGGERS, PROFILE,
UPDATES (socket)

TRIGGERS,
PROFILE,
UPDATES
(socket)

TRIGGERS, PROFILE,
UPDATES (socket)

TRIGGERS
(socket)

UPDATES
(ws)

UPDATES
(ws, socket)

SPPM INTERFACE (Java)

ONTOLOGIES (OWL)

Apache 2.0/mod_perl

Apache
internal
Modules

(C)

Apache Phases

Trans
Handler
Phase

Response
Handler
Phase

ProxyPerl
(Perl)

FilterPlugin
(Perl)

Content
adapt. filters

(Perl)

Perl Lib.

LWP
Library

Image
Magick
Library

Fig. 4 The software

architecture of MIMOSA

Pers Ubiquit Comput (2010) 14:301–320 309

123

easy implementation of Web applications. Since with

mod_perl all phases of the Apache Request lifecycle can

be accessed and controlled, we implemented the ADAP-

TATION MODULE components as mod_perl ‘‘handlers’’, that,

on the other hand, are able to provide hooks responsible

for the processing of the specified phase.

From an architectural point of view, the ADAPTATION

MODULE consists of two main categories of components,

that we denote as: (a) core modules, that provide the

internal functions for accepting HTTP requests, fetching

Web contents, manipulating incoming and/or outgoing

HTTP headers, forwarding the response to the client, and

(b) service modules that is, a set of filters that encapsulate

the adaptation application logic. In particular, the ADAP-

TATION MODULE consists of two core components, namely

the ProxyPerl and the FilterPlugin components, and a set

of provided filters (that belong to the service modules

category). These components, their characteristics and their

main functionalities are described below.

ProxyPerl component. The ProxyPerl component, regis-

tered in thePerlTransHandler phase, intercepts requests

coming from the CONTEXT AWARENESS MODULE, and by

using Perl libraries (i.e., LWP User Agent) and internal

APIs, fetches the requested Web page from the origin

server and forward it to the next handler whose hook has

been registered in the Apache Request lifecycle. By

registering the ProxyPerl component in this early phase

of the HTTP Request Apache lifecycle (before the

request has been associated with a particular file name),

we are able to ensure that it will be invoked for any user

request, and that it will be able to apply specific actions

about URIs (i.e., blocking URIs redirect to third party

servers) or specific transformation on the HTTP incom-

ing/outgoing headers (i.e., removing cookies in the

HTTP responses coming from third party servers).

FilterPlugin component. The FilterPlugincomponent is

registered in thePerlOutputFilterHandler phase and its

main goal is to check which handlers have to be invoked

during a transaction. Since different content adaptation

filters are available and preloaded in the main memory

(by specifying thePerlModule directive in the main

Apache configuration file) and can be customized

according to user preferences, the FilterPlugincompo-

nent has to activate only the right filter (or sequence of

filters) selected according to context information and

user preferences.

Adaptation Filter components. This category includes all

functionalities to implement content adaptation service

modules. Filters are implemented via handlers in

thePerlResponseHandler phase. In addition to the

provided MIMOSA service modules (whose categoriza-

tion is described in Subsect. 3.2), new services can be

easily developed and deployed due to the programma-

bility and the extensibility of the ADAPTATION MODULE.

The ADAPTATION MODULE exhibits a flexible and exten-

sible environment in which a compositional Perl-based

framework is used to provide the basic components to

develop new content adaptation services. By providing a

specific programming model and a set of internal APIs and

software libraries, new service modules can be quickly

prototyped and coded. This programming environment

include:

• APIs for processing HTTP requests/responses. The

LWP::UserAgent [12] is a class implementing a World-

Wide Web user agent in Perl. The ProxyPerl compo-

nent uses this library to fetch the requested Web pages

from the origin servers by also allowing specific

configurations (i.e.,timeouts ,user agent, user creden-

tials, and so on). It also offers APIs for manipulating

HTTP requests/responses headers.

• APIs for image transformations. The ADAPTATION

MODULE implements several service modules for image

transformation by using PerlMagick [40], an object-

oriented Perl interface to ImageMagick [25]. We

implemented service modules for image resizing and

quality downgrade to match device display capabilities,

and for color transformations, to match preferences for

users with visual disabilities. In particular, the Color-

Blind filter, implements algorithm that modifies back-

ground and foreground colors in HTML pages and

recolors embedded images (also animated GIF images),

in order to make more recognizable the red/green

contrast for dichromatic users [23].

• APIs for HTML parsing. For a quick and effective

stream-oriented filtering of HTML, we implemented a

Perl-based parsing library. We implemented general

methods for searching links, images, scripts in a Web

page, by allowing both extraction and transformation

functionalities. The extraction allows us to take very

useful information from an HTML document with

minimal programmer efforts: text extraction, link

extraction, checking, and so on, while the transforma-

tion task includes URL rewriting, HTML cleanup, and

removal functionalities.

• APIs for service modules programming. We imple-

mented a set of APIs for implementing functionalities

starting from simple building blocks, developed in Perl

language. These building blocks, that derive from

implemented superclasses, are packaged into services

and produce transformations on the information stream

as it flows through them.

The implementation of a new filter requires three basic

steps: (a) writing the filter (i.e, its application logic) in Perl

310 Pers Ubiquit Comput (2010) 14:301–320

123

language, (b) adding the definition of the new handler in

the FilterPlugin component to dynamically allow its

invocation, and finally (c) writing the filter configuration

files (to configure the filter, it is necessary to write simple

HTML and XML files, see Fig. 5). After that, the new filter

is added to the Apache pool of handlers and can be invoked

on a transaction according to the directives derived by the

CONTEXT AWARENESS MODULE.

4.2 Communication protocol

Since efficiency is a fundamental requirement of the

MIMOSA framework, we have adopted efficient protocols

for the communication between those modules that need to

exchange messages at the time of the service request. On

the other hand, we have preferred Web Services for non

time-critical communications, such as updates of context

data that are executed in advance to the service requests.

