Chapter 1

UTILITY COMPUTING FORINTERNET APPLICATIONS

Claudia Canali

University of Parma
Parco Area delle Scienze 181A, 43100 Parma, Italy

claudia@samba.ing.unimo.it

Michael Rabinovich

AT&T Labs - Research
180 Park Avenue, Florham Park, NJ 07932

misha@research.att.com

Zhen Xiao

AT&T Labs - Research
180 Park Avenue, Florham Park, NJ 07932

xiao@research.att.com

Abstract With the growing demand for computing resources and network capacity, pro-
viding scalable and reliable computing service on the Internet becomes a chal-
lenging problem. Recently, much attention has been paid to the “utility comput-
ing” concept that aims to provide computing as a utility service similar to water
and electricity. While the concept is very challenging in general, we focus our
attention in this chapter to a restrictive environment - Web applications. Given
the ubiquitous use of Web applications on the Internet, this environment is rich
and important enough to warrant careful research. This chapter describes the
approaches and challenges related to the architecture and algorithm design in
building such a computing platform.

Keywords: utility computing, Web applications, application servers, resource provisioning

1. Introduction

The past decade saw an exponential growth in the amount of computing
power, storage capacity, and network bandwidth. Various applications have
been developed that utilize the available computing resources to better serve
our society. For business big or small, the IT spending usually constitutes a
substantial part of the overall budget. For ordinary people, our daily lives have
become more and more computerized: we use computers to communicate with
friends, read news, manage finance, etc.

As the demand for computing is increasingly becoming an integral part of
our daily lives, a challenge that arises is how to provide reliable, highly avail-
able, and affordable computing service to everyone. The computing model as it
exists today is far from satisfying these needs. With the rapid decrease of hard-
ware expense, the labor costs have become a major expense in IT spending:
the typical monthly salary of a system administrator is higher than the price of
a group of high-end PCs. Moreover, as computer systems grow more and more
complex, the expertise required to maintain such systems increases rapidly. It
can be expensive for many businesses to retain the necessary computer staff.
For ordinary home users, dedicated system support is seldom available. If a
machine crashes, hangs, or is infected by viruses, significant effort is needed
to remedy the situation.

Ideally, we want computing service to be provided like a utility service sim-
ilar to water and electricity. Clearly, we understand the convenience of existing
utility services: if we want to get water, we only need to turn on the tap. Imag-
ine that the electric wires or water pipes in your home had to be “patched”
or “rebooted” every so often! A similar approach to computing, where main-
tenance complexity is outsourced and maintenance costs are shared across a
number of customers, would be very desirable.

While realizing the utility computing concept is a very challenging problem
in general, we restrict our scope in this chapter to Web applications. Given the
ubiquitous use of Web applications on the Internet, we believe that focusing on
these applications is an important step towards providing a more generic utility
computing service.

We can envision the Web-based utility computing model as a specialized
distributed system with “transparency” being a major design objective. Un-
der this model, a business can adjust the resource provisioning for its Internet
applications dynamically based on user demand. For example, if an applica-
tion suddenly becomes popular and receives a large number of user requests,
the application service provider will allocate more servers for this application
automatically to accommodate the surge in demand. Later, when the popu-
larity of the application decreases, these servers can be re-purposed for other
applications. Such a computing model can achieve a much higher degree of ef-

Utility Computing for Internet Applications 3

ficiency in resource utilization than a traditional model where each application
has its dedicated infrastructure. Moreover, the locations of the computing re-
sources are transparent to the end users. In other words, a service provider can
optimize its resource provisioning based on any criteria it considers important
(e.g. load, proximity, pricing, fault-tolerance, etc.) as long as the end users are
provided with a single image of reliable, uninterrupted service.

There are several issues that need to be addressed in developing a utility
computing system for Web applications:

= Application distribution : How does the system distribute instances of
the application across its network? Also, how does the system maintain
the consistency of different replicas of an application?

= Resource isolation Given that the platform runs multiple applications
on a shared platform, how can the applications be isolated from affecting
each other? For example, if one application becomes a victim to a denial
of service attack, this should not affect other applications.

= Application placement How much resources should be allocated to an
application and where (i.e., in which nodes within the platform) should
the application instances be placed? A variety of metrics can be con-
sidered here, including: user proximity, server load, billing, security,
relocation cost, customer preferences, DNS caching éffert..

m Request distribution: When a user sends a request, where should the
system direct the request? A naive approach is to always distribute re-
guests to the closest application servers. However, as we will see later,
consideration of other factors is necessary for the stability of the system.

