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Abstract

In a world where many users rely on the Web for up-to-date personal and business informa-
tion and transactions, it is fundamental to build Web systems that allow service providers to
differentiate user expectations with multi-class Service Level Agreements (SLAs). In this paper
we focus on the server components of the Web, by implementing QoS principles in a Web-server
cluster that is, an architecture composed by multiple servers and one front-end node called Web
switch. We first propose a methodology to determine a set of confident SLAs in a real Web clus-
ter for multiple classes of users and services. We then decide to implement at the Web switch
level all mechanisms that transform a best-effort Web cluster into a QoS-enhanced system. We
also compare three QoS-aware policies through experimental results in a real test-bed system.
We show that the policy implementing all QoS principles allows a Web content provider to guar-
antee the contractual SLA targets also in severe load conditions. Other algorithms lacking some
QoS principles cannot be used for respecting SLA constraints although they provide acceptable
performance for some load and system conditions.
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1 Introduction

The Web is becoming a business-oriented media and the preferred interface for the most recent
information systems. Hence, it is always more important to design and implement systems that are
able to differentiate the performance offered to users and services. Such systems could accommodate
heterogeneous application requirements and user expectations, and permit differentiated pricing for
content hosting or service providing. For example, economic transactions are more important than
simple browsing, and internal or premium service users may expect a better treatment.

A significant amount of research on Quality of Service (QoS) has focused on the network infras-
tructure including protocols, routers and Web caching. However, network QoS alone is not sufficient
to support end-to-end QoS. To avoid the situation where high priority traffic reaching a server is
dropped at the server side, the system hosting the Web site should be enhanced with mechanisms
and policies for delivering end-to-end QoS (at least) to some classes of users and services. Although
the ultimate challenge for the research in this field is to combine network with server QoS, in this
paper we consider the server side of the Web system. Hence, we assume that network congestion
problems are solved elsewhere, and client issues (such as insufficient performance of the browser,
badly connected client machine) are outside the control of the Web service provider.

We describe the design, implementation and experiments of one of the first cluster-based pro-
totype implementing the so called “Quality of Web-based Services” (QoWS) principles that are
inspired by the well known network QoS principles: service classification, admission control, per-
formance isolation, and high resource utilization. In particular, we apply the QoWS principles to
a Web site that is hosted on a system platform consisting of locally distributed Web server nodes,
namely Web-server cluster or Web cluster in short. With a simple best-effort platform, the only
way to guarantee predictable service levels and to respond to congestion peaks is to over-provide
system resources. By using QoWS mechanisms, we show that a variety of Web services can be
deployed with high confidence and efficiency to selected classes of users.

QoWS-enabled systems for Web-based services have been recently proposed for single and mul-
tiple servers platforms. For a Web site hosted on a single server node, the main actions focus on
scheduling algorithms and resource management of server components, both at the HTTP server
and operating system level [5, 7, 13, 21, 25]. Most results for QoWS-enabled clusters consider Web
content hosting that is, multiple Web sites co-located on the same platform [4, 22]. Instead, in this
paper we investigate mechanisms and policies for a cluster-based system that hosts one popular
Web site. Few results exist on this last topic [12, 19, 26] and all of them aim to compare the
proposed QoWS-aware policy against a not QoWS-enabled Web cluster, typically through some
simulation model instead of a prototype as done in this paper.

Given a Web cluster that provides static and dynamic contents, we first propose a methodology



to determine a set of confident multi-class Service Level Agreements (SLAs). We then describe the
implementation (at the Web switch level of the Web cluster) of some QoWS-aware policies that
adapt the basic QoS principles to the server side. We demonstrate that in our QoWS-enhanced
Web cluster the performance for both static and dynamic services conform to the pre-determined
set of SLAs, when all QoWS principles are implemented. Indeed, the policies that do not satisfy
some QoS principle can still provide some acceptable performance results; however, they are not
able to guarantee SLA requirements for different load and system conditions.