In order to allow the evaluation of adaptation policies,

the client system is in charge of providing to MIMOSA

those information that are necessary for obtaining an

exhaustive description of the current context. Since in a

mobile computing scenario, the client system can possibly

be connected to a wireless network, our choice has been to

minimize the communication between the client system

and MIMOSA. For this reason, the client system only

communicates to MIMOSA those data that allow

MIMOSA to obtain context data and adaptation policies

from the distributed profile managers (that are expected to

be hosted on wired nodes). That data are inserted as custom

fields into the HTTP request headers, as shown below:

The \upm_IP[and \upm_port[correspond to the IP

address and port of the user profile manager interface that

provides those context information that is managed by the

user and her devices. Similarly, the \opm_IP[and

\opm_port[identify the interface provided by the net-

work operator profile manager.

Once received this message, the PMP checks if a session

for that user is present. If this is the case and if the

session is still valid, the PMP retrieves the context data

that it has stored locally, and forwards the request to the

ADAPTATION MODULE after having added context data into

custom HTTP headers. HTTP request headers have the

following form:

The custom header fields correspond to context data,

that in our framework are represented in the CC/PP lan-

guage. In the above notation, voc1 refers to the vocabulary

the component belongs to; comp1 is the ID of the com-

ponent containing the attribute; voc2 refers to the vocab-

ulary the attribute belongs to; and attr2 is the ID of the

context attribute. Context values are enclosed into double

quotes, and are separated by semicolons if the attribute

value is a set or sequence of values. Context data and their

corresponding values are then parsed by the ADAPTATION

MODULE, and used for customizing the service.

Instead, in the case the user session is not present or has

expired, the PMP is in charge of requesting the context data

to the CONTEXT PROVIDER module. Hence, the PMP uses a

socket-based communication for requesting context data to

the CONTEXT PROVIDER, specifying the user ID and the ref-

erences to her network operator profile manager and user

profile manager. As explained before, context data are

represented as objects belonging to classes that encode CC/

PP profiles; context data are exchanged among the dis-

tributed modules by means of the socket-based binary

serialization of Java objects. This protocol is more efficient

than Java Remote Method Invocation and Web services.

Similarly, the communication between the CONTEXT

PROVIDER and the profile managers is based on the socket-

based binary serialization of Java objects. In addition to

context data, the profile managers also communicate the

Fig. 5 An excerpt of the XML

file representing information

about the ‘‘FilterImg’’ service

module provided by MIMOSA

Pers Ubiquit Comput (2010) 14:301–320 311

123

adaptation policies to the CONTEXT PROVIDER. Since profile

updates are generally executed asynchronously with

respect to the service request, efficiency is not an issue;

hence, the profile managers adopt Web services for

allowing their corresponding entities to keep up-to-date

context data and policies.

5 Support for user-centric adaptation

User-friendliness is of paramount importance for services

that adapt their behavior on the basis of users’ needs and

expectations. As a matter of fact, inexperienced users can

be frustrated when the system behaves unexpectedly,

apparently contradicting their preferences. Hence, our

system provides various tools for assisting the user in:

• declaring their preferences,

• detecting inappropriate adaptation behaviors, and

• suggesting new preferences (in the form of policy rules)

for adapting the service according to the user context.

5.1 Basic mechanism

As anticipated in Sect. 3.1.3, the adaptation parameters are

determined at the time of the user request by evaluating

user and service provider policies against the current con-

text data.

Since the user and the service provider can possibly

declare conflicting rules (i.e., rules that determine different

adaptation parameters based on the same context), a con-

flict resolution strategy is needed. In order to minimize the

user intervention in the customization of the adaptation

services, our choice is to give the highest priority to the

rules declared by the user, who can override default rules

declared by the service provider. In this way, the user of the

system is provided with a default set of policy rules that are

declared by domain experts for effectively adapting Inter-

net services on the basis of context data such as network

connectivity, device capabilities, device status (e.g.,

quantity of free memory, installed applications), and data

about the service itself. Then, the user can start to use the

adaptation services without the need of specifying her

preferences; when she realizes that the service adaptation

does not fit her preferences in a particular case, she can

change the system behavior by declaring a new policy rule.

5.2 Supporting user policy specification

Of course, policies expressed by means of the formal lan-

guage shown in Example 1 (Sect. 3.1.2) are not intuitive

for the final users of the system. For this reason, users are

provided with a wizard and Web interfaces to manage their

preferences regarding the activation and parameters of

content adaptation services.

The wizard assists the user step-by-step in the declara-

tion of new preferences. The wizard allows the user to

declare policies that control the activation and parameters

of eight adaptation services, on the basis of various context

data (e.g., connection type, available memory, battery

level). The wizard is a C# application for the .Net frame-

work [32], and communicates via Web Services to the user

profile manager for updating the set of policy rules (for

instance, the Main menu displayed by the wizard, is shown

in Fig. 6a).

Example 4 Suppose that a user is browsing through a

PDA, and wants to set her preferences regarding the

adaptation services. When she launches the wizard, the

main menu is shown, which allows the user to select

the type of feature she wants to adapt (Fig. 6a).

If the user chooses to set her preferences regarding the

adaptation of images and colors, a form is shown, which

allows her to activate dithering, color transformation for

colorblind people, and to resize huge images (Fig. 6b).

Suppose that the user activates the colorblind service, and

chooses to resize huge images (i.e., images that exceed the

screen size) to 75% of her device screen size. Hence, the

wizard automatically generates the following policy rules:

R5: ‘‘SetFilterImg:ColorBlind = ‘on’’’

R6: ‘‘If DeviceType=‘PDA’ Then SetFilterImg:

Resize = ‘180x240’’’

Fig. 6 Wizard for supporting specification of user policies

312 Pers Ubiquit Comput (2010) 14:301–320

123

Note that the value of the FilterImg:Resize parameter in

rule R6 is automatically customized by the agent on the

basis of the actual screen size of the device she is currently

using.

On the next step, the wizard allows the user to declare

her preferences for reducing bandwidth consumption in the

case the navigation is slow. The user has the options to

whether reduce image quality (to medium, low, or very

low), reduce images to icons, or completely remove them.

