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Abstract: The hardware technology continues to improve at a 

considerable rate. Besides the Moore law increments of the CPU 
speed, in the last years the capacity of the main memory is 
increasing at an even more impressive rate. One of the 
consequences of a continuous increment of the main memory 
resources is the possibility of designing and implementing 
memory-embedded Web sites in the near future, where both the 
static resources and the database information is kept in the 
main memory of the server machines. In this paper, we evaluate 
the impact of memory and network technology trends on the 
performance of e-commerce sites that continue to be an 
important reference for Web-based services in terms of 
complexity of the hardware/software technology and in terms of 
performance, availability and scalability requirements. 
However, most of the achieved considerations can be easily 
extended to other Web-based services. We demonstrate through 
experiments on a real system how the system bottlenecks change 
depending on the amount of memory that is (or will be) 
available for storing the information of a Web site, taking or not 
into account the effects of a WAN. This analysis allows us to 
anticipate some indications about the interventions on the 
hardware/software components that could improve the capacity 
of present and future Web-based services. 
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I. Introduction 
Web technology is the standard interface towards many 

services that are exploited through the Internet. The demand 
for better service performance has driven a technological 
trend towards more powerful, integrated, scalable system 
components. The capacity of current hardware components 
such as processor, main memory, and network interfaces is 
continuously growing. The main interest of the scientific 
community has always been focused on the impressive growth 
of the CPU power that continues to follow the Moore law 
[18], although the asymptotic bound seems closer. This 
interest has, in a certain measure, masked the fact that, in the 
last years, the capacity improvements of the main memory 
and the network capacity are even more impressive than the 
CPU increases. The combination of these multiple hardware 
resource improvements is having or will have important 

implications on the performance of the Internet-based 
services. In the traditional client-network-CPU-disk path, the 
adoption of large main memories, together with CPU speed 
improvements, seems a valuable answer to the continuous 
research of bottleneck removals that often occur at the disk 
side. The trend of adopting large central memories will help 
the user to experiment lower response times, but it has the 
potential to create novel difficulties to the server component 
of an interactive Web-based service [21]. If we limit our 
considerations to Web-based services that are of interest for 
this paper, we can observe that the size of a typical Web site 
in terms of stored information tends to grow slower than the 
typical size of the main memory. The reader should consider 
that nowadays some Gbytes of RAM are the entry level of any 
server machine that supports interactive services with some 
performance requirements [8]. And, in the large majority of 
cases, the most requested information of typical Web sites 
that are implemented through a multi-tier architecture does 
not span over some Gbytes of data stored in file systems and 
databases. Hence, it seems practicable to foresee the design 
and implementation of so called memory-embedded Web 
sites, where both the static resources and the database 
information is kept entirely in the main memory of the server 
machines. 

If we pass to consider the network capacity, we can observe 
bandwidth improvements at many levels, from the first mile 
(that is, the Internet connection of the Web site servers), to 
the backbones of the Internet core (excluding peering points 
among Autonomous Systems that remain an open issue), to 
the last mile where a larger percentage of final users are 
adopting fast connection technologies (especially, ADSL and 
cable connections) [23]. These network improvements will 
certainly have further impacts on the architectures and 
performance of the future Web-based services. 

Some consequences of these technological trends are 
intuitive. For example, we can easily expect that the system 
capacity will tend to increase and any Web-based services will 
be able to guarantee higher throughputs. Other consequences 
are not fully exploited. For example, it is unclear which will 
be the new bottlenecks that will bound the maximum capacity 
of a Web-based system. In this paper, we aim to answer to 
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some of these questions by evaluating the impact of hardware 
improvement trends, especially main memory and network 
capacity, on the performance of e-commerce sites. These 
types of Web-based services are important because they will 
continue to represent examples of mission critical Internet-
based services, in terms of complexity of the hardware and 
software technology and in terms of performance, availability 
and scalability requirements. Through endurance and stress 
tests, and accurate measurement of coarse grain and fine 
grain performance parameters, we show how the system 
bottlenecks of a prototype e-commerce site will change as a 
function of the amount of available main memory and the 
quality of the interconnection between the clients and the 
server. Our trend analysis has important consequences 
because it allows to anticipate some interventions on the 
software components to further improve the capacity of 
present and future Web-based services. The three main 
contributions of this paper are summarized below. 

First, we confirm the intuition that memory-embedded Web 
sites have lower response times and better throughput than 
sites that keep a significant portion of static and dynamic 
information on disk. The obvious reason behind the different 
performance is the speed of current storage areas, which is 
really slow when compared to the main memory accesses. 
The performance gap between disks and main memory 
becomes much more evident if we think that every source of 
static content has to be fetched from a file system and almost 
every source for dynamic content requires information that is 
usually fetched from a database server. 

Second, for all the considered workload models, we verify 
that the back-end node hosting the database server remains 
the system bottleneck. However, a fine grain analysis of the 
system resources of this back-end node allows us to evaluate 
how the bottlenecks change as a function of available amount 
of main memory. We distinguish three results. For an almost 
memory-embedded database, disk accesses are rare, and the 
bottleneck is represented by the CPU of the database server 
because of synchronization operations with in-memory data 
buffers. When a significant portion of the database (about 
50%) is kept in main memory, the system capacity is typically 
limited by the number of available socket descriptors, that are 
a pool of limited resources. When a small part of the database 

is kept in RAM, the disk operations represent the bottleneck 
reducing the system capacity.  

Third, we evaluate the impact of wide area network effects 
on the performance of the considered e-commerce site. We 
find out that, when the client-system connections are slow, 
the duration of the user session augments, and long lasting 
connections tend to exhaust the pool of available socket 
descriptors. This may have tragic consequences on the system 
performance because descriptors are token-based limited 
resources that do not degrade gracefully such as other system 
resources (e.g., CPU). On the other hand, when the client-
system connections improve, the system bottleneck tends to 
move towards the CPU. 

The rest of this paper is organized as following. Section 2 
outlines the main functions of the components of a 
representative Web-based dynamic site of medium size and 
average popularity. Section 3 illustrates the dynamics of a 
request service and points out possible performance problems. 
Section 4 describes the testing plan that is pursued during the 
experiments. Section 5 describes the experimental testbed and 
the workload models that are used for the experiments. 
Section 6 analyzes the experimental results about the 
performance impact of memory technological trends, while 
Section 7 focuses on the impact of network bandwidth 
features. Section 8 discusses some related work. Finally, 
Section 9 concludes the paper with some final remarks. 