The remainder of this paper is organized as following. Section 2 focuses on the main compo-
nents of a Web cluster architecture and the modules of the prototype system. Section 3 describes
the workload model and main characteristics of the benchmarking tool. Section 4 introduces our
methodology for the determination of SLA targets in a given Web cluster, and applies the method-
ology to the test-bed prototype. Section 5 discusses some policies and mechanisms that enhance
the Web cluster with QoWS principles. The experiments in Section 6 aim to verify how the imple-
mented QoWS policies behave when the server components of the Web cluster are subject to load

stress testing. Finally, Section 8 presents some concluding remarks.

2 Web system platform

We consider a multiple node architecture, namely Web cluster, as a basic platform where to in-
troduce QoWS policies and mechanisms. A Web cluster refers to a Web site publicized with one
hostname that uses two or more server machines housed together in a single location to handle user
requests. A Web cluster has typically a front-end component that acts as a network representative
for the Web site. In literature, this component is denoted through various definitions. In this
paper, we call it Web switch. The distributed architecture of the cluster is hidden to the HTTP
client through the unique Virtual IP (VIP) address that the Web cluster provides to the external
world This address corresponds to the IP address of the Web switch. The primary and secondary
DNS servers for the Web site always translates the site name into the IP address of the Web switch,
which through this mechanism receives all inbound packets from clients. Besides the Web switch
node, the Web cluster consists of HT'TP servers connected to the back-end nodes through a high
speed LAN. The Web switch includes a dispatching algorithm to select the Web server node best
suited to respond, and a dispatching mechanism to route the client request to the chosen node.
The Web switch can operate client request assignment at layer-4 or layer-7 of the OSI protocol
stack. A layer-4 Web switch is content information blind, because it determines the target Web
server when the client establishes the TCP connection, before sending out the HT'TP request. On
the other hand, a layer-7 Web switch is content information aware because it first establishes a

complete TCP connection with the client and then examines the HT'TP request content (URL)
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Figure 1: Web cluster architecture with a layer-7 Web switch.

before taking any dispatching or QoWS-related decision. In one-way architectures, client requests
reach the Web switches, but responses flow through another network connection, while in two-way
architectures, both requests and responses pass through the Web switch. A complete survey about
Web cluster architectures is in [11].

Here we describe the prototype implementation of a two-way Web cluster with layer-7 switch,
that we will enrich with the QoWS mechanisms described in Section 5. Figure 1 shows the logical
architecture of the Web cluster architecture, where the Web switch implements some access control
on requests, the Web server and application server tier replies to static and dynamic requests,
respectively. The implementation of the Web cluster is based on off-the-shelf hardware and software
components. The prototype cluster is made up of a Web switch, Web servers and back-end servers.
They are all equipped with a Linux operating system (kernel release 2.4.12). Apache 1.3.12 is
used as the Web server software, while some CGI applications in PHP have been implemented
to emulate the dynamic page support and its loads. The layer-7 Web switch is implemented on
a dedicated machine. Different mechanisms were proposed to implement a layer-7 Web switch
at various system levels. The most efficient solutions are the TCP hand-off [23] and the TCP
splicing [14] that are implemented at the kernel level. (Aron et al. clearly show that TCP hand-
off outperforms TCP splicing techniques [4].) The application layer solutions are less efficient
than kernel level mechanisms, but their implementation is more portable and sufficient for the
purposes of this paper, that is focused more on QoWS mechanisms and algorithms than on Web
switch performance. Among the application level solutions we select the reverse proxy approach
proposed in [17] that is based on the Apache Web server software. This mechanism allows us to
implement and test any layer-7 QoWS-aware algorithm without modifications at the kernel level,
thus enhancing the portability of the proposed solutions. On the Web switch node, the Apache
Web server is configured as a reverse proxy through the mod_prozy and mod_rewrite modules [3]
providing the proxy serving and URL rewrite engine mechanism, respectively. Below, we give some

details about the functionality of these two modules.