Suppose that the user chooses to reduce image quality to

very low in the case of slow navigation; hence, the agent

generates the following policy rules:

R7: ‘‘If NetSpeed=‘slow’ Then SetFilterImg:

Downgrade = ‘30%’’’

R8: ‘‘If NetSpeed = ‘slow’ Then SetFilterImg:

Monochrome = ‘yes’’’

Rule R7 states to apply a 30% image quality down-

grading when the navigation is slow, and rule R8 states to

transform images to black and white on the same condition.

Once the user has specified her preferences, the agent

updates the user policies on her remote profile manager.

In the case the device cannot run the .Net framework,

policies can be managed by means of Web interfaces, like

the one shown in [18].

5.3 Detecting inappropriate adaptation behaviors

Even if the system is provided with a default set of adap-

tation policies chosen by domain experts, and users can

define new rules for specifying their particular preferences,

in some cases the system can misbehave due to a choice of

policy rules that is inappropriate for a particular context.

For instance, a policy rule declared by a user can determine

the request of high resolution media even if the available

bandwidth is low. When such an event happens, in most

cases the inexperienced user is unable to recognize the

reason of the system misbehavior, and simply draws the

conclusion that the adaptation system ‘‘does not work’’.

In order to automatically recognize system misbehav-

iors, the user is provided with an agent running on her

devices, which monitors the client resources (e.g., available

memory, battery level) and the Web navigation logs. These

data are statistically analyzed at run time in order to detect

problems, such as memory overload, and long response

times due to low bandwidth. In such a case, the agent

queries the CONTEXT PROVIDER in order to collect the policies

that drove adaptation. On the basis of this data, the agent

can recognize the actual policy rule that determined the

incorrect behavior, in order to assist the user in correcting

the problem through a wizard.

The agent architecture is shown in Fig. 7. The agent

performs a statistical analysis of data provided by the local

proxy (i.e., the navigation logs, that provide information

regarding the time taken to download Web pages), and by

the device itself, such as the memory available at run-time,

the remaining battery lifetime, and the CPU usage. Critical

events are detected by proper algorithms that are periodi-

cally executed. The algorithms are in charge of detecting

events such as slow navigation, device out of memory, and

CPU overload. As an example, the algorithm for detecting

slow navigation evaluates the navigation logs of the last ten

Web pages downloaded by the browser, and draws the

conclusion that the navigation is slow in the case the

average download time per page is higher than one minute,

and more than 70% of Web pages have requested more

than 1 min to be downloaded.

When a critical event is detected, the event is commu-

nicated to the agent module that is in charge of recognizing

the policy rule that determined the system misbehavior.

This module is capable of mapping events to the content

adaptation services S that may have caused it. For instance,

slow navigation can be determined by the deactivation of

those services that reduce image quality (or completely

remove them) in the case of slow bandwidth. Hence, the

agent queries the CONTEXT PROVIDER in order to retrieve the

set of rules that determined the parameters of the S service;

analyzing the fired rules, the agent can recognize the rule

that determined the deactivation of the service. Once the

rule is recognized, the agent automatically launches a

wizard that assists the user in the correction of the problem.

5.4 Assisting the user to correct the system behavior

Once the rule that determined the problem is recognized,

the user is provided with a wizard to correct the adaptation

behavior. Since the majority of Web users does not have a

clear knowledge of the internal behavior of their client

Fig. 7 Device agent for detection of inappropriate adaptation

behavior

Pers Ubiquit Comput (2010) 14:301–320 313

123

systems, as well as of the Web infrastructure, it is impor-

tant to motivate the reasons that caused the problem (e.g.,

by explaining that it is not possible to view high resolution

videos when connected through a WAP phone), and to

suggest a possible solution.

Example 5 Suppose that a given user declared (through

the Web interface) a policy rule for requesting high quality

media when she is connected through a smartphone,

independently by any other condition (e.g., available

bandwidth and memory). When connected through a GPRS

connection to a Web portal rich of multimedia content such

as images and sound, the response times become very long.

Analyzing the Web navigation logs, the agent recognizes

the problem, and prompts the user asking whether she is

satisfied with her current experience, or wants to start a

wizard for changing the adaptation behavior (see Fig. 8a;

note that the user can also disable prompting by the agent

in the case she finds it annoying). If the user chooses to

start the wizard, she is provided with a brief description of

the problem, and the agent suggests to modify the rule, in

order to restore the default adaptation behavior determined

by the service provider policies (Fig. 8b).

In the case the user decides to cancel the rule, the wizard

updates the user’s rule set on her profile manager through a

Web service invocation.

6 The GEOAWARE prototype service

The interest for geolocalized services provided on the

Internet is witnessed by the proliferation of applications for

route planning, points of interests, and maps (e.g., [8]). For

instance, the smartphone version of the Google Maps [17]

service provides mobile users with facilities for calculating

routes, visualizing maps, and looking for points of interest.

Even though these applications provide an effective sup-

port to mobile users, they are somehow limited by the lack

of an underlying framework for context awareness. As a

matter of fact, mobility emphasizes the need of context

analysis in order to adapt the service to network conditions,

device capabilities, availability of resources. In particular,

location-awareness in the above-mentioned applications is

rather primitive, since generally the user is asked to man-

ually specify the service parameter (e.g., her location).

In order to evaluate the effectiveness of MIMOSA in the

provisioning of location- and context-aware applications,

we have implemented a prototype service named Geo-

Aware. This service is addressed to mobile users equipped

with a mobile device and a GPS receiver. The main goal of

this service is to provide a map with information about both

the current location of the user and the locations (expressed

as physical addresses) appearing on the Web page she is

currently viewing.

We now describe the main steps performed by the

GeoAware service. At first, MIMOSA context awareness

module retrieves the GPS coordinates of the user from her

profile manager, and communicates them to the content

adaptation module by inserting a proper header in the client

request. The GeoAware service parses the requested Web

page and, by applying regular expressions-based analysis,

matches all standard U.S. addresses [52]. When an address

is recognized, GeoAware adds a hyperlink on the Web

page, highlighted by a particular icon (see Fig. 9a) to let

the user know that she can view the respective map.