The rest of the chapter is organized as follows. We first give an overview
of related work in Section 2. Then we describe a typical architecture for Web
applications in Section 3 and explore some alternative architectures for utility
computing in Section 4. Section 5 details our framework that allows sharing
of servers at the application level. Server clusters and the maintenance of ses-
sion state are discussed in Section 6 and 7, respectively. Section 8 discusses
algorithmic challenges and, in particular, the danger of vicious cycles. Section
9 concludes.

2. Related Work

Related research has been conducted in Web caching, content delivery, and
other distributed system areas. The literature is vast on caching and replication

1As we will see later in the chapter, residual requests due to DNS caching may hinder the removal of the
last replica for an application in a data center.

4

of Web objects, consistency maintenance of different replicas, and efficient
generation of dynamic responses, with too many sources to cite here. Of spe-
cial interest is work on “Edge Computing”, where the computation is pushed
to the edge of the network for better efficiency and performance. For example,
several proposals assemble a Web response dynamically at the edge from static
and dynamic components [7, 8]. Further, the authors and others have developed
the Client-Side Includesnechanism that pushes the dynamic assembly of the
Web response all the way to the browser [21]. As another example, Globule
is an object-oriented system that encapsulates content into special Globule ob-
jects for replication [18]. Each object can specify its own policy on distribution
and consistency maintenance.

Research in grid computing focuses on how to utilize networked comput-
ing resources in an efficient manner [10]. It shares many common objectives
with utility computing. In fact, an approach for implementing scalable Web
services using grid technology is described in [23]. Both grid and utility com-
puting represent important directions for further research. Grid technology
stresses support for sharing computing resources contributed by different or-
ganizations. Utility computing has a special emphasis on transparency and
convenience, characteristics necessary for common utility services. An im-
portant goal in utility computing is to offload the management of computing
resources from individual businesses to a separate organization. Similar to a
public utility company that generates electric power and delivers it though the
wires, a utility computing company manages the computing resources (e.g.
CPU, memory, storage, etc.) in a number of nodes (often referred to as “data
centers” in industry) and delivers the computing power through a high speed
network. Because implementing the general utility computing concept is diffi-
cult, existing approaches concentrate on providing specialized utility services
for particular resources, such as storage or database.

In our work, we are exploring a utility computing service that targets a par-
ticular class of applications, namely, the Internet applications. The specifics
of these applications simplify the problem, yet they are so widely used that
a solution targeting just these applications is worthwhile and interesting in its
own right. The following are the characteristics of Internet applications that
we exploit:

m Client-server computing. Internet applications are inherently client-server.
Invocations of an application never result in long-running tasks. These
invocation define natural boundaries in computation, and we can limit
resource reassignment to these boundaries. Thus, when reassigning re-
sources between applications, we do not need to migrate running tasks,
but rather install new instances of an application and uninstall old in-
stances of applications.

Utility Computing for Internet Applications 5

= Single carrier. Unlike general grid, we assume that the entire utility
computing platform is operated by a single organization which is trusted
by the application provider. This simplifies the issues of security and
privacy that are challenging in general grid computing [10]. This also
simplifies the accounting of resource usage and billing.

m Tiered architecture. Internet applications typically use a tiered architec-
ture that relies on centralized core database servers (see Section 3). This
simplifies data consistency issues.

3. A Tiered Architecture of Web Applications

|
) Web | App Corporate
Clients Gateways | Servers Datgbase
|
|

O\—
O
O— — |

|

Tier 1 1 Tier 2

/Z &|\

Figure 1.1. Athree tier architecture for Internet applications

Clients Web/App
Servers |
O\E Core App
‘ Servers
| Corporate
Database
\
Tier 1 | Tier 2

Figure 1.2. A two-tier architecture for Internet applications

Web applications are usually implemented in a tiered fashion. Typically,
three tiers are distinguished as illustrated in Figure 1.1: the first tier includes
Web gateways that accepts HTTP requests from users, the second tier contains
application servers which execute the application code, and the third tier is
database servers containing company data accessed or recorded by the appli-
cation. Often, the first tier servers act as both Web gateways and applications
servers and thus assume some functionality of the second tier. Therefore, the
system can be often viewed as consisting of just two tiers: the utility com-
puting tier and the back-end servers tier. This architecture is depicted on Fig-
ure 1.2. The utility computing tier includes servers that are operated by the
utility computing platform, with the common resources shared appropriately
between different services. The utility computing tier includes first and some
of the second tier servers. The back-end tier includes servers that are outside
the scope of the utility computing platform, with statically allocated resources.
These typically include back-end database servers (which are often located on
customer sites) and can also include some application servers.