mod _proxy implements the proxy and reverse proxy functionalities in the Web switch for the pro-
tocols FTP, CONNECT(SSL), HTTP /0.9, HTTP/1.0 and HTTP/1.1. The mod_proxy mod-
ule basically builds a new URL on the basis of the information provided by the mod_rewrite
that is, the name of the designed server; it forwards, as a prozy request, the incoming request
to the appropriate Web server; it modifies the header of the HT'TP response provided by the

Web server, by changing the Web server name references.

mod_rewrite provides all services related to the URL rewriting mechanism. It uses a configuration
directive that permits to intercept an incoming URL the format of which matches a known
pattern. This functionality is fundamental to realize request/user classification, content-aware
access control and request routing. The rewriting mode may be static (if we use a lookup
table) or dynamic (if we use a software module that communicates with the Apache Web
server through the stdin/stdout file handle). The dynamic rewriting mode guarantees the
highest flexibility to the Web switch. We use this method because it permits to implement
the dispatching and QoWS algorithms in a external module (this allows communications with
the load monitors running on the Web server nodes, and the possibility to change the content-
aware dispatching policy at run time). Finally, it specifies, through a dedicated flag, if the
rewrite packet needs to be forwarded directly to the Web server or if it needs to be rewritten

again.

The dispatcher/QoWS module communicates with the rewriting engine, which is provided by
the mod_rewrite, over its stdin and stdout file handlers. For each map-function lookup, the dis-
patcher/QoWS module receives the key to lookup as a string on stdin. After that, it has to return
the looked-up value as a string on stdout.

For QoWS purposes, the Web switch requires information about the server load. Hence, we
implement on each server a load monitor that is an application level module dedicated to collect,
elaborate and send server load state information to the collector module running on the Web
switch. The load monitor integrates operating system performance evaluation tools (such as iostat)
and custom programs that get information from the proc file system. It is a flexible module
that, depending on the administrator choice, can collect various system load information, such as
CPU, disk and memory utilization, number of active connections and combinations of them. For
our experiments we used the number of active HTTP connections as the main load metric, by
distinguishing those for static and dynamic page requests, respectively.

The load monitor of a Web server periodically sends the load state information to the collector
module running on the Web switch. The communication between each load monitor and the
collector module uses a direct UDP connection on a dedicated channel (one channel for each Web

server). The frequency of messages received by the collector over these channels is also used as a



hearth-bit signal. Web servers not sending information are considered unreachable or overloaded,
and are excluded from the pool of the possible choices by the dispatcher/QoWS module. Figure 2

shows the architecture of the Web switch software and its interactions with the Web servers.
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Figure 2: Architecture of the Web switch software and interactions with the servers.

3 Client architecture and workload

For the experiments described in the following sections we use a pool of client nodes running on
5 PC-computers that are interconnected to the Web cluster through a switched 100Mbps Fast-
Ethernet that does not represent the bottleneck for our experiments. The Web cluster is composed
of 10 server nodes. Each server machine, is a Dual PentiumIII-833Mhz PC with 512MB of memory.
All nodes of the cluster use a 3Com 3C905C 100bTX network interface and an IBM Ultra ATA /100
disk (Deskstar60GXP 40GB, Ultra ATA /100, 8.5ms, 7200rpm, buffer 2MB) having a transfer rate
of 37TMBps and seek time of 8.5 ms. The layer-7 Web switch is implemented on a dedicated machine
having the same characteristics as the server platform.

As a synthetic workload generator we use a modified version of the Webstone benchmark tool®.
The main differences concern the introduction of the HT'TP /1.1 protocol, and various modifications
on clients behavior because the original design of Webstone was not intend to produce realistic

workload, but the heaviest load on the server nodes. Basically, the modifications are inspired to

!Webstone Mindcraft Inc., http://www.mindcraft.com/webstone, version 2.5



the SURGE model [6, 15], that is integrated also with user classes and performance metrics oriented
to QoS. For example, we use percentiles and distributions instead of average values. We have also
introduced the concept of user class, user session, user think-time, embedded objects per Web page,
realistic file sizes and popularity. Table 1 summarizes the probability mass function (PMF), the
range, and the parameters’ value of the workload model.