When the user selects one of the hyperlink icons, Geo-

Aware invokes the geocoder.us service [31] to obtain the

coordinates of the respective address. Geocoder.us is a

public service providing free geocoding of addresses in the

United States, and relies on Geo::Coder::US [48], an open-

source Perl module available from CPAN.

After having obtained the address coordinates, Geo-

Aware builds a query string and issues it to the U.S. Census

Bureau TIGER Map Server [51], which provides public-

Fig. 8 Wizard for assisting the user in the correction of the system

behavior

Fig. 9 The GeoAware service

314 Pers Ubiquit Comput (2010) 14:301–320

123

domain, customized U.S. maps. Figure 9 b shows the map

obtained from the address in Fig. 9a. We represent the

current user position with a blue star with a label YOU ARE

HERE, while the position corresponding to the clicked

address is represented by a red star labeled with the address

itself. Exploiting the other adaptation services (e.g. an

image resizing service), the map is properly tailored to

device capabilities and available bandwidth.

As a final remark, we point out that we did not evaluate

the user response times of the GeoAware service, since it

involves the activation of services that are deployed by

remote servers. This could bring to possibly unreproducible

results because of both the response times of the remote

servers and the load status of the network between those

servers and the MIMOSA framework.

7 Performance evaluation

In order to evaluate the efficiency and effectiveness of our

system in speeding-up Web surfing through mobile devi-

ces, in this section, we present experimental results about a

comparison between user response times with or without

the usage of the MIMOSA framework.

7.1 Workload model and testbed

We set up a testbed platform consisting of four nodes of a

cluster (Fig. 10). Each node is equipped with a hyper-

threaded Intel Xeon at 2.4 GHz and 1 GB RAM, running

Debian GNU Linux with kernel 2.6.13. We should mention

that MIMOSA does not require special hardware because it

may run on off-the-shelves PCs. Hardware requirements

only depend on the number of concurrent users we aim to

serve and on the kind of content adaptation services that

have to be carried out.

To create the working set, we collected about a hundred

of Web pages in a random way from Yahoo directories [54]

and saved them locally on a node that, through the Apache

[50] software, acts as the origin Web server. All the nodes

are connected through a switched fast Ethernet LAN to

avoid possible not predictable network effects and we

consider it as the fairest way to test the MIMOSA frame-

work for content adaptation.

Requests are referred to a mix of content types con-

sisting of images (85%), HTML documents (8%), others

(7%). HTML resources typically contain embedded objects

such as images (GIFs, JPEGs and PNGs), cascading style

sheets, Flash animations and Javascript codes. A Web page

contains an average of 13 embedded objects, and the

average dimension of the whole Web page (HTML base

code plus embedded objects) is about 104 kb.

The client node runs httperf [36], a tool to generate

various HTTP workload models. We created a trace that

contains the requests for all of the HTML pages and the

respective embedded objects. The trace is replayed many

times changing the context information that is sent to the

MIMOSA framework, so that each test implies the appli-

cation of different content adaptation services, e.g. image

resizing, downgrading or removal. The client connects to a

node that runs, beyond the others, the context awareness

module of MIMOSA (step 1 in Fig. 10). A third node runs

the content adaptation module of MIMOSA, that,

depending on the forwarded context information (step 2),

fetches the origin resource from the Apache Web server

(Steps 3–4) and then applies the right content adaptation

services (Step 5). We chose to separate the content adap-

tation module from the others because of performance

reasons. The context awareness and content adaptation

nodes together constitute the MIMOSA framework. This is

what the client actually perceives of the system; that is, the

client does not realize the system is split over two nodes,

and receives the reply from the node it contacted when

issuing the request (Step 6).

7.2 Test scenarios

We emulate three test scenarios, corresponding to different

network bandwidths between the client and the rest of the

network: a high transfer rate (corresponding to a realistic

bandwidth for the UMTS technology), a medium transfer

rate (corresponding to the EDGE technology), and a low

transfer rate scenario (corresponding to the European

GPRS technology), respectively. Our goal is to perform

experiments in realistic scenarios, and these are common

ranges of bandwidth in available networks for nowadays

mobile browsing. For each scenario, we test the page

response times for both the origin Web server and the

MIMOSA framework, i.e., the time necessary to com-

pletely download each Web page and all of its embedded

objects.

In each scenario, we properly update the context infor-

mation so that MIMOSA can counterbalance the increasing

Client Origin
Web server

1

4
Context

awareness
module

Content
adaptation

module

MIMOSA

2

3
6

5

Fig. 10 The experimental testbed

Pers Ubiquit Comput (2010) 14:301–320 315

123

slowness of the link with content adaptation services that

reduce more and more the size of the requested resources.

7.2.1 High transfer rate scenario

In the first scenario, we set up the available bandwidth

between the client node and the rest of the network (called

client available bandwidth in the following of this section)

to 384 Kb/s. In this case, MIMOSA only resizes the

dimensions of images to fit the screen of the user’s mobile

device. We suppose to have an available screen size of

150 9 150 pixels. As we previously said, the average size

of a Web page with the respective embedded objects is

about 104 kb. With the resize service, MIMOSA reduces

this size to about 70 KB that is, a reduction of about

67.31%. Figure 11 shows the cumulative probability of the

page response time when directly contacting the origin

Web server (No adaptation) or when connecting through

the MIMOSA framework (Resize images). We can see that

MIMOSA obtains better response times than the origin

Web server, and if we focus on the 90 percentile (Table 1),

we have 4.58 s for the origin Web server vs. 3.98 s for

MIMOSA, i.e., MIMOSA is more than 13% faster than

the origin Web server. We would like to emphasize that

MIMOSA gain over Apache for what concerns the page

response time is not as good as the size reduction gain,

because in the page response time there are many factors

that contribute to the whole, such as the origin resource

fetching time, the adaptation time, the client download

time, and so on, as it will be clearly explained in Sect. 7.4.