Note that back-end database servers themselves could use some sort of dy-
namic resource sharing. However, this sharing is done using different mecha-
nisms and is outside the scope of this paper. An approach to improve scalability
of back-end databases is described in [22].

4. Architectural Alternatives for Utility Computing

Web/App II
Servers
-

Backend I

Servers

/ Control

/ “~ Communication

Application
Processing
Communication

——
Web/App I
Servers

Figure 1.3. A utility computing platform for Internet applications: high-level view

The general architecture at a high level is similar to a traditional content
delivery network (CDN) and is shown in Figure 1.3. It includes a request

Utility Computing for Internet Applications 7

distribution component which routes client requests to a particular applica-
tion server, the utility computing tier of servers, and back-end servers. We
assume that DNS-based request distribution, the prevalent mechanism in tra-
ditional CDNs, is used here as well. (There are multiple mechanisms for re-
quest distribution. See [4] for a survey.) Consequently, a Web application is
identified by the host name of its URLs, with specific requests and parame-
ters forming the remaining parts of the URLs. For example, we may have an
on-line stock broker application www.SellStocks.com and a specific request
https://lwww.SellStocks.com/buy?ticker=T.

Before invoking the application, a client needs to resolve the host name,
www.SellStocks.com in our example, to an Internet address. Thus, the client
sends a DNS query to the platform’s authoritative DNS server, which chooses
an appropriate server for this query and responds with the corresponding IP
address. The client will then contact the chosen application server. Note that
due to DNS response caching, several subsequent HTTP requests to this ser-
vice from the same client, as well as from other clients using the same client
DNS server, will also go to the same server. The server processes the request,
contacting backend servers using secure communication such as IPsec [13]. In
parallel, each server monitors the demand and performance of its applications.
The particular architecture shown contains the central coordinator that collects
these measurements and makes periodic policy decisions on replica placement
and request distribution. According to these decisions, the coordinator sends
instructions to application servers to install or uninstall applications, and re-
quest distribution rules to the authoritative DNS server. The coordinator may
have other functions such as maintaining consistency of application replicas
by propagating updates from the primary server. The specific functionality of
the coordinator can vary because some functionality can be implemented in a
distributed fashion by application servers directly [20].

Within this general framework, there are several alternatives for architect-
ing the system, depending on the granularity of resource sharing and on the
mechanism for request routing between application replicas within one plat-
form node.

In terms of requests routing mechanisms within a node, one possibility is
to allow the DNS server select individual application servers when respond-
ing to client DNS queries, and send client requests to these servers directly.
This is the alternative shown in Figure 1.3. Another possibility is to connect
the application servers at each node toad-balancing switcj19]. The au-
thoritative DNS server in this case selects only a node and sends clients to the
corresponding switch. The switch then load-balances received requests among
servers that have the requested application.

Turning to resource sharing, one can achieve fine-grained resource sharing
when the same application server (such as Tomcat [2]) is shared by multiple

8

applications. In this case, applications are installed by simply placing them
into appropriate directories on the application server. On the other extreme,
resource sharing may occur at the granularity of the whole servers, so each
server may belong to only one application at a time. Many application servers
offer clustering capabilities which simplify implementation of this approach.
Finally, one can use server-grained allocation and clustering technologies as
above, but employ virtual machine monitors to run multiple virtual application
servers on the same physical machine. We consider these alternatives in more
detail next.

5. Application Server Sharing

Server

[—— I/ !
|Appl|cat|on || |Appl|cat|0n |
l

[Metafile] Metafile
L L

[CGI scripts |

| Decision

Start-up P process
| Load reporter
Repl target |
Repl source |
|£p(@er_ _ Server
Local Agent Local
Agent
Central

Coordinator

Load-balancing
DNS

Figure 1.4. ACDN architecture

An application server can be configured to host multiple applications. In
this approach, creating an application replica requires simply putting the appli-
cation in an appropriate directory on the application server. We implemented
a prototype of this approach in our ACDN system [16, 20]. In particular, our
implementation showed that the entire system can be implemented on top of
the standard HTTP protocol and off-the shelf application servers. (We used
Apache [1] in our prototype, with Fast CGI [9] as the implementation mecha-

Utility Computing for Internet Applications 9

nism for applications.) Not only does this simplify the adoption of the system,
but it also allows easy traversal of firewalls and network address translation
devices, and hence permits the deployment of the system over public Internet.