II. System architectures for Web-based services 
After some years of initial innovation and confusion, 

today’s basic architectures for building Web systems share a 
core set of basic design choices. These choices can be applied 
to Web sites providing a mix of static and dynamic content, 
as well as Web services that provide interaction between 
information systems through a Web interface. Throughout the 
rest of the paper, we will use the term Web-based service to 
address both Web services and static/dynamic Web sites. In 
other words, a Web-based service is considered any Internet 
service that uses an HTTP-based interface. 

Independently of the large variety of available software 
solutions, the typical design of a Web-based service is 
nowadays based on a multi-tier logical architecture that tends 

 
Figure 1.  Architecture of a dynamic Web site 
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to separate the three main functions of service delivery: the 
HTTP interface, the application (or business) logic and the 
information repository. These logical architecture layers are 
often referred to as front-end, application, and back-end 
layers [2]. Figure 1 shows the main structure of a typical 
system providing Web-based services. Beside the clients, we 
recognize the three logical components of the system (shown 
as boxes), each detailed with its main functions (the ovals 
within the boxes). This figure also sketches the fundamental 
interactions between the three layers (with solid lines) and 
between the main functions provided by each layer (with 
dashed lines). 

The front-end layer is the interface of the Web-based 
service. It accepts HTTP connection requests from the clients, 
serves static content from the file system, and represents an 
interface towards the application logic of the middle layer (as 
shown in Figure 1). The most popular software for 
implementing the front-end layer is the Apache Web server, 
although others exists, e.g., MS Internet Information 
Services, Sun Java System Web Server, Zeus. 

The application layer is at the heart of a Web-based 
service: it handles all the business logic and computes the 
information which is used to build responses with 
dynamically generated content. Content generation often 
requires interactions with the back-end layer, hence the 
application layer must be capable of interfacing the 
application logic with the data storage of the back-end. There 
is a huge number of technologies for deploying a business 
logic on the middle tier. CGI has been the first software 
technology for the deployment of dynamic Web sites, but the 
performance penalty related to the creation of a CGI process 
for every client request has led to the decline of the CGI 
popularity. Scripting languages, such as PHP and ASP, are 
quite popular for medium size dynamic Web sites. 
Component-based technologies belonging to the J2EE family 
(such as Java Servlets, JSP and EJB) are considered more 
scalable [7] and are often preferred for building medium-to-
large Web sites. The modularity of component-based 
technologies also makes the deployment of Web services 
easier. Indeed, most Web services are designed with 
reusability and composition of basic service facilities in mind: 
these concepts are best put into practice through the adoption 
of modular (object oriented) design techniques. 

The back-end layer manages the main information 
repository of a Web-based service. It typically consists of a 
database server and storage of critical information that is the 
main source for generating dynamic content. Database servers 
have a long history and there are many good alternatives. 
Nowadays, popular frameworks are provided by Oracle, IBM 
DB2, MS SQL Server on the proprietary side, and by MySQL 
and PostgreSQL on the open source side. 

A complete implementation of a Web-based service 
requires the logical design to be followed by an architectural 
design. In this latter phase, the multi-tier logical layers must 

be mapped on a physical architecture. Even in this phase, 
there are many alternative solutions, but the cluster system is 
becoming the most common choice for the supporting 
platform. A cluster consists of multiple nodes that are located 
in the same area network, and a single component that 
provides the interface with the external world. For the most 
popular Web-based services, the nodes may be distributed 
over a geographical area, but in this paper we do not consider 
similar architectures. 

It is important to observe that there is not a one-to-one 
correspondence between the logical layers and the physical 
architecture: multiple layers may be mapped on the same 
node; alternatively, the same logical layer may be 
implemented on multiple nodes. For example, the software 
components (front-end, application and back-end servers) 
may run on one physical node or on a cluster of nodes [6]. 
The best choice depends on many factors, such as the adopted 
technology, the size and the popularity of the Web-based 
service, other security goals and economic constraints. If we 
refer to medium size Web sites, the real choice is between two 
or three physical nodes, because the common tendency is to 
map always the information repository on a separate node. 
With present technologies, a software such as J2EE [16] 
would lead to a physical separation of the three logical layers 
on at least three nodes. On the other hand, scripting 
technologies, such as ASP, JSP and PHP, tend to concentrate 
the front-end server and the application server on the same 
node. 

Independently of the mapping choice, the software 
components of the Web system are strictly correlated. For 
example, the application server relies on the back-end layer to 
provide the necessary information for building the application 
logic data. If the back-end layer fails or results too slow, the 
performance of the application server may be severely 
degraded and, as a domino effect, the overall performance of 
serving dynamic requests drops. Each component consumes 
system resources, such as CPU power, main memory, file and 
socket descriptors. These resources are not unlimited, and 
usually they get exhausted when the system is subject to high 
load. The amount of available resources is a key factor in the 
performance of a dynamic Web-based service. When the 
amount of available resources varies (for example, a 
consistent amount of main memory is added to the system), 
the performance of the overall Web system changes. More 
importantly, the system capacity may be determined by a 
resource bottleneck that is a function of the current software 
and hardware layout of the system. Since hardware upgrades 
are becoming much more frequent (mainly due to the low 
costs of today’s off-the-shelf components), the service 
infrastructure is subject to a continuous evolution, which 
typically follows the current technology trends. We will show 
in this paper that it is not obvious to anticipate the new 
bottlenecks introduced by the adoption of new (or even future) 
technologies. 
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In particular, we focus our attention on the technology 
trends that characterize the availability of main memory at 
the server machines, and the continuous improvements 
occurring at the network level. 

The cost of the main memory has been constantly 
decreasing over years and even entry level computers are now 
equipped with amounts of RAM that were found just in top 
level workstations just a few years ago. If we consider the 
impact that this trend is having and will have on the 
information repository for many Web-based services, we can 
foresee a radical shift. Most Web-based services are 
characterized by an amount of information seldom exceeding 
some Gbytes and the growth of data does not tend to follow 
the exponential growth of main memory availability. Indeed, 
over the years, the amount of main memory installed on 
servers hosting the information repository has been steadily 
increasing. As a consequence many Web sites are 
characterized by a DBMS that can store the whole database 
into RAM [19] and this fact is destined to become more 
common in the near future. 