7.2.2 Medium transfer rate scenario

In the second scenario, we set a client available bandwidth

of 216 Kb/s. The MIMOSA framework, besides re-sizing

the dimensions of images to fit the screen of the user’s

mobile device, also applies a downgrading of the image

quality of 20%. In this way, the total size of downloaded

resources is further decreased to an average value of about

56 KB. This implies a further size reduction of 13.5% with

respect to the previous scenario, and this allows MIMOSA

(Resize & Downgrade images) to obtain better response

times than those of the origin Web server (No adaptation),

as shown in (Fig. 12). We should also notice that we have

another slight gain with respect to the previous scenario. In

fact, focusing on the 90 percentile of the page response

time (Table 1), the origin Web server has a 7.07 s response

time vs. a 6.05 s time for MIMOSA. MIMOSA outper-

forms the origin Web server of more than 14.4%.

7.2.3 Low transfer rate scenario

In the last scenario, the client available bandwidth is

56 Kb/s. In this case MIMOSA, in order to counterbalance

effects of this very slow connection, removes all the ima-

ges from each Web page. Each image is replaced by a link

and a description (taken from theALT attribute of theIMG

HTML tag), so that the user is still able to download some

images—if she wants to—by clicking the respective link.

The average size of a page in this case is about 20 KB,

which corresponds to a reduction of about 80.77% with

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

page response time [s]

high transfer rate

No adaptation
Resize images

Fig. 11 Page response times for the first scenario

Table 1 Page response times (s) for the three scenarios

Server/scenario Min Avg 90% Max

Apache/high transfer rate 0.27 2.52 4.58 17.81

MIMOSA/high transfer rate 0.20 2.32 3.98 12.09

Apache/medium transfer rate 0.36 4.11 7.07 21.41

MIMOSA/medium transfer rate 0.19 3.24 6.05 20.34

Apache/low transfer rate 1.40 15.81 27.19 82.25

MIMOSA/low transfer rate 0.47 3.14 6.20 23.13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

page response time [s]

medium transfer rate

No adaptation
Resize & Downgrade images

Fig. 12 Page response times for the second scenario

316 Pers Ubiquit Comput (2010) 14:301–320

123

respect to the origin Web server. As shown in Fig. 13,

MIMOSA (Delete images) obtains also in this case better

response times than the origin Web server (No adaptation)

and if we consider the 90 percentile of the user response

time (Table 1), the origin Web server has a 27.19 s

response time vs a 6.20 s time for MIMOSA. In this last

scenario, MIMOSA greatly outperforms the origin Web

server with a gain of more than 77%. This happens because

MIMOSA realizes that the available bandwidth is very

narrow and drastically reduces the traffic sent on the link;

hence, it is able to limit the network load, while the origin

Web server is not.

7.3 Summary of the performance evaluation

From the results presented in this section and from Table 1,

we have that MIMOSA, for the considered scenarios,

always has better response times than the origin Web ser-

ver (both average values and 90 percentiles, which are a

better measure unit in case of having to deal with quality of

service and having to guarantee some Service Level

Agreements). The narrower the available bandwidth is, the

bigger the MIMOSA gain is. For easiness of explanation,

we considered three scenarios in which the available

bandwidth is fixed, but MIMOSA is able to react to envi-

ronment changes in a timely way that is, it can take deci-

sions on the fly depending on context information, while

the origin Web server cannot. For instance, MIMOSA

senses the available bandwidth between itself and the client

devices and applies on the fly the most suited content

adaptation service by taking advantage of its context

knowledge. We consider these results satisfactory, espe-

cially bearing in mind that if the client connects to the

Internet through a proxy server (MIMOSA in this case),

the number of hops is increased of at least two (one for the

request and one for the reply). We have shown that

MIMOSA is able to counterbalance the delay related to

these additional hops by applying the best suited content

adaptation service, that brings MIMOSA response times

always shorter than that of the origin Web server. We

should also bear in mind that the application of transcoding

services is not a zero-time process. On the other hand, it is

quite time consuming, but the gain because of the much

smaller resources sent over a possibly congested link

overcomes this critical aspect. Clearly, if we do not have

strict bandwidth limitation (e.g. we consider a LAN con-

nection), MIMOSA effectiveness is reduced (the time spent

for the application of services becomes comparable or even

greater than that spent to download the resource) and

MIMOSA response time may also be the same or bigger

than those of the origin Web server. However, by now,

mobile connections are affected by strict bandwidth limi-

tations, so we think that MIMOSA can be a valuable aid

when surfing the Web with a mobile device.

7.4 Decomposition of the response time

In this section, we try to give a better insight of the

response time that is, we want to decompose it in its main

parts, to better understand how they contribute to the whole

and how they change depending on the scenario. To this

aim, we configured Apache to log the time taken to serve

the request that is, the time from when the request was

received to the time the response headers are sent on the

wire. (%D option in the LogFormat directive). Then we

configured MIMOSA to log various timestamps for each

request, in order to get the decomposition of the response

time in its components such as resource fetching time,

adaptation time, client download time and so on.

For what concerns Apache response time, we point out

two main contributions:

TTOT ¼ TServ þ TCli-Down

where TTOT represents the whole response time, while TServ

and TCli-Down represent the time necessary to serve the

request (i.e. to accept the request and generate the origin

contents) and to download the resource over the Internet

link that connects the client device to the origin Web ser-

ver, respectively.

From our experiments (that involved static contents) we

may notice two interesting aspects:

• TServ is negligible with respect to TDown. In all scenarios

we have a TServ in the order of magnitude of millisec-

onds, while the whole response time has an order of

magnitude of seconds. From our experiments, TServ

represents from 0.2 to 2% of the whole response time.

• TServ depends on the client available bandwidth and is

not constant for a given resource, even though it varies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

page response time [s]

low transfer rate

No adaptation
Delete images

Fig. 13 Page response times for the third scenario

Pers Ubiquit Comput (2010) 14:301–320 317

123

very slightly. This happens because it includes the time

necessary to receive the request from the client and the

time to generate the contents (in our case of static

content, to retrieve it from the storage device). Provided

that the request always consists of the same amount of

bytes for a given resource, the component that changes

is the time spent over the Internet link for the request to

completely reach the origin Web server from the client

device.