We have also emulated the impact of dynamic workload and dynamic page composition by
creating three CGI services. If not otherwise specified, the basic workload composition consists of
80% of static requests and 20% of dynamic requests. Dynamic requests are further classified as CPU-
light (10%), CPU-intensive (6%), and CPU-disk intensive (4%), on the basis of the computational
impact they put on the back-end servers. Finally, we have emulated two classes of users that is,
Top class and Normal class, both of them issuing static and dynamic requests to the Web cluster.
The probability of accessing the system for a given service class is defined by a class vector. We

denote with pr the average percentage of top user requests.

| Category | Distribution | PMF | Range | Parameters |

“A(z—p)?

Requests per session Inverse Gaussian | 4/ 273‘%36 2Te x>0 | p=23.86, A\ =946

User think time Pareto ak®r=o1 x>k la=14,k=1

Objects per request Pareto ak®r—o T x>k | a=133, k=2
—(lnz—p)2

HTML object size Lognormal z\/217r76 S | >0 u="17.630,c =1.001

Pareto akep—ot x>k | a=1,k=10240

—(nz—p)Z

Embedded object size | Lognormal z\/217r76 ot >0 | p=8215,0 =146

Table 1: Parameters of the workload model.

4 Setting the SLA targets for a Web cluster

The approaches to QoWS studies can have different purposes. For example, a typical question is
to find a system platform that allows a service provider to satisfy a set of pre-determined SLA
requirements. Another is to find the best choice for SLAs for maximizing profits, for example in
[22]. Owur approach is slightly different because we assume to have a system platform, and we
propose a methodology for the determination of SLA targets that are suitable for the available
architecture and the ezpected workload reaching that system. The tradeoff is not to have an over-
provisioned Web cluster that remains underutilized for most of the time, and to minimize the risks
of not satisfying the SLA contractual parameters that lead to some penalty to the Web services
provider. We indicate the main steps of the methodology that we describe in detail by applying it

to the previously described Web cluster architecture.

1. First we have to choose some performance measures for the SLAs (Section 4.1).



2. The second step requires the determination of realistic SLAs for the available Web cluster
system. To this purpose, we first evaluate the capacity of the Web cluster for the main service
classes of interest for the considered Web site. Some capacity planning study that consider
future workload can also be carried out during this phase. From the basic performance results
we define realistic SLA targets for the considered system under expected or future workload
(Section 4.2).

3. After that, we enrich the Web cluster with some mechanisms for achieving QoWS (Section 5):

request classification, admission control, request dispatching.

4. We verify whether the QoW S-enabled Web cluster is able to satisfy the SLA requirements for

different workload scenarios (Section 6).

4.1 SLA measures

At the base of QoS (and QoWS as well) there are the concepts of service and Service Level Agreement
(SLA). A service defines a set of characteristics significant for the Web content provision, specified
in quantitative or statistical terms. An SLA is a specified performance contract agreed between
the user and the Web service provider. Depending on its strictness, it may be either a guaranteed
service if the resources are reserved to never violate the agreement, a predictive service if rare
violation are allowed and the service is expressed in terms of percentile, or a best-effort service if
the service is provided with no contractual target.

We can consider the Web servers together with the network as parts of a soft real-time system
that has to provide information and services to the browsers. The issuer of the request takes into
account the time and the request value decreases as time goes on, however there are penalties for
the Web service providers but no catastrophic consequences if a deadline is not met. Furthermore,
the Web cluster is only part of the client-network-server system and has no control over the rest
of it. For these two reasons, we consider most effective to denote the SLA for QoWS in terms of
predictive service, measured as a 95-percentile of the performance values [20]. In particular, we
choose the latency time of a client request at the Web cluster as the main measure for SLA. This
time measures the completion time of a request at the Web cluster side.