Besides the obvious performance gain due to the low access 
time of RAM if compared to disk, a RAM-based database can 
dramatically alter the performance of the Web system by 
shifting potential bottlenecks on multiple parts of the Web 
system. 

In a similar way, wide area network technologies have 
dramatically increased the available bandwidth over 
geographic links, thus reducing the download time also for 
rich media content. Besides some performance gains that may 
be easily expected, in this paper we are mainly interested to 
evaluate the impact of the technology evolutions on the 
internal components of a system supporting a Web-based 
service. 

III. Request service and potential bottlenecks 
Answering to a request reaching a multi-tier Web-based 

system is a complex task that triggers the creation and 
interaction of several processes. In this section we will refer 
to Figure 1 for outlining the main dynamics behind the 
service of a client request. 

After receiving a request, the request handling module at 
the front-end layer invokes the most suitable function for its 
service. The interactions are represented in Figure 1 as 
dashed lines connecting the request handling module with the 
other modules of the front-end layer. Requests for static Web 
objects can be satisfied by the static content handling 
subsystem at the front-end and do not usually put any 
significant load on the system. Indeed, serving static content 
typically requires the retrieval of one or multiple objects from 
the file system, which is a low overhead operation especially 
when the requested file hits the disk cache. The network 
adapter connecting the Web infrastructure to the outside 
world is the only system component that could be affected by 
the service of heavy static contents. 

On the other hand, dynamic requests are passed by the 
front-end to the application layer through the proper interface 
module. The interaction between the two layers is shown as a 
solid line connecting the interface modules in Figure 1. The 
application layer generates the content through the 
cooperation with the back-end tier. The interface with the 
front-end activates a set of modules implementing the actual 
application logic. The process of activating the modules is 
denoted by the dashed line between the interface and the 
application logic subsystem. These modules are, typically, 
CPU-bound. To fulfil the client request, they can also request 
additional information to the back-end layer through the 
proper interface. The interaction between the layers is 
represented by a solid line in Figure 1.  

When the DBMS is placed on a different machine, a 
communication between the application server and the DBMS 
requires the use of connection descriptors (that is, sockets). 
These are critical resources of the operating system, because 
they are a limited set.  

The DBMS can place a significant amount of stress on 
different hardware resources of the server machine depending 
on the type of required operations. For example, the CPU may 
be loaded by operations related to a complex query, the disk 
may be loaded by operations that require many accesses to the 
mass storage.  It is worth noting the different behavior of the 
system resources. 

Sockets are token-based resources, which means that only a 
finite number of sockets is available and can be assigned to 
processes. When the available tokens are exhausted, 
additional requests are queued for an unpredictable time (i.e., 
until a token becomes free). A connection request may fail 
because the time-out deadline is passed or because it cannot 
be stored in the finite-length waiting queue of the service 
node. 

On the other hand, the server CPU and disk are gracefully 
degradable resources, that may be shared among every 
process requesting them. Once the resource is fully utilized, 
additional requests lead to progressive performance 
degradation, but typically no waiting request is refused but in 
really critical situations. 

 

IV. Performance testing plan 
In this paper we aim to evaluate the effects of technological 

trends on the overall performance of Web-based services, and 
also to verify whether these trends may modify the 
bottlenecks that determine the maximum capacity of the 
system that supports Web-based services. The goal of the 
performance study determines the approach and the testing 
plan used for the experimental analysis. 

We use a so called black-box testing to evaluate the 
performance of the system and to determine under which 
workload conditions the system reaches its maximum 
capacity. We also use a so called white-box testing when we 
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aim to identify the hardware or software resource that 
represents the system bottleneck. 

In a black-box testing, the system is viewed as an atomic 
entity, hence we consider its behavior as it is seen from the 
outside. The considered performance indexes are at the 
system level. Popular indexes are the response time, and the 
throughput that can be measured in terms of served requests 
(e.g., pages, hits) per second or Mbytes per second. The main 
goal of these performance indexes is to verify whether the 
system is providing or not services at an acceptable level of 
performance. Black-box testing is also useful for detecting the 
trends of system performance as a function of the offered 
load. It is a common practice to build a load curve for the 
Web system by considering, for example, the average (or, 
better, the 90-percentile) of the response time as a function of 
increasing request loads. Such a curve allows us to identify a 
knee region in which a sudden growth of the response time 
occurs. This region denotes that the system is working at its 
maximum capacity and at least one of its resources is 
critically loaded. Black-box testing does not consider the 
internal components of the system, hence it is impossible to 
identify the bottleneck that limits the system capacity.  

When we have the necessity of a more accurate analysis, 
we carry out a white-box testing. In this case, we exercise the 
Web system with a client request load around the knee region 
that has been identified through the previous black-box 
testing, and monitor continuously the status of the internal 
resources of the Web system. This type of analysis requires 
the evaluation of finer grain performance indexes that are 
related to the internal resources of the Web system. We 
typically consider the performance at least at the resource 
level that are associated to the most important hardware and 
software (mostly, operating system) components. Some 
examples include: the utilization of the CPU, disk and 
network interface, or the amount of free memory at the 
hardware level; the number of available file and socket 
descriptors at the level of the operating system. 

In particular, in this study we take into account cumulative 
distributions or percentiles instead of average values related 
to the previous performance indexes. The motivation comes 
from the observation that higher moments are necessary when 
we have to evaluate the performance of systems, such as e-

commerce sites, subject to load arrivals that are characterized 
by heavy-tailed distributions [2].  

V. Setup of the experiments 

A. Experimental testbed 

We carried out the entire set of experiments by considering 
an e-commerce site as representative Web-based service. The 
e-commerce site is implemented by a three-tier logical 
architecture that is mapped on a physical architecture 
consisting of two server machines. Figure 2 illustrates the 
architecture of the prototype system that has been used for the 
experiments.  

The first node of the Web system hosts the software related 
to the front-end and the middle tiers. In particular we use the 
Apache Web server [4] for the front-end, and the PHP4 [22] 
engine to implement the application logic at the middle tier. 
The second node hosts the software for the back-end tier. We 
choose MySQL [20] as the database server. To reflect a 
realistic workload scenario, we enabled the support for table 
locking and two phase commits. 

Other machines host the software running the client 
emulator, which is used to generate the appropriate volume of 
user requests to the Web system. 