Now, we outline some characteristics of the

MIMOSA response time. In this case, we point out more

contributions:

TTOT ¼ TInternal þ TContext þ TFetch þ TAdaptation þ TCli-Down

where TTOT represents the whole response time, while the

other components represent respectively:

• TInternal is the time necessary to receive the request, to

parse it and to allow the communication among the

various modules that constitute the MIMOSA

framework.

• TContext is the time necessary to calculate, depending on

the context information and users preferences, what are

the adaptation services that have to be activated for a

given resource.

• TFetch is the time spent for fetching the unadapted

resource from the origin Web server.

• TAdaptation is the time spent for adapting the

resource according to the user’s preferences and

context data.

• TCli-Down stands for Client Download time and repre-

sents the time the client device spends to completely

download the adapted resource from the MIMOSA

framework.

Figure 14 shows the main components of the response

time for the MIMOSA framework, that is TInternal, TContext,

TFetch and TAdaptation, while TCli-Down is shown in Fig. 15 for

both Apache and MIMOSA.

Let us draw some considerations on those times.

As you can see from Fig. 14, TInternal is about 129 ms for

the low transfer rate scenario, while it is about 530 ms for

both the medium and high transfer rate scenarios. We recall

that this time includes the file transfer among the various

MIMOSA modules, thus we can explain in a very simple

way why it is lower for the low transfer rate scenario, while

it is almost the same for the other two scenarios. In the low

transfer rate scenario, MIMOSA deletes the references to

all the images from the HTML Web pages, so the average

page size is greatly reduced in this case, while it is the same

for the other two scenarios when also images, besides the

HTML container, are downloaded, so that the average page

size is increased.

Concerning TContext, we have a similar phenomenon: the

time is about 137 ms for the low transfer rate scenario, while

it is about 88 ms for both the medium and high transfer rate

scenarios. We would expect no differences among those

times, since the context information and user preferences

that have to be taken into account are very similar for all the

three scenarios. Actually this happens for the medium and

high transfer rate scenarios, but not for the low transfer rate

one. The reason is that MIMOSA takes into account those

information once per page that is, when it receives a request

for the HTML document, while it simply keeps the old

calculated values for the embedded objects. In this way,

MIMOSA has to perform calculations almost at each request

for the low transfer rate scenario (when all images are

removed), while in the other cases it performs the calcula-

tions only one out of 14 requests (we recall that on average a

Web page has 13 embedded objects). In this way in the low

transfer rate scenario the context module is more loaded and

this motivates the longer times it needs to perform the

calculations.

 0

 100

 200

 300

 400

 500

AdaptationFetchingContextInternal

T
im

e
[m

s]

low transfer rate
medium transfer rate

high transfer rate

Fig. 14 Response time components (average values) for MIMOSA

 0

 5

 10

 15

 20

high transfer ratemedium transfer ratelow transfer rate

T
im

e
[s

]

Apache
MIMOSA

Fig. 15 Average client download times for Apache and MIMOSA

318 Pers Ubiquit Comput (2010) 14:301–320

123

Regarding TFetch, we can draw the same considerations

of TInternal. The difference between the low transfer rate

scenario and the other two scenarios is mainly motivated

by the different average page size.

TAdaptation needs some more considerations to be fully

explained. In the low transfer rate scenario it is very low

(about 50 ms), while both in the medium and high transfer

rate scenarios it is much higher (408 and 325 ms, respec-

tively). First of all, we should recall that in the various

scenarios different content adaptation services are applied.

In the low transfer rate scenario, HTML Web pages are

parsed to delete every reference to images, while in the

other two cases image transcoding is performed. HTML

parsing is much less time consuming than image trans-

coding and this motivates the low TAdaptation for the low

transfer rate scenario. We should recall that in the high

transfer rate scenario images are scaled to fit the client

device screen size, while in the medium transfer rate sce-

nario they are also downgraded. This motivates why the

times in the medium transfer rate scenario are higher than

the ones in the high transfer rate scenario, but still

comparable.

Finally, we consider TCli-Down that is, the Client

Download time both for Apache and MIMOSA, as shown

in Fig. 15. We consider it separately from the other times

because it is the only component that is comparable to the

respective component of the Apache response time. As we

could expect, TCli-Down for Apache strictly depends on the

client available bandwidth. In fact, if we multiply it by this

bandwidth we obtain almost the same result for all the three

scenarios, while we can see that this does not happen for

MIMOSA. In this case, TCli-Down does not vary so greatly

among the scenarios. This happens because MIMOSA

realizes that the available bandwidth changes and tries to

counterbalance the possible slowness of the link with a

smaller size of the resources by applying different content

adaptation services. In this way we obtain two important

results: TCli-Down is kept small also in case of very narrow

bandwidth and, what perhaps is more interesting from the

user point of view, the amount of bytes that are transferred

between the client and MIMOSA are always less than those

transferred between the origin Web server and the client.

This usually means lower costs for the user, provided that

many contracts between users and ISPs involve a cost that

depends on the transmitted bytes.

8 Conclusions

Today, Internet clients exhibit wide differences in terms of

both hardware and software properties. These different

properties, together with the rapidly changing usage con-

text of users in ubiquitous computing environments,

represent a challenge mainly in wireless environments,

where the dynamic reconfiguration of the services to apply

is much more frequent and needful. Context-aware appli-

cations, which are able to adapt their behaviors to changing

environments, can be efficiently provided on top of pro-

grammable and configurable intermediary software infra-

structures. On the fly adaptation by intermediaries, in fact,

is a wide applicable, cost-effective and flexible technique

for addressing all of these types of variations.

In this paper, we presented a new framework that cou-

ples an intermediary architecture for Web transcoding with

a middleware for context-awareness. The resulting frame-

work provides an effective and efficient solution for the

adaptation of Internet services on the basis of a compre-

hensive notion of context, that includes device capabilities,

network characteristics, and user activity and location. The

distinguishing features of this framework are the aggrega-

tion of context data provided by different heterogeneous

sources, dynamic evaluation of user/service provider

adaptation policies, mechanisms for conflict resolution,

easy composition and programming of adaptative services,

and tools for assisting the user in the declaration of her

adaptation preferences. The efficiency of our solution is

supported by an extensive experimental evaluation with

different scenarios, and by experiments with a prototype

adaptive service that takes advantage of the framework.