In this paper we consider two SLAs for two classes of users (that is, top class and normal
class), both issuing static and dynamic requests to the Web cluster (in short, top/normal static and
dynamic requests). The top class SLA states that the “95-percentile of the latency time of static
and dynamic requests from top class users must be less than a threshold of Ts seconds and Tp
seconds, respectively”. On the other hand, the “requests from normal class users (in short, normal

requests) receive best effort service”.



It is worth noting that SLA on top dynamic requests is the most severe contract as they may
involve expensive CPU and disk operations. Indeed, we observe that static requests do not represent
a real QoWS problem, also because of the high hit rate at the disk caches. Hence, if not otherwise

specified, hereafter we focus mainly on SLA for dynamic requests.

4.2 Capacity of the Web cluster and suitable SLA targets

In this section we describe how to determine realistic SLAs for the available Web cluster through a
test case. The goal is to evaluate for the considered Web cluster and expected workload a realistic
value for the upper bound for the 95-percentile of the latency time for static and dynamic requests.
To set the maximum thresholds T's and Tp, we evaluate the latency time for static and dynamic
requests for increasing load at the Web cluster prototype. The goal is to choose the SLLAs below the
mazimum capacity of the system that is, the load the system can sustain without being overloaded,
also known as the system breaking point.

It is important to observe that the SLA for Web requests depends on the capacity of each server
node and not on the capacity of the Web cluster, because the granularity of request dispatching is
done at the page level and not at the object level (each user request corresponds to a page request,
that consist of a request for the base HTML file and multiple requests for embedded objects).
Hence, each user request reaching the cluster through the HT'TP protocol is served by one Web
server (if all embedded hits are for static objects), and its corresponding back-end server (if an
embedded hit requires some dynamic evaluation). Hence, when dispatching is done at the page
level, the SLAs on page latency time is independent of the number of servers in a Web cluster. This
number is important only to evaluate the maximum number of requests that can be concurrently
sustained, but it has no influence on the latency time of one page request.

Figures 3 shows the 95-percentile of the page latency time as a function of the client arrival rates
to the system. Each client request corresponds to a new connection bringing an entire page request
that is dynamic with probability 0.2. (Each point of this figure is obtained as the average of three
experimental results in one server.) This figure confirms our supposition that static requests do
not represent a performance problem. Indeed, the 95-percentile of latency time for static requests
is well below 1 second even when 300 clients per second reach the system. The choice of the
SLA parameter for the static requests of the top users depends on the management policy of the
service provider. It can choose Ts = 0.5 second if he finds convenient to accept a lower number
of concurrent requests and guarantees a better service. Otherwise, he can choose a higher SLA
threshold, up to Ts = 1 second, if he prefers to accept more requests at a price of a slightly worse
service. Our choice is for T's = 0.5 that is reached for 210 clients per second.

The 95-percentile of latency time for dynamic requests is about 0.6 seconds when the system is

underutilized (less than 50 clients per second), and increases up to about 2 seconds for 200 clients



per second. From this figure, we can also observe that this point is already after the knee of the
curve. Hence, it is safer to choose lower values. Again, the final choice depends on the management
policy. In our test case, we consider adequate to choose 1.2 second as the upper bound on the
95-percentile of the page latency time, that we consider in a controllable space. In summary, we set
the SLA parameters for the top static requests and top dynamic request to Ts = 0.5 and Tp = 1.2

second, respectively.
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Figure 3: Page latency time as a function of the client arrival rate in one server system.