Each machine of the testbed platform has a 2.4 GHz 
hyperthreaded Xeon CPU and is part of a cluster of nodes that 
are connected through a Fast Ethernet LAN. Each node is 
equipped with the standard Linux operating system (kernel 
version 2.6.8), and monitoring tools to collect samples of 
performance measures that are necessary for the white-box 
testing. In particular, we use the system activity report [11] 
tool to collect resource utilization statistics. This tool samples 
at regular intervals the utilization of both physical resources 
such as CPU, memory and disk, and operating system 
resources, such as the number of open sockets and the number 
of processes. The output of the system monitor is logged for 
off-line analyses. 

Since one of the main interests of this study is to evaluate 
the impact that the availability growth of the main memory 
may have on performance and system bottlenecks, we emulate 
three main memory scenarios: 

• All in-memory. This scenario represents what we 

 
Figure 2.  Experimental testbed 
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consider the next future, when the whole database 
information is likely to fit into main memory. 

• Partially in-memory. This scenario represents a 
common present case, where just half of the 
database information can fit into main memory. 

• Mostly on-disk. This scenario represents a past 
situation, where the main memory can host only a 
small portion of the database information. 

For each scenario, Table I reports the percentage details of 
database information that can be stored into the main 
memory. 

We also take into account the evolution of networks where 
the current trend corresponds to a general increment of the 
available bandwidth together with a reduction of the latency. 
To evaluate the impact of this trend on Web system 
performance and possible bottlenecks, we emulate different 
network scenarios that present a better or worse quality of the 
connection between the client emulator and the Web system. 

Without the intention and the possibility of recreating the 
entire spectrum of Internet effects, we introduce some typical 
wide area network effects in the links connecting the client 
emulators to the node hosting the front-end layer: packet 
delay, loss and bandwidth limitation. To this purpose, we 
utilize a WAN emulator that is based on the netem packet 
scheduler of the Linux kernel [13]. In this paper, we consider 
two network scenarios: 

• Well connected clients. We configure the WAN 
emulator by using a maximum link bandwidth of 64 
Mbit/s and by introducing a packet delay with a 
normal distribution with µ = 5ms and σ = 1ms, with 
no packet loss. 

• Badly connected clients. We configure the WAN 
emulator by creating a virtual link between the 
clients and Web system with the following 
characteristics: 8 Mbit/sec as the maximum link 
bandwidth; packet delay normally distributed with µ=200ms and σ=10ms; packet drop probability set 
to 1%. 

 

B. Workload model 

The choice of a realistic or at least adequate workload 
model to test an e-commerce system is an open problem by 
itself. In workload models oriented to browsing, the 
interaction is basically with the HTTP server and the mix is 
mainly oriented to define the number and size of embedded 

objects together with the user think time. However, in an e-
commerce service we have dozen of possible alternatives at 
any level of the multi-tier architecture, often also dependent 
on the adopted software technology. As a consequence, it is 
impossible to define THE model for e-commerce services. A 
popular choice for the research community that has no access 
to actual logs of highly popular e-commerce sites is the use of 
the TPC-W benchmarking model. Together with the more 
recent SPEC-WEB 2005 [25], TPC-W represents the only 
complete specification (workload side and system side) of an 
e-commerce site that has been proposed and shared by a large 
scientific community [1, 10]. For this reason, a TPC-W like 
workload model is the choice of this paper.  

In our experiments, the workload mix is composed by 5% 
of requests for static resources and 95% of requests for 
dynamic resources. 

Web traffic is generated by means of a TPC-W like client 
emulator, which creates a fixed number of client processes. 
Each process instantiates sessions consisting of multiple 
requests to the e-commerce system. For each customer 
session, the client emulator opens a persistent HTTP 
connection to the Web server which lasts until the end of the 
session. Session length has a mean value of 15 minutes. 
Before initiating the next request, each emulated client waits 
for a specified think time, which is set to 7 seconds on 
average. The sequence of requests is determined through a 
state transition diagram that specifies the probability to pass 
from one Web request to another one.  

The standard user behavior is to start its interaction with 
the Web site from the home page. The user may use a search 
function to select an item to purchase or browse products by 
category. Once an item has been selected, the user may 
browse a product description and place the related item in the 
shopping cart. Finally, the user may checkout the items in the 
shopping cart through a purchase transaction. This 
description represents a typical user interaction, but more 
complex user behaviors (such as aborting a transaction or 
removing items from the shopping cart) may occur, even if 
with a lower probability. A complete description of the state 
transition diagram of the user behavior is reported in [1]. 

VI. Performance impact of memory capacity 

A. Bottleneck identification 

In this section we analyze to what extent the technological 
trends concerning main memory may influence the 
performance of a Web-based service and may shift the 
bottlenecks across different components and resources of the 
Web architecture. 

We first evaluate the response time for the three memory 
scenarios when the Web system is subject to increasing loads. 
The goal is to understand, for each of the proposed scenarios, 
the request arrival rates at which the Web architecture starts 
to evidence a clear bottleneck. Figure 3 shows the 90-

 

Scenario 
Available RAM 
[% of DB size] 

All in-memory 100 % 
Partially in-memory 60 % 

Mostly on-disk 30 % 

Table 1. Memory scenarios 
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percentile of the response time as a function of the client 
population for the three memory scenarios. A comparison 
among the three curves shows that the impact of available 
main memory on the response times is much less significant 
than the impact on system capacity. The scarce influence of 
the main memory on response times is visible in Figure 3, 
that reports the 90 percentile of Web object response times as 
a function of user population. The main motivation is that, 
when the system is not overloaded, the amount of necessary 
main memory does not exceed the physical limits of the 
corresponding node, and no (slow) virtual memory 
management takes place. As a consequence, the response 
time is bound by the following operations: Web page 
construction (mainly CPU-bound), access to storage facilities 
(DISK-bound), and use of network resources for 
communication. This confirms the intuition that additional 
main memory on the back-end node increments the system 
capacity. We now want to investigate the reasons behind the 
impact of the main memory size on the maximum capacity of 
the Web system. To this purpose, for each memory scenario, 
we first identify a critical value of the client population that 
leads to a sudden degradation of the system performance: this 
corresponds to the so called knee of the response time curve. 
As we proceed from the mostly on-disk scenario (called 
simply on-disk in the following of this section) to the partially 
in-memory to the all in-memory scenario (in-memory), from 
Figure 3 we can see that the maximum number of clients that 
can be served without significant performance degradation 
increases from 30 to 270 to 330, respectively.  