The architecture of the system is shown in Figure 1.4. The system oper-
ates in cooperation between the central coordinator and local agents deployed
on individual servers. The local agents implement functionalities related to
application distribution. They contain sets of CGI scripts, and so are a pure
add-on to any standard Web server. Before starting to use a server, the cen-
tral coordinator invokes itstart-up script This script forks alecision process
that periodically examines every application on the server and decides if any
of them must be replicated or deleted. This is due to the fact that replica place-
ment decisions in ACDN are distributed among individual servers: each server
makes decisions about the applications that it currently deploys based on its
own local usage.

The global central coordinator keeps track of application replicas in the sys-
tem, collects periodic load reports from servers (by periodically invoking the
load reporter scripton each server), recomputes request distribution policy,
communicates this policy to the load-balancing DNS server, and maintains
application replicas on all servers consistent with the primary copy (by period-
ically invoking theupdater scripton each server). The coordinator also gives
permission to servers to delete underused application replicas, which ensures
that at least one replica of each application remains in the system even in the
face of simultaneous decisions to delete the application by all servers. Finally,
the central coordinator also answers queries from servers for the least-loaded
server in the system. The servers use this information in some of their replica
placement decisions.

Although the central coordinator is theoretically a bottleneck, this is not a
concern in practice since the amount of processing it does is minimal; it can
in fact be physically co-located with the DNS server. The central coordinator
is also a single point of failure. However, it is not involved in processing
user requests. Thus, its failure only leads to a stop in application migrations
or replications and does not affect the processing of requests by the existing
replicas. Furthermore, the central coordinator’s state can be reconstructed upon
its recovery without a halt to processing of user requests.

5.1 Application Distribution Framework

We are not aware of any off-the-shelf support for the application distribution
framework with application server sharing. Thus, the system must implement
the entire framework itself. The ACDN implementation is based on the concept
of a metafile, inspired by ideas from the area of software distribution such as
the technology by Marimba Corp. [11].

10

<FILE>

/home/apps/maps/query-engine.cgi 1999.apr.14.08:46:12
</FILE>
<FILE>

/home/apps/maps/map-database 2000.0ct.15.13:15:59
</FILE>
<FILE>

/home/apps/maps/user-preferences 2001.jan.30.18:00:05
</FILE>
<SCRIPT>

mkdir /home/apps/mapping/access-stats

setenv ACCESS_DIRECTORY /home/apps/maps/access-stats
</SCRIPT>

Figure 1.5. An example of a metafile

Conceptually, the metafile consists of two parts: the list of all files compris-
ing the application along with their last-modified dates; andinitealization
script that the recipient server must run before accepting any requests. Fig-
ure 1.5 provides an example of a metafile that represents a map-drawing ap-
plication consisting of three files: an executable file that is invoked on access
to this application and two data files used by this executable to generate re-
sponses. The metafile also contains the initialization script that creates a direc-
tory where the application collects usage statistics and sets the corresponding
environment variable used by the executable. The initialization script can be
an arbitrary shell script. When the initialization script is large, the metafile can
include just a URL of the file containing the script. The metafile is treated as
any other static Web page and has its own URL.

Using the metafile, all the tasks of the application distribution framework
can be implemented over standard HTTP. The process of replica creation is
initiated by the decision process on an ACDN server with an existing replica.
It involves thereplication target scripon the target server and theplication
source scriptt the source server. Once the replication is complete, the replica
target script informs the central coordinator about the new application replica.
The central coordinator recomputes its request distribution policy based on the
new replica set and sends the new policy to the DNS server.

Replica deletion is initiated by the decision process on a server with the
application replica. This server first must notify the central coordinator of its
intention to delete its replica. The coordinator in turn needs to notify the DNS
server to exclude this replica from its request distribution policy. After that,
the coordinator can grant the ACDN server the permission to delete the replica.
The actual deletion, however, happens after a delay corresponding to the DNS
time-to-live (TTL) value associated with the domain name of the application.

Utility Computing for Internet Applications 11

This is to accommodate residual requests that might arrive due to earlier DNS
responses still cached by the clients.

Application migration can be implemented as replication followed by dele-
tion. We will describe consistency maintenance in the following subsection.
More details on these tasks in application distribution can be found in [20].

5.2 Consistency Maintenance

Maintaining consistency of application replicas is important for the correct
functioning of our system. There are three problems related to replica consis-
tency:

= Replica coherency:An application typically contains multiple compo-
nents whose versions must be mutually consistent for the application to
function properly. A replica for an application can become incoherent
if it acquired updates to some of its files but not others so that there is a
version mismatch among individual files.

= Replica staleness:A replica for an application can become stale if it
missed some updates to the application.

= Replica divergence:Replica divergence occurs when multiple replicas
for an application receive conflicting updates at the same time.