References

1. Agostini A, Bettini C, Riboni D (2009) Hybrid reasoning in the

CARE middleware for context-awareness. Int J Web Eng Tech-

nol (in press)

2. Barnard L, Yi JS, Jacko JA, Sears A (2007) Capturing the effects

of context on human performance in mobile computing systems.

Pers Ubiquitous Comput 11(2):81–96

3. Barrett R, Maglio PP (1999) Intermediaries: an approach to

manipulating information streams. IBM Syst J 38(4):629–641

4. Bellavista P, Corradi A, Montanari R, Stefanelli C (2003) Con-

text-aware middleware for resource management in the wireless

internet. IEEE Trans Softw Eng (TSE) 29(12):1086–1099

5. Bellavista P, Corradi A, Montanari R, Stefanelli C (2006)

A mobile computing middleware for location- and context-aware

internet data services. ACM Trans Internet Technol (TOIT)

6(4):356–380

6. Bettini C, Maggiorini D, Riboni D (2007) Distributed context

monitoring for the adaptation of continuous services. World Wide

Web J 10(4):503–528

7. Bettini C, Pareschi L, Riboni D (2008) Efficient profile aggre-

gation and policy evaluation in a middleware for adaptive mobile

applications. J Pervasive Mobile Comput 4(5):697–718

8. Bettini C, Riboni D (2007) Context-aware web services for dis-

tributed retrieval of points of interest. In: Proceedings of the

second international conference on internet and web applications

and services (ICIW 2007). IEEE Computer Society

9. Boyns MR (2000) Muffin: world wide web filtering system.

http://muffin.doit.org/

Pers Ubiquit Comput (2010) 14:301–320 319

123

http://muffin.doit.org/

10. Chen H, Finin T, Joshi A (2004) Semantic web in the context

broker architecture. In: Proceedings of the second IEEE inter-

national conference on pervasive computing and communications

(PerCom 2004). IEEE Computer Society, pp 277–286

11. Colajanni M, Grieco R, Malandrino D, Mazzoni F, Scarano V

(2005) A scalable framework for the support of advanced edge

services. In: Proceedings of the 2005 international conference on

high performance computing and communications (HPCC-05),

pp 1033–1042

12. CPAN. LWP::UserAgent-Web user agent class. http://search.

cpan.org/*gaas/libwww-perl-5.805/

13. Damianou N, Dulay N, Lupu E, Sloman M (2001) The Ponder

policy specification language. In: Proceedings of the international

workshop on policies for distributed systems and networks

(POLICY 2001), volume 1995 of lecture Notes in Computer

Science, Springer, pp 18–38

14. DIWG (2006) W3C working draft: content selection for device

independence (DISelect) 1.0. http://www.w3.org/TR/cselection/

15. Fritsch D, Klinec D, Volz S (2000) NEXUS positioning and data

management concepts for location aware applications. In: Pro-

ceedings of the 2nd international symposium on telegeoprocess-

ing, Nice-Sophia-Antipolis, France, pp 171–184

16. Gandon F, Sadeh NM (2003) A semantic E-wallet to reconcile pri-

vacy and context awareness. In: Proceedings of ISWC 2003, second

international semantic web conference, Springer, pp 385–401

17. Google. Google Maps. http://maps.google.com/

18. Grieco R, Malandrino D, Mazzoni F, Riboni D (2006) Context-

aware Provision of Advanced Internet Services. In: Proceedings

of the 4th Annual IEEE international conference on pervasive

computing and communications (PerCom 2006), Pisa, Italy

19. Grieco R, Malandrino D, Mazzoni F, Scarano V (2005) Mobile

Web Services via programmable proxies. In: Proceedings of the

IFIP TC8 working conference on mobile information systems—

2005 (MOBIS), Leeds, UK, pp 139–146

20. Gu T, Wang XH, Pung HK, Zhang DQ (2004) An ontology-based

context model in intelligent environments. In: Proceedings of

communication networks and distributed systems modeling and

simulation conference, San Diego, California, USA

21. Henricksen K, Indulska J, Rakotonirainy A (2006) Using context

and preferences to implement self-adapting pervasive computing

applications. Softw Pract Exper 36(11/12):1307–1330

22. Hull R, Kumar B, Lieuwen D, Patel-Schneider P, Sahuguet A,

Varadarajan S, Vyas A (2004) Enabling context-aware and pri-

vacy-Conscius user data sharing. In: Proceedings of the 2004

IEEE international conference on mobile data management, IEEE

Computer Society, pp 187–198

23. Iaccarino G, Malandrino D, Percio MD, Scarano V (2006)

Efficient edge-services for colorblind users. In: WWW ’06:

Proceedings of the 15th international conference on World Wide

Web, ACM Press, New York, NY, USA, pp 919–920

24. IBM (2007) IBM WebSphere Transcoding Publisher. http://www-

306.ibm.com/software/pervasive/transcoding_publisher/

25. ImageMagick 6.2.5 (2005) http://www.imagemagick.org/script/

index.php

26. Kamvar M, Baluja S (2007) The role of context in query input:

using contextual signals to complete queries on mobile devices.

In: Proceedings of the 9th Conference on human-computer

Interaction with mobile devices and services (Mobile HCI 2007).