Once found the critical load that determines the maximum 
system capacity for each memory scenario, it is interesting to 
investigate the nature of the bottlenecks that limit the system 
capacity. This analysis requires a deeper comprehension of 
the internal behavior of the system components, that we have 
called white-box testing. 

In a Web architecture consisting of multiple layers, the first 
step requires the identification of the layer causing the system 
bottleneck. The standard procedure is to split the contribution 
to the response time among its components that are related to 

the front-end, the application and the back-end layers. As 
example, Figure 4 shows the breakdown of the response time 
for the partially in-memory scenario. The histograms 
represent the 90-percentile of the three contributions for two 
population values. The bar on the left is related to a number 
of clients lower than the system capacity (equal to 270 users), 
while the bar on the right reports the breakdown for a client 
population higher than the system capacity. 

A comparison between the two histograms shows that 
when the critical number of requests is reached, there is a 
sudden increase of the response time contribution referring to 
the back-end layer. Similar studies with the other memory 
scenarios confirm these conclusions. In all experiments, the 
increase in the back-end time drives the performance 
degradation of the system shown in Figure 3 for the 
considered TPC-W workload model. Hence, we can easily 
conclude that the bottleneck is always related to the 
operations at the database server node. 

B. Resource-level analysis 

After the identification of the maximum capacity of the 
Web architecture in terms of number of concurrent users (in 
correspondence of the knee of the curves), we pass to analyze 
the causes behind the bottlenecks that limit the capacity of the 
system. To this purpose, we carry out a white-box 
performance testing for the three memory scenarios and a 
population of clients in proximity of the identified knees. For 
the on-disk scenario we consider a population of 60 clients; 
for the partially in-memory scenario we consider a population 
of 300 clients, and for the in-memory scenario we consider a 
population of 360 clients. For each experiment, we monitor 
accurately the utilization of the main system resources. 
Recalling the dynamics behind a client request detailed in 
Section 3, we conclude that the main performance indexes 
that may evidence a system bottleneck are: CPU utilization, 
disk I/O activity (in terms of disk transactions per second) 

 
Figure 3.  Response time of the Web system for 
different memory scenarios 
 

 
Figure 4.  Breakdown of the Web system response time 
(partially in-memory scenario) 
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and number of open sockets. For this reason, we have 
instrumented a system monitor that provides regular samples 
of these three performance indexes on every node of the Web-
based cluster infrastructure. As we will see, our analysis 
shows that these three indexes allow us to identify the 
resource bottleneck under every considered memory scenario, 
and to evidence how the system bottlenecks change 
depending on the amount of main memory. 

 
On-disk scenario 

The most significant results about the white-box analysis for 
the on-disk scenario are shown in Figure 5 that reports the 
main performance parameters of the back-end node as a 
function of the time elapsed from the beginning of the 
experiment (x-axis).  

In particular, Figure 5(a) shows the number of open sockets 
at the back-end server node throughout 1000 seconds of the 
experiment. Figure 5(b) shows the CPU utilization that is 
split into kernel and user mode: the kernel mode refers to the 
CPU operations related to the operating system, such as 
process scheduling, context switches and system call services; 
the user mode relates to the application processes. Since we 
are monitoring the back-end node, the CPU utilization in user 
mode is almost exclusively due to DBMS operations. Finally, 
Figure 5(c) shows the disk I/O activity that is reported as disk 
transactions per second throughout the experiment. 

The first observation deriving from Figure 5(b) is a very 
low CPU utilization (below 0.1). This allows us to exclude the 
CPU from the list of possible bottleneck resources. Next, we 
observe a number of simultaneously open sockets that is 

significantly lower than in other experiments (see Figure 
6(a)), but that is highly variable with a range spanning from 
20 to 60 open sockets. This leads us to conclude that the 
number of open sockets does not represent a system 
bottleneck for this scenario because 60 is far below the 
number of 105 sockets that are available at the database 
server. 

However, the high variability of the number of open 
sockets deserves some motivations. Since the database server 
is equipped with a limited amount of memory, most database 
operations are delayed by the disk accesses. The long database 
service time increases the number of concurrent client 
requests, thus leading to a high number of open sockets even 
for low numbers of user requests. 

When we pass to analyze the disk performance, we notice 
an almost constant throughput in terms of operations, always 
close to 150 transactions per second. To have a guarantee that 
the disk represents the system bottleneck for the on-disk 
scenario, we evaluated the maximum disk throughput for the 
considered architecture. To this purpose, we use the iozone 
[15] tool which allows us to evaluate the maximum 
throughput when the disk is subject to complex 
read/write/seek patterns, as in the case of database operations 
of the TPC-W workload that we have used for the 
experiments. 

Other related tests show that 160 disk operations per 
second represent the maximum achievable throughput for the 
considered workload. This result evidences that the disk is the 
only system resource that operates close to the maximum of 
its capacity. 

 
(a) Open Sockets             (b) CPU utilization          (c) Disk Activity 

Figure 6. Resource utilization on back-end node (partially in-memory scenario) 
  

 
(a) Open Sockets             (b) CPU utilization          (c) Disk Activity 

Figure 5. Resource utilization on back-end node (on-disk scenario) 
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Partially in-memory scenario 

Figures 6(a), (b) and (c) show the socket, CPU and disk 
utilization for the partially in-memory scenario, respectively. 
With respect to the on-disk scenario, in this case, we observe 
a significant increment of the CPU utilization and the number 
of contemporary open sockets, while the disk activities tend to 
decrease. It is worth to consider that these utilization levels 
are reached for a number of served requests that is more than 
nine times the number related to the on-disk scenario (from 
30 to 270). This consideration motivates the sudden 
increment of the CPU utilization combined with a low 
decrement of the disk utilization, even although more than 
half of the database is kept in main memory. But the most 
significant result is that for the partially in-memory scenario, 
neither the CPU nor the disk of the database server are system 
bottlenecks. Initially unexpected, the system capacity in this 
case is limited by the number of sockets. Indeed, from Figure 
6(a) we can observe that the number of open sockets on the 
DBMS node is always equal to the maximum capacity that is 
set to 105. 

 
 In-memory scenario 
Figure 7 shows the resource utilization for the in-memory 

scenario. Identifying the system bottleneck for this case is a 
straightforward task, because the disk is almost not used at all 
(Figure 7(c)); the number of open sockets is around 20 (see 
Figure 7(a)), a value that is far below the maximum limit set 
to 105. On the other hand, Figure 7(b) shows a CPU 
utilization close to 1 with a 0.8/0.2 ratio between the time 
spent in user and kernel space. The immediate conclusion is 
that for the in-memory scenario the system bottleneck is 
represented by the CPU of the back-end node. 