The metafile described earlier provides an effective solution to the replica
staleness and coherency problems. With the metafile, whenever some ob-
jects in the application change, the application’s primary server updates the
metafile accordingly. Other servers can update their copies of the application
by downloading the new metafile as well as all modified objects described in
the metafile. This ensures that they always get the coherent new version of the
application. Thus, the metafile reduces the application staleness and coherency
problems to the cache consistency of an individual static page — the metafile.

In our system, application updates are performed asynchronously with re-
quests arrivals: a server keeps using the current version of an application to
serve user requests until the new version is ready. This is to avoid a prohibitive
delay to the user perceived latency that will otherwise occur. If an application
has stringent consistency requirements, it may use application level redirec-
tion to redirect user requests to the server with the most recent version of the
application.

The final problem related to replica consistency is replica divergence. It
happens when an application is updated simultaneously at multiple replicas.
In general, there are two types of updates:

» Developer updates:These are updates introduced by the application au-
thors or maintainers. It can involve changes to the application code (e.g.

12

software upgrades or patches) or to the underlying data (e.g. updates of
product pricing).

m User updates: These are updates that occur as a result of user accesses
(e.g. updates during e-commerce transactions). It involves changes to
the data only.

Our system avoids replica divergence by restricting developer updates to
only one application replica at any given time. This replica is calledptire
mary replica for the application. It ensures that all the updates to the applica-
tion can be properly serialized. The coordinator keeps track of the location of
the primary replica for each application. The idea is similar to classic token-
based schemes where a token circulates among a group of servers and only
the server that holds the token can perform updates. For updates that occur
as a result of user accesses, we either assume they can be merged periodically
off-line (which is the case for commutative updates such as access logs) or that
these updates are done on a shared back-end database and hence they do not
violate replica consistency.

53 Discussion

One advantage of application server sharing is that replication of an applica-
tion is often very quick. Indeed, unless the deployment of a new application in-
stance requires server restart (which may happen when the application requires
server reconfiguration, such as changing a log file), it involves little more than
just copying and unpacking a tar file with the application components. In our
prototype, this takes in the order of single seconds. Another advantage is the
efficient utilization of server resources. When one application does not utilize
the server, spare capacity can be used by another application.

Unfortunately, application server sharing also has a very serious drawback,
namely, poor resource isolation. Different applications sharing the same server
can affect each other in a variety of undesirable ways. If one application falls a
victim to a denial of service attack, other applications on the same server will
be affected. If one application fails and manages to hang the computer, other
applications will be affected (this is referred to as fault isolation). No mat-
ter how well an application is hardened against hacker break-ins, its resiliency
may be affected by a less secure application that shares the same server. Fi-
nally, billing and resource usage accounting is more complicated with server
sharing. Although much work has been done on addressing these issues, they
continue to impede this approach.

Utility Computing for Internet Applications 13

6. Server Clusters

To avoid the poor resource isolation of application server sharing, the plat-
form can always run each application instance on its own dedicated application
server. The dedicated server approach further allows two main alternatives, de-
pending on whether or not each application server runs on a dedicated physical
machine. We consider these alternatives next.

6.1 Physical Server Clusters

In this approach, the system runs each application replica on a dedicated ap-
plication server, and each application server on a dedicated physical machine.
In other words, the system performs resource allocation at physical server gran-
ularity. This scheme allows almost absolute resource isolation. Furthermore,
this approach is well-supported by existing server cluster technologies includ-
ing WebLogic [3], WebSphere [12], and Oracle’s Application Server 10g [17].
In particular, server clusters implement consistency management for the appli-
cation, and quick fail-over capabilities with session state replication discussed
later in Section 7. For example, WebLogic allows all replicas of an application
that run within the same node to form a cluster, and all clusters of this appli-
cation to form a singlelomain Then WebLogic can ensure the consistency of
all the application replicas in the domain, while performing fast fail-overs only
among servers within each cluster.

On the other hand, this scheme is characterized by slow resource allocation.
Indeed, moving a physical machine from one application cluster to another
involves restarting the application server on this machine in the new cluster,
which may take around a minute in our experience on a popular commercial
application server. Another disadvantage of this scheme is that it may result
in poor resource utilization. An application replica ties up an entire physical
machine. So if this application does not fully utilizes the machine, the spare
capacity is wasted.

6.2 Virtual Server Clusters

One can try to combine the advantages of the application server sharing and
physical server sharing by utilizing the virtual machine technology. This tech-
nology allows severabirtual machinesto share the same physical machine.
Each virtual machine provides an illusion of a dedicated machine to the operat-
ing system and any application running on it. In fact, different virtual machines
sharing the same physical machine can run different operating systems. The
operating systems running on the virtual machines are cglliedtoperating
systems, and the operating system that runs directly on the physical machine
and enables the virtual machine sharing is callechttetoperating system.