ACM Publishing

27. Kao T-H, Yuan S-M (2005) Automatic adaptation of mobile

applications to different user devices using modular mobile

agents: research articles. Softw Pract Exper 35(14):1349–1391

28. Klyne G, Reynolds F, Woodrow C, Ohto H, Hjelm J, Butler MH,

Tran L (2004) Composite capability/preference profiles (CC/PP):

structure and vocabularies 1.0. W3C recommendation, W3C.

http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

29. Lehmann O, Bauer M, Becker C, Nicklas D (2004) From home to

world—supporting context-aware applications through World

Models. In: Proceedings of the second IEEE international con-

ference on pervasive computing and communications (PerCom

2004), IEEE Computer Society, pp 297–308

30. Li C, Willis KS (2006) Modeling context aware interaction for

wayfinding using mobile devices. In: Proceedings of the 8th

Conference on human-computer interaction with mobile devices

and services (Mobile HCI 2006). ACM Publishing, pp 97–100

31. Locative Technologies. Geocoder. US. http://geocoder.us/

32. Microsoft Inc. NET Framework, June (2006). http://msdn2.

microsoft.com/en-us/netframework/default.aspx

33. Milic-Frayling N, Hicks M, Jones R, Costello J (2007) On the

design and evaluation of web augmented mobile applications. In:

Proceedings of the 9th Conference on human-computer interac-

tion with mobile devices and services (mobile HCI 2007), ACM

Publishing

34. mod_perl. http://www.perl.apache.org

35. Mohan R, Smith JR, Li C-S (1999) Adapting multimedia internet

content for universal access. IEEE Trans Multimedia 1(1):104–114

36. Mosberger D, Jin T (1998) httperf, A tool for measuring web

server performance. Perform Evaluation Rev 26(3):31–37.

http://www.hpl.hp.com/research/linux/httperf/wisp98/httperf.pdf

37. Moura J, Oliveira J, Carrapatoso E, Roque R (2002) Service

provision and resource discovery in the VESPER VHE. In:

IEEE international conference on communications (ICC’02),

New York, USA, pp 1991–1995

38. MySql Database Management System. http://www.mysql.com/

39. OpenMobileAlliance (2001) User agent profile specification.

Technical report WAP-248-UAProf20011020-a, Wireless

Application Protocol Forum. http://www.openmobilealliance.org/

40. PerlMagick 6.22, (2005) http://www.imagemagick.org/script/

perl-magick.php

41. Privoxy Web Proxy (2006) http://www.privoxy.org/

42. RabbIT proxy (2006) http://rabbit-proxy.sourceforge.net/

43. Ranganathan A, Campbell RH (2003) An infrastructure for

context-awareness based on first order logic. Pers Ubiquitous

Comput 7(6):353–364

44. Rashid O, Coulton P, Edwards R (2008) Providing location based

information/advertising for existing mobile phone users. Pers

Ubiquitous Comput 12(1):3–10

45. Reponen E, Huuskonen P, Mihalic K (2008) Primary and sec-

ondary context in mobile video communication. Pers Ubiquitous

Comput 12(4):281–288

46. Rosaci D, Sarne GM (2006) Masha: a multi-agent system han-

dling user and device adaptivity of web sites. User Modeling User

Adapted Interact 16(5):435–462

47. Sacramento V, Endler M, Rubinsztejn HK, Lima LS, Gonçalves

K, Nascimento FN, Bueno GA (2004) MoCA: a middleware for

developing collaborative applications for mobile users. IEEE

Distributed Syst Online 5(10)

48. Schuyler E Geo-Coder-US. http://search.cpan.org/*sderle/

Geo-Coder-US/

49. Squid Web Proxy Cache. http://www.squid-cache.org/

50. The Apache Software Foundation (2007) The Apache HTTP

Server. http://httpd.apache.org/

51. U.S Census Bureau. http://tiger.census.gov/cgi-bin/mapbrowse-tbl

52. US Postal Service (2000) Postal addressing standards. Technical

report publication 28, November

53. Webcleaner—a filtering HTTP proxy 2006. http://webcleaner.

sourceforge.net/

54. Yahoo! Inc. Yahoo! directories, 2006. http://dir.yahoo.com/

55. Zheng Y, Chan ATS, Ngai G (2006) Mcl: a mobigate coordina-

tion language for highly adaptive and reconfigurable mobile

middleware: experiences with auto-adaptive and reconfigurable

systems. Softw Pract Exper 36(11/12):1355–1380

320 Pers Ubiquit Comput (2010) 14:301–320

123

http://search.cpan.org/\simgaas/libwww-perl-5.805/
http://search.cpan.org/\simgaas/libwww-perl-5.805/
http://www.w3.org/TR/cselection/
http://maps.google.com/
http://www-306.ibm.com/software/pervasive/transcoding_publisher/
http://www-306.ibm.com/software/pervasive/transcoding_publisher/
http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://geocoder.us/
http://msdn2.microsoft.com/en-us/netframework/default.aspx
http://msdn2.microsoft.com/en-us/netframework/default.aspx
http://www.perl.apache.org
http://www.hpl.hp.com/research/linux/httperf/wisp98/httperf.pdf
http://www.mysql.com/
http://www.openmobilealliance.org/
http://www.imagemagick.org/script/perl-magick.php
http://www.imagemagick.org/script/perl-magick.php
http://www.privoxy.org/
http://rabbit-proxy.sourceforge.net/
http://search.cpan.org/\simsderle/Geo-Coder-US/
http://search.cpan.org/\simsderle/Geo-Coder-US/
http://www.squid-cache.org/
http://httpd.apache.org/
http://tiger.census.gov/cgi-bin/mapbrowse-tbl
http://webcleaner.sourceforge.net/
http://webcleaner.sourceforge.net/
http://dir.yahoo.com/

	MIMOSA: context-aware adaptation for ubiquitous web access
	Abstract
	Introduction
	Related work
	The MIMOSA framework
	Context aggregation and reasoning
	Overview
	Representation of context data and policies
	Context aggregation, policy evaluation, and conflict resolution

	Provisioning of adaptation services

	Software architecture
	Implementation
	Client-side modules
	Context-awareness module
	Adaptation module

	Communication protocol

	Support for user-centric adaptation
	Basic mechanism
	Supporting user policy specification
	Detecting inappropriate adaptation behaviors
	Assisting the user to correct the system behavior

	The GEOAWARE prototype service
	Performance evaluation
	Workload model and testbed
	Test scenarios
	High transfer rate scenario
	Medium transfer rate scenario
	Low transfer rate scenario

	Summary of the performance evaluation
	Decomposition of the response time

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