This initially unexpected result suggests that the 
computations at the application level are much more intensive 
than the cost necessary for the system calls. As there is only 
one major process running on the back-end node, we can 
easily assume that the DBMS process is the real source of the 
system bottleneck. 

Nevertheless, if we limit the performance analysis at this 
level of granularity, we cannot exactly motivate the high CPU 
utilization of the database server application. To identify the 

hot spots in the database server process we should pass to get 
measurements at the function level. To this purpose, we 
utilize a system profiler from which we get that the function 
that checksums asynchronous I/O buffers uses almost 70% of 
the CPU time. This function is part of the asynchronous I/O 
buffer management of the MySQL DBMS. Asynchronous I/O 
is used to improve I/O performance by caching frequently 
accessed portions of the database, thus bypassing the 
operating system disk buffer cache. To provide data 
consistency a checksum is calculated on every buffer. Hence, 
we can conclude that the asynchronous I/O subsystem is the 
real bottleneck of the mysqld process. 

It is tricky to solve this CPU bottleneck at the database 
server. The most straightforward option seems to purchase a 
faster CPU that can provide higher computational power. 
However, this solution has a limited scalability. The best 
alternative to improve the database performance is to reduce 
the checksumming activity by decreasing the number of 
buffer accesses. For example, this can be easily carried out by 
augmenting the size of the query cache. 

 
Summary of results 

We can conclude that the amount of memory on the back-
end node of a multi-tiered Web system is having and will 
have a fundamental impact on system performance. Although 
some results were expected, the experiments evidenced some 
novelties. For example, increasing the available memory 
augments the system capacity, but does not reduce 
significantly the response time observed by the client. 
Moreover, it is quite interesting to verify how the memory 
availability alters in a fundamental way the system bottleneck 
that limits the performance of the architecture. 

In particular, the possibility of storing half of the Web site 
information in main memory has a super-linear benefit on the 
system capacity that in our case improves of more than eight 
times. Storing even the remaining part of the Web site 
information in memory augments the system capacity of 
“just” an additional 30%. With different system architectures, 
the effects would be different, even if our experience leads us 
to conclude that the first half memory storage produces the 
main increment of the system capacity. The in-memory 
scenario does not improve the system capacity with respect to 

 
(a) Open Sockets             (b) CPU utilization          (c) Disk Activity 

Figure 7. Resource utilization on back-end node (in-memory scenario) 
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the partially in-memory scenario such as it has been done in 
the passage from the in-disk to the partially in-memory 
scenario. Indeed, the system for the partially in-memory 
scenario works for high request rates, but it is in very bad 
conditions that is, the disk and the CPU are really highly 
utilized, and the set of available sockets is almost exhausted. 
A platform where all the most important system resources are 
critically loaded is something that any system manager must 
avoid. In some sense, this situation is even worse than that 
shown by the on-disk and of in-memory scenarios where just 
the disk (or the CPU) is a clear system bottleneck in a context 
where the other resources are not critically loaded. 

VII. IMPACT OF NETWORK 
IMPROVEMENTS 

We now evaluate the impact of the trends of the network 
technology on the system performance and related effects on 
the system bottlenecks. Many parts of the Internet, including 
the last mile links, are being characterized by larger 
bandwidth, lower latency and lower packet losses, and this 
trend is likely to increase. 

For evaluating the consequences that this trend may have 
on Web-based services, we use the same testbed architecture 
and workload model of the previous section, with the addition 
of an emulator of WAN effects between the clients and the 
front-end node of the Web system. We consider the all in-
memory database and partially in-memory database scenarios, 
and two main network scenarios: well connected and badly 
connected clients. The experiments related to these scenarios 
lead to the four curves reported in Figure 8 where we show 
the results of a black-box testing. This figure reports the 90-
percentiles of the response times as a function of the number 
of requests reaching the Web site (i.e., client population). 

As expected, the quality of the connection has a direct 
impact on the overall response time. Passing from a large 
majority of clients that are badly connected to the opposite 
scenario has a twofold effect on performance: good network 

connectivity reduces the response time by an order of 
magnitude, and the Web system can serve a larger number of 
requests. 

It is interesting to observe that the network connectivity 
seems to have an impact on performance even more 
consistent than the possibility of having a memory-embedded 
Web site. The two couples of curve for badly connected 
clients are close, although the improvement of the all in-
memory scenario is the most sensible. The system capacity for 
the partially in-memory scenario in terms of managed 
requests increases by 50% (from 180 to 270 clients), while for 
the all in-memory scenario the increment reaches 83% (from 
180 to 330 clients). However, the real impact of a combined 
trend that improves network connectivity and augments the 
main memory size cannot be fully explained without a white-
box performance analysis that aims to identify the system 
bottlenecks. 

For the partially in-memory scenario, the resource 
utilization is not significantly modified by the characteristics 
of the network connections. The number of open sockets on 
the database server for both network scenarios remains the 
system bottleneck. Hence, we do not report the results for this 
memory scenario. 

If we focus on the all in-memory scenario, we can observe 
a clear modification of the system bottleneck depending 
whether we consider good or badly connected clients. In the 
latter case, the disk activity is low, and the bottleneck is 
related to the number of open sockets. In the former case, the 
bottleneck remains the CPU of the database server. 

Figure 9 shows the number of open sockets sampled during 
the experiment for both network scenarios. From this figure, 
it is immediate to get two results. First, the number of sockets 
simultaneously used by the database server is five times 
higher in the badly connected scenario with respect to the 
good connection case: on average, 20 vs. 105, where 105 is 
the maximum number of concurrent connections for the 
database. Second, in the badly connected scenario, all 
available socket descriptors at the database are used. The 

 
Figure 8.  Response time for different types of network 
connections and main memory size 
 

 
Figure 9.  Number of utilized sockets by the back-end server 
in the two network scenarios 
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exhaustion of the number of open sockets due to poor network 
connectivity is a phaenomenon that resembles the socket 
bottleneck caused by many delayed disk accesses. As for the 
delay introduced by the disk access, the connections between 
the application server and the database server last much 
longer in the badly connected scenario because of the network 
slowdown of client requests. We should consider that sockets 
are token-based resources that are not gracefully degradable. 
This means that, once the number of available sockets is 
exhausted, further requests to the database server must wait 
without receiving service until a token is freed. Hence, the 
contention due to accessing the limited pool of available 
sockets results in an additional queuing delay. This delay 
(waiting for a free socket) has the effect of further increasing 
the concurrency level of requests on the database. This leads 
to an amplification of the phenomenon that resembles 
thrashing. The macroscopic effect of socket shortage is the 
poor performance of the application server and back-end 
server components. 