14

With the virtual machine technology, one can still run each application
replica on a dedicated application server, and use existing clustering technolo-
gies to facilitate replication and fail-over. However, each application server
can now run on a virtual rather than a physical machine. Virtual machines al-
low very good resource and fault isolation, and at the same time permit good
resource utilization, because the physical resources are shared among virtual
machines (and hence applications).

Yet this approach is not without its own limitations. A technical issue is
the overhead of running a guest operating system on top of the host operat-
ing system. A study using an open source implementation of a virtual ma-
chine monitor found that system calls on a Linux guest OS running on top of
a Linux host OS experienced up to a factor of 30 slowdown [15]. The same
study found that sample applications ran 30-50% slower in this environment.
Commercial virtual machine implementations such as VMWare apparently are
more efficient, with performance penalties within single percentage points on
standard benchmarks [6]. However, these products are expensive — the price
of a VMWare license can be higher than that of a typical physical machine.
Thus, the economy from better resource utilization can only be realized if a
significant number of virtual machines can be multiplexed on the same physi-
cal server.

7. Session State Maintenance

Many Internet applications require prolonged sessions between the client
and the server, which span multiple HTTP interactions. Figure 1.6 shows an
example of a user browsing an on-line travel site. A session in this case may
involve a sequence of interactions including flight and hotel inquiry, filling out
the itinerary and customer profile, and finally completing the payment. Each
inquiry depends on the context of the session, and the server must maintain
session state from one interaction to the next. In the simplest case, this state
can be maintained on the client using cookies. However, in most cases, the
session state is too large or too valuable to hand off to the client, and servers
maintain it themselves.

The need to maintain session state poses two challenges to the utility com-
puting platform. First, for the duration of the session, requests from the same
client must go to the same server that holds the session state. We refer to this
behavior aglient stickiness Second, fulfilling the promise of high reliabil-
ity requires the recovery of the session state from a failed server. Being able
to move from a failed to an operational server in the middle of a session is
referred to asession fail-over

The basic idea to address both problems is the same: it involves encoding
the identity of the server that has the session state into the response to the

Utility Computing for Internet Applications 15

Initial GET request

front page of on-line travel site

flight & hote inquries
list of candidate itineraries

°
|

customer profile on file

you.

payment processed. thank

Figure 1.6. An example session of an on-line travel Web site.

client and making the client include this information in subsequent requests.
The easiest way to accomplish this is through the use of cookies as illustrated
in Figure 1.7 (top diagram): when a server receives the first request of the
session, it chooses a secondary server with the application and replicates the
session state to the secondary server. In response to the client, the original (also
called the primary) server sets a cookie, which records the identity of both the
primary and secondary servers for this session.

Because clients cache DNS responses and load-balancing switches (if used)
try to select the same server for the same client, client stickiness will be up-
held most of the time. However, should a different server receive a subsequent
request in the session, the request’s cookie will have all the information to re-
solve the situation. If the original server is up, the new server can use an HTTP
redirect to send the client to the original server and thus enforce client stick-

16

request

> Server1l

Client l (original)
response ~

D
Set-Cookie(original: 1; secondary: 2) =2
8

[¢]

12}

=}

Y Y VY@

Server 2
(secondary),

. ._3
transfer state| gerver 2

(secondary)

Figure 1.7. Support for client stickiness and session fail-over.

iness? If the original server is down, the new server can implement session
fail-over by obtaining the session state from the secondary server and taking
over processing of this and all subsequent requests for this session. This is il-
lustrated in the bottom diagram of Figure 1.7. (The cookie is modified accord-
ingly to record the identity of the new server in place of the original server.)
Because session fail-over requires tight communication between the original
and the secondary servers for continuous state updates, it is typically only used
between servers in the same site.

2The only subtlety is that the new server must specify the (virtual) IP address of the original server in the
redirect response. Indeed, if the new server used the host name for the redirection, the client would have to
resolve this name again, and the cycle would repeat.

Utility Computing for Internet Applications 17

8. Algorithmic Challenges

As already mentioned, a utility computing platform for Internet applications
involves two main algorithms: the algorithm for application replica placement
and the algorithm for distributing requests among those replicas. Designing
these algorithms involves several alternatives. The first choice has to do with
the extent of central coordination in the algorithm. The architecture of Figure
1.3 assumes a central point for request distribution (DNS) and so it is natural
to assume that the request distribution algorithm be centralized. However, the
choice is less clear for the replica placement algorithm. While a centralized
algorithm has a view of the entire system and can result in highly optimized
placement, a distributed algorithm can be more scalable.