5 QoWS-aware policies for the Web cluster

5.1 QoWS principles

Web server clusters provide a best-effort service and their structure is designed to increase perfor-
mance and load sharing between all the Web servers included in the same cluster. The necessity
for QoS was born in the computer network and multimedia area, where the QoS topic is highly
investigated. We consider four basic principles necessary to provide QoS guarantees to network
applications: request classification, admission control, performance isolation and high resource
utilization. We investigate how these network QoS principles can be extended to QoWS in cluster-
based Web servers with the goal of finding suitable QoWS-aware policies and mechanisms that can
be implemented at the Web switch level.

To this purpose, it is important to clarify the definitions of service class and resource. A service
class denotes the differentiation of incoming requests and users into classes. The proposed policies
must support multiple service classes. To make the presentation lighter, we consider without loss of

generality four service classes, obtained by two classes of users denoted as top and normal classes,



and two main classes of requests that is, static and dynamic. In a Web system based on one server,
a resource is typically one of the server components, such as CPU, disk, and network interface [5, §].
This definition of resource is still applicable to Web clusters, however we prefer to use a coarser

grain definition that is, considering an entire (Web or back-end) server as a resource.

Request classification. The first step to differentiate the service is to classify the incoming re-
quests in order to bind each one with the appropriate service class. The classification mech-
anism of our layer-7 Web switch may use all available information at the application level
(e.g., URL content, SSL identifiers, and cookies), thus achieving the most detailed classifica-

tion including client, user, session and request identification.

Admission control. An admission process is needed to allow a Web cluster to meet the predic-
tive service targets. This process consists of two steps: declaration and access control. A
declaration process with the purpose of estimating the resources needed by a request can be
realistically carried out only by a layer-7 Web switch, because it is content information aware.
For example, we found useful to differentiate at least static from dynamic requests, because
dynamic requests can easily require service times of two or more orders of magnitude higher
than static requests.

After the classification of a service, the access control mechanism should check whether there
are sufficient resources to satisfy the SLA settled for that service, and decide about allowing
or dropping the connection. Admission control is essential to not overload the servers, as
overloaded servers experience a significant loss of throughput [13]. Our layer-7 Web switch

uses connection dropping as the access control mechanism.

Performance isolation. To force different classes of users and requests not to share the system
resources, it is necessary to provide a degree of isolation among the service classes. Perfor-
mance isolation can be achieved through scheduling policies [16] and /or resource partitioning
mechanisms. A scheduling priority mechanism applied to all resources could allow over ag-
gressive classes of services to monopolize the entire system.

The partitioning mechanism can be applied at different levels of granularity, depending on
the definition of resource. In the Web cluster we consider an entire server as a resource, also
to facilitate the applicability of QoWS principles to commodity off-the-shelf software. As a
consequence, the most immediate performance isolation policy in a Web cluster is to provide
a server partition that follows the classification of services. For example, with two classes of
users and two classes of requests it seems convenient to use a subset of (Web and back-end)

servers for each class of (top/normal) users and (static/dynamic) requests.

High resource utilization. To use the system resources as efficiently as possible, we have to

10



make unused resources available to other classes of services. Our solution to satisfy this basic
QoS principle is to realize a dynamic server partition. Dynamic partitioning outperforms the
static one because it obtains better resource utilization still maintaining good service class
isolation. This has been demonstrated in [26] and in our preliminary design studies done
through simulation [10]. By referring to the performance isolation considerations, the server
partition between two sets would be dynamically determined so that the cardinality of each

set could vary, for example depending on the type of offered load during a certain period.

In summary, the layer-7 Web switch of our QoWS-enhanced Web cluster implements some clas-
sification policy and admission control mechanism. Moreover, it can use server partition algorithm
for performance isolation, and dynamic server partition algorithm for high resource utilization.
Placing the admission control and decisions at the entrance point reduces the spurious load at the
internal components of the system.

In this section we propose three policies integrated into the Web switch that add some QoWS
mechanisms to the Web-server cluster: Switch Admission, Static Partitioning, Dynamic Partition-
ing. All the considered policies guarantee at least some request/user classification and admission
control, because our preliminary experiments confirmed the intuition that it is impossible to guar-
antee any SLA, if the load offered to the Web cluster is not controlled. The main difference is about
the performance isolation of system resources among the user classes: Switch Admission policies do
not use any mechanism, Static Partitioning and Dynamic Partitioning policies isolate the resources

in a static and dynamic way, respectively.