The insight provided by the bottleneck analysis allows us to 
explain the similarity between the two performance curves 
shown in Figure 8 in the badly connected scenario for the 
considered memory cases. When the wide area network 
effects introduce a significant performance penalty, both the 
all in-memory and the partially in-memory scenarios are 
characterized by the same bottleneck due to socket 
exhaustion. 

Table 2 summarizes the bottlenecks for the four 
combinations of memory and network scenarios. It is worth to 
note that the bottlenecks due to socket exhaustion are likely to 
arise whenever a client request service is delayed, either by 
the disk or by the network. An important consequence, that 
we should consider if we want to improve the system 
capacity, is that increasing the CPU power and/or augmenting 
the main memory size for storing the entire database do not 
solve every performance problem. Indeed, a special attention 

on token-based resources is highly recommended especially 
because they are likely to be consumed in the case of high 
concurrent load. This may lead to poor performance even in 
over-provisioned systems with large amount of RAM and 
computational power. 

 

VIII. Related work 
The literature regarding the impact of technological trends 

on the performance of devices and services is scarce. One of 
the few examples is provided in [24], where the author 
discusses the state of the art of the late 1990’s CPUs and the 
latest technological trends of chip development. The work is 
interesting because it contains a precise estimate of how the 
CPU work frequencies are supposed to increase until 2012.  

Multiple papers compare different technologies for 
dynamic Web-based sites. For example, in [1, 10, 12, 17, 26] 
the authors evaluate the performance of J2EE and PHP 
implementations of the same e-commerce system. However, 
the performance comparison in these studies is limited to the 
scalability of each technology and does not focus on the 
impact of technological trends on the system bottlenecks, as 
carried out by our paper. Furthermore, all these studies share 
the common trait of focusing on a coarse grain performance 
analysis of the systems at most at the node level, with no 
evidence of the real causes behind poor performance. 
Conclusions are inferred either from indirect measurement or 
from coarse-grained system activity reports. On the other 
hand, our performance evaluation integrates both a coarse 
and a fine grain analysis to provide a deep insight on the 
causes of the system bottlenecks. 

Other studies illustrate different aspects of Web systems 
testing. For example, in [27, 14] a fine grained analysis of the 
performance on HTTP servers is provided. However, these 
studies focus on Web sites serving mainly static Web 
resources and do not take into account the complexity and the 
interactions of a Web site providing highly dynamic and 
personalized contents. 

There is no general consensus on the most useful 
performance indexes for the evaluation of a dynamic Web-
based system, although some effort has been put on their 
identification. For example, in [3] the authors study the 
performance of dispatching algorithms in multi-tier 
architectures, providing some insights into the choice of 
appropriate load monitoring indexes. They find out that the 
most critical load monitoring index is that associated to the 
bottleneck resource of the system. M. Dahlin [9] addresses the 
problem of using stale server load information in the context 
of distributed systems. The author proposes some algorithms 
for interpreting server state information based on its age that 
may help to improve the performance of dynamic Web-based 
systems. 

The effects of Wide Area Networks on Web server 
performance has been pointed out in [21, 5]. However, both 
studies are limited to a single Web server hosting static 
contents, and do not take into account the consequences of 
different client bandwidths on the performance of the entire 
Web system. This is a limit because our experiments have 
demonstrated that packet delays and losses have a great 
influence even on the performance of the back-end server. 

IX. Conclusions 
There is a close relationship among the bottlenecks 

 

 
PARTIAL  

IN-MEMORY 
All 

In-memory 

Well connected 
clients 

socket CPU 

Badly connected 
clients 

socket socket 

Table 2. System bottlenecks for the conidered memory 
and network scenarios 
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limiting the system performance and the hardware 
characteristics of the underlying platform. Hence, to achieve 
adequate performance improvement it is important to 
investigate the technology trends so to anticipate the types of 
interventions that should be undertaken at the operating 
system and server software level. 

 Our study is a first step towards this direction and gives 
some clear messages about the impact that current 
technological improvements concerning main memory and 
network capacity may have on performance and bottlenecks 
of Web-based services. In particular, we consider an e-
commerce Web site implemented on a multi-tier architecture, 
that is subject to a TCP-W like workload model. Throughout 
a large set of experiments for different memory and network 
scenarios, we confirm some intuitions and achieve other less 
expected results. In particular, we show how the bottlenecks 
limiting system performance change depending on the 
amount of main memory available at the server machines and 
on the characteristics of the network interconnection between 
the client and the Web system.  

This paper has shown that a clear understanding of 
technological trends and an analysis of their implications on 
Web systems help to foresee both present and future 
bottlenecks that hinder the performance of the Web-based 
services. Such a knowledge is also invaluable when it comes 
to choose the main interventions during system consolidation 
and capacity planning studies. 

 

References 
[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. 

Marguerite, K. Rajamani, and W. Zwaenepoel. Specification and 
implementation of dynamic web site benchmarks. In Proc. of the IEEE 5th 
Annual Workshop on Workload Characterization (WWC-5), Nov 2002. 

[2] M. Andreolini, M. Colajanni, R. Lancellotti, and F. Mazzoni. Fine grain 
performance evaluation of e-commerce sites. ACM Performance 
Evaluation Review, 32(3), Dec. 2004. Special Issue on E-Commerce. 

[3] M. Andreolini, M. Colajanni, R. Morselli. Performance study of 
dispatching algorithms in multi-tier Web architectures. In ACM 
SIGMETRICS Performance Evaluation Review, 30(2), pages 10-20, Sep 
2002. 

[4] Apache foundation, 2005, Apache httpd server - http://httpd.apache.org 
[5] P. Barford, M. Crovella. Measuring Web Performance in the Wide Area. 

In IMA “Hot Topics” Workshop: Scaling Phaenomena in 
Communications Networks, Minneapolis, Oct 1999. 