Within the centralized approach to replica placement, another fundamental
choice is between a greedy incremental approach and a global optimization
approach. The greedy approach utilizes feedback from monitoring the appli-
cation to make incremental adjustments in replica placement. The global opti-
mization approach uses monitoring results to periodically solve a mathematical
optimization formulation from scratch, independent of the current configura-
tion [14]. In our work, we explored a distributed approach to replica placement,
where each server examines its own access log and decides whether any of its
applications should be migrated or replicated to another server [20].

In this chapter, rather than describing a specific algorithm, we concentrate
on an interesting issue faced by any such algorithm, namely, the possibility of
vicious cycles. Because the issues we discuss are independent of the number
of servers in each node of the platform, we assume for simplicity that each
node contains only one server.

8.1 Vicious Cycles in Request Distribution

As an example of vicious cycles in request distribution, consider a natural
request distribution algorithm as follows:
The authoritative DNS server resolves a query to the closest non-overloaded

server, where overload is determined by a load threshold, e.g., 80% server uti-
lization.

Assume that the system periodically reconsiders the request distribution pol-
icy based on performance observed prior to the decision. This simple and intu-
itive algorithm can easily lead to oscillations due to a herd effect [5]. Consider,
for example, two servers with an application replica and assume that all de-
mand comes from the vicinity of server 1 (see Figure 1.8, top diagram). At
decision time 1, the system realizes that server 1's utilization is over 80% and
stops using it for future requests. Consequently, utilization of server 1 declines
and by the next decision tint@ drops below 80%. At time2 the system finds
that server 1 is no longer overloaded and starts using it again for all future re-

18

H 1B (1 1 [] Load
- = Threshold
g g u
- — -
Time Time
t1 t2 t3 t1 2 t3
H 1B (1 1 [] Load
b=l Threshold
E — g
S - Demand
Time — Time Threshold
tl 2 3 t1 2 t3
- (1 1 [] Load
e %‘. Threshold
o Q. Q g
8 <! L= o
1 — b= =] 4 By
g (8] 2] Time g Ti
< || |< < ime
t1 t2 t3 t1 t2 t3

Figure 1.8. Vicious cycle examples in request distribution (top diagram), replication (middle
diagram), and migration (bottom diagram).

guests. Its load increases and by the next decision time exceeds 80%, and the
cycle repeats. As a result, the request distribution is never optimal: either too
many requests are sent to an overloaded server 1, or too many requests are sent
to a distant server 2.

8.2 Vicious Cycles in Replica Placement

Replica placement algorithms also face a danger of vicious cycles, even
with resource allocation at the whole server granularity. Assume for example
that content providers are billed based on resource usage and, in particular,
on server usage, a natural billing model for the utility computing paradigm.
Then, customers will want to keep the number of application replicas at the
minimum, and it is natural for them to specify how much demand for a given
application replica warrants the extra costs of having the replica. We will refer
to this demand as th@emand thresholdAt the same time, customers do not
want the servers running their application to be overloaded, and hence it is

Utility Computing for Internet Applications 19

natural for them to specify (or rely on the platform’s default values of) a load of
existing servers that should trigger the deployment of additional replicas. We
will refer to this load as théad threshold The demand threshold is expressed

in such units as request rate or traffic volume, and the load threshold in CPU
or memory utilization. Normally, the load threshold governs overload-induced
replication and demand threshold affects the proximity-induced replication.

However, if the two thresholds are not carefully coordinated, the scenario
illustrated on Figure 1.8 (middle diagram) may occur. As in the previous ex-
ample, assume that all demand comes from the proximity of server 1, and the
demand overloads this server. Then, the algorithm may trigger replication. If
no spare server is available in server 1's platform node, the new replica may be
created elsewhere. However, because the new replica is more distant to the de-
mand, the request distribution favors the old replica and sends only excessive
load to server 2. Then, depending on the computational requirements of the
application, the excessive load may translate to the request rate that is below
the demand threshold. If this happens, the replica placement algorithm can
later drop the new replica, reverting to the initial configuration.

The bottom diagram in Figure 1.8 illustrates another vicious cycle that may
occur in a platform with shared servers. Again, consider a platform with two
servers, server 1 and 2, where server 1 is shared between two applications.
Assume all demand for both applications comes from server 1's own region,
and its overall load is above the load threshold. Further, consider the case
where the demand on each application separately does not exceed the demand
threshold, and so replication is not possible. To offload the server, the system
may resort to migration, for example, moving application 1 to server 2. Once
this is done, neither server is overloaded. Then, the next time the application
placement is considered, the system may migrate application 1 back to server
1 because this would improve client proximity.