[6] V. Cardellini, E. Casalicchio, M Colajanni, P. S. Yu. The state of the art in 
locally distributed Web server systems. ACM Computing survey 
34(2):263-311, 2002 

[7] E. Cecchet, A. Chandra, S. Elnikety, J. Marguerite and W. Zwanapoel. 
Performance comparison of middleware architectures for generating 
dynamic Web content. In Proc. of 4th middleware conference, Jun. 2003 

[8] W. Chiu Design pages for performance, IBM High Volume Web Systems, 
2001 

[9] M. Dahlin. Interpreting Stale Load Information. In IEEE Transactions on 
Parallel and Distributed Systems, 11(10), Oct 2001. 

[10] R. C. Dodge, D. A. Menasce, and D. Barbara. Testing e-commerce site 
scalability with TPC-W. In Proc. Of 2001 Computer Measurement 
Group Conference, Dec. 2001. 

[11] S. Godard. Sysstat: System performance tools for linux OS, 2004. – 
http://perso.wanadoo.fr/sebastien.godard/. 

[12] X. He and Q. Yang. Performance evaluation of distributed web server 
architectures under e-commerce workloads. In Proc. of the 1st Int’l 
Conference on Internet Computing (IC’2000), Jun 2000. 

[13] S. Hemminger netem: Network emulator, 2005. – 
http://developer.osdl.org/shemminger/netem/. 

[14] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and performance 
improvement of the apache web server. International Journal of 
Computers and Their Applications, 8(4), Dec. 2001. 

[15] IOzone filesystem benchmark, 2005. – http://www.iozone.org/. 
[16] Java Technology. Java 2 platform,enterprise edition (J2EE), 2005 – 

http://java.sun.com/j2ee/index.jsp. 
[17] K. S. Juse, S. Kounev, and A. Buchmann. Petstore-ws: Measuring the 

performance implications of web services. In Proc. of the 29th Int’l 
Conference of the Computer Measurement Group (CMG) on Resource 
Management and Performance Evaluation of Enterprise Computing 
Systems -CMG2003, Dec. 2003. 

[18] G. Moore. Cramming more components onto integrated circuits. 
Electronics, 38(8), 1965. 

[19] D. Morse. In memory database Web server. Dedicated systems magazine, 
2000. 

[20] MySQL database server, 2005 – http://www.mysql.com/ 
[21] E. M. Nahum, M.-C. Rosu, S. Seshan, and J. Almeida. The effects of wide-

area conditions on www server performance. In Proc. of the 2001 ACM 
SIGMETRICS int’l conference on Measurement and modelling of 
computer systems, pages 257– 267, 2001. 

[22] PHP scripting language, 2005 – http://www.php.net/. 
[23] M. Rabinovich and O. Spatscheck. Web caching and Replication, 

Addison Wesley, 2002 
[24] U. Rude. Technological trends and their impact on the future of 

supercomputers. In International FORTWIHR Conference on HPSEC, 
Muenchen, Mar 1998. 

[25] Standard Performance Evaluation Corporation (SPEC). SPECweb2005 
suite - http://www.spec.org/benchmarks.html#web 

[26] L. Titchkosky, M. Arlitt, C. L. Williamson. A performance comparison of 
dynamic Web technologies. In SIGMETRICS Performance Evaluation 
Review, 31(3), pages 2-11, Dec 2003.  

[27] H. Xie, L. Bhuyan, and Y.-K. Chang. Benchmarking web server 
architectures: A simulation study on micro performance. In Fifth 
Workshop on Computer Architecture Evaluation using Commercial 
Workloads (CAECW-02), with HPCA-8, Feb 2002. 

 
Mauro Andreolini is currently a researcher in the Department of Information 
Engineering at the University of Modena, Italy. He received his master degree 
(summa cum laude) at the Univeristy of Roma, “Tor Vergata”, in January 2001, 
and the Ph.D. degree in computer engineering from the University of Roma “Tor 
Vergata” in 2004. In 2003, he spent eight months at the IBM T.J. Watson 
Research Center as a visiting researcher.  
His research focuses on the design, implementation and evaluation of distributed 
Web server systems, based on a best-effort service or on guaranteed levels of 
performance. He is a Standard Performance Evaluation Corporation (SPEC) 
technical responsible for the University of Modena. He has been in the 
organization committee of the IFIP WG7.3 International Symposium on 
Computer Performance Modeling, Measurement and Evaluation 
(Performance2002). For additional details, see: 
http://weblab.ing.unimo.it/people/andreoli 
 
Michele Colajanni is a full professor of computer engineering at the 
Department of Information Engineering of the University of Modena. He was 
formerly an Associate Professor at the same University in the period 1998-2000, 
and a Researcher at the University of Roma Tor Vergata. He received the Laurea 
degree in computer science from the University of Pisa in 1987, and the Ph.D. 
degree in computer engineering from the University of Roma “Tor Vergata” in 
1991. He has held computer science research appointments with the National 
Research Council (CNR), visiting scientist appointments with the IBM T.J. 
Watson Research Center, Yorktown Heights, New York. In 1997 he was 
awarded by the National Research Council for the results of his research 
activities on high performance Web systems during his sabbatical year spent at 
the IBM T.J. Watson Research Center.  
His research interests include scalable Web systems and infrastructures, parallel 
and distributed systems, performance analysis, benchmarking and simulation. In 
these fields he has published more than 100 papers in international journals, 
book chapters and conference proceedings. He has lectured in national and 
international seminars and conferences.  
Michele Colajanni has served as a member of organizing or program committees 
of national and international conferences on system modeling, performance 
analysis, parallel computing, and Web-based systems. He is the general chair of 
the first edition of the International Workshop on Advanced Architectures and 
Algorithms for Internet Delivery and Applications (AAA-IDEA2005). He is a 



 13

member of the IEEE Computer Society and the ACM. For additional details, see: 
http://weblab.ing.unimo.it/people/colajanni 
 
Riccardo Lancellotti received the Laurea and the Ph.D. degrees in computer 
engineering from the University of Modena and from the University of Roma 
“Tor Vergata”, respectively. He is currently a Researcher in the Department of 
Information Engineering at the University of Modena, Italy. In 2003, he spent 
eight months at the IBM T.J. Watson Research Center as a visiting research 
student.  
His research interests include scalable architectures for Web content delivery and 
adaptation, peer-to-peer systems, distributed systems and performance 
evaluation. Dr. Lancellotti is a member of the IEEE Computer Society. For 
additional details, see: http://weblab.ing.unimo.it/people/riccardo 