To prevent such cycles, the replica placement algorithm must predict how
dropping a replica would affect the load on remaining servers in the second
example above, or how migrating a replica would affect the load on the recipi-
ent server in the last example. Because the load on individual servers depends
on request distribution algorithm, direct load prediction introduces an interde-
pendency between the request distribution and replica placement algorithms.
Such prediction is especially difficult for fine-grained server sharing. Indeed,
the load imposed by an application replica on its server depends on the load
distribution among all application replicas, and the load distribution depends
on the aggregate server load. Thus, the prediction of load due to one applica-
tion may depend on other applications sharing the same servers.

20

9. Conclusion

This chapter focuses on the issues and challenges in building a utility com-
puting service for Web applications. We described a typical architecture for
Web applications and discussed some alternatives in designing a utility com-
puting platform for running these applications. In particular, we discussed
tradeoffs in various approaches to resources sharing in this environment, and
the issue of session state maintenance, the issue that is very important in prac-
tice but often overlooked in research in the Web performance arena. We also
presented some fundamental algorithm issues in building such a platform,
namely, how to avoid vicious cycles during request distribution and applica-
tion replication.

References

[1] The Apache HTTP Server Projedittp://httpd.apache.org

[2] The Apache Jakarta Projetittp://jakarta.apache.org/tomcat

[3] BEA Web Logic. http://www.bea.com

[4] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Dynamic load
balancing on web-server systeniSEE Internet Computing3(3):28-39,
1999.

[5] M. Dahlin. Interpreting stale load informationlEEE Transactions on
Parallel and Distributed System$1(10):1033-1047, October 2000.

[6] Murthy Devaraconda. Personal Communication.

[7] Fred Douglis, Antonio Haro, and Michael Rabinovich. HPP: HTML
macro-preprocessing to support dynamic document cachirigrobeed-
ings of the USENIX Symposium on Internet Technologies and Systems
pages 83-94, December 1997.

[8] ESI-Accelerating E-business Applicatiottp://www.esi.org/

[9] FastCGl.http://www.fastcgi.com/

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En-
abling scalable virtual organizationsiternational J. Supercomputer Ap-
plications 15(3), 2001.

[11] A. Van Hoff, J. Payne, and S. Shaio. Method for the distribution of code
and data updates. U.S. Patent Number 5,919,247, July 6 1999.

[12] IBM WebSphere Software Platform.
http://www-306.ibm.com/software/infol/websphere .

[13] IPsec.http:/iwww.ietf.org/html.charters/ipsec-charter.html

[14] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric
facility location and k-median problems using the primal-dual schema
and lagrangian relaxatiodournal of the ACMMarch 2001.

Utility Computing for Internet Applications 21

[15] Xuxian Jiang and Dongyan Xu. SODA: A service-on-demand architec-
ture for application service hosting utility platforms. Rroceedings
of the 12th IEEE International Symposium on High Performance Dis-
tributed ComputingJune 2003.

[16] Pradnya Karbhari, Michael Rabinovich, Zhen Xiao, and Fred Douglis.
ACDN: a content delivery network for applications. Rroceedings of
ACM SIGMOD (project demopages 619-619, June 2002.

[17] Oracle Application Servehttp://www.oracle.com/appserver

[18] Guillaume Pierre and Maarten van Steen. Globule: a platform for self-
replicating Web documents. Proceedings of the 6th International Con-
ference on Protocols for Multimedia Systemages 1-11, October 2001.

[19] M. Rabinovich and O. SpatscheckWeb Caching and Replication
Addison-Wesley, 2001.

[20] Michael Rabinovich, Zhen Xiao, and Amit Aggarwal. Computing on the
edge: A platform for replicating Internet applications. Rroceedings of
the Eighth International Workshop on Web Content Caching and Distri-
bution, September 2003.

[21] Michael Rabinovich, Zhen Xiao, Fred Douglis, and Chuck Kalmanek.
Moving edge-side includes to the real edge—the client®rbteedings
of the 4th USENIX Symposium on Internet Technologies and Systems
March 2003.

[22] Swaminathan Sivasubramanian, Gustavo Alonso, Guillaume Pierre, and
Maarten van Steen. GlobeDB: Autonomic data replication for web ap-
plications. InProceedings of the 14th International World Wide Web
Conference2005.

[23] Ryoichi Ueda, Matti Hiltunen, and Richard Schlichting. Applying grid
technology to Web application systems.RAroceedings of the IEEE Con-
ference on Cluster Computing and Griday 2005.