5.2 Switch Admission algorithms

Switch Admission is an example of centralized admission control without server isolation. If we do
not provide server partition, each incoming request can be assigned to any server, independently
of the service class it belongs to. Hence, to satisfy the SLA of the most demanding classes also in
heavy load condition, the basic idea of the policies without server partition is to deny service to
the requests of lower class users when the cluster load exceeds a given threshold, and eventually to
reject the requests of top class users only in the case of extremely critical load conditions.

As a representative member of this class, we implement the SwitchAdm algorithm that, when
necessary, denies service to the requests belonging to the lower class of users. The rejection mech-
anism is triggered by the Web switch when the current sum of the server load in the Web cluster
exceeds a given threshold. Once the request has been admitted to the system, the Web switch uses
the Weighted Round Robin (WRR) policy [11] to select the target server in the corresponding set.
This can be any server of the cluster, if no server partition is used, or a subset of the servers, other-

wise. Therefore, the SwitchAdm policy is equivalent to a QoWS-blind dispatching policy enhanced

11



with an admission control mechanism to prevent performance degradation [13].

There are several feasible variants, but one of the most important issue to address is the choice
of the cluster load measure and of the rejection threshold. When the workload consists of static
requests only, the system throughput expressed in MBps is a representative performance measure,
and in most cases the throughput expressed in connections per second is acceptable too. On the
other hand, none of these measures is representative of the server load when the system receives
static and dynamic requests. Indeed, a CPU /disk intensive request can stress the system for orders
of magnitude higher than a file transfer that could even be gotten from the disk cache. For this
reason, we have chosen two throughput measures: the number of connections bringing requests for
(at least one) dynamic document (namely, dynamic connections), and those for static documents
(namely, static connections). Several simulations and experiments carried out by our group have
demonstrated that the number of static and dynamic connections handled by each server is a
system load measure much more precise than the total number of connections per second and
Mbytes transferred during a certain interval.

In the choice of a threshold parameter for deciding about rejection or admission to the cluster, we
have also to consider the SLA targets for static and dynamic requests at each server. In particular,
from Section 4.2 we write as MaxConng(SLA(Ts)) and MaxConnp(SLA(Tp)) the maximum
number of concurrent static and dynamic connections each server can sustain without performance
degradation that is, by guaranteeing the SLA latency times to top class requests.

If we assume that the Web switch dispatcher is able to balance the load among the servers
(there are several dispatching policies that guarantee good results in a cluster system, for example
WRR), and all N servers have homogeneous capacities, we can write the rejection thresholds as
Thrs = N - MaxConng(SLA(Ts)) and Thrp = N - MaxConnp(SLA(Tp)).

We use the notification mechanism outlined in Section 2 to inform the Web switch about the
numbers of alive (static and dynamic) connections The Web switch periodically sums all contribu-
tions, and determines if the requests have to be dropped or accepted. The rejection phase starts
when the sum of the HT'TP connections at the servers exceeds the thresholds Thrg and Thrp, and
ends when the sums return under these threshold values.

Let us describe the choice of the thresholds by referring to the test-bed prototype architecture.
The goal is to evaluate MazxConng(SLA(Ts)) and MaxConnp(SLA(Tp)). From Figure 3 we
have obtained Ts = 0.5 and Tp = 1.2. These page latency times are achieved when the arrival
rates to one server are equal to 210 and 150 clients per second, respectively. The next step is to
know the server throughput (denoted as static and dynamic connections per second) as a function
of the client arrival rate. Figure 4 shows these curves for one server of the prototype. From this
figure we can observe that in correspondence of 150 and 210 client arrivals per second we have

about 18 dynamic connections and 85 static connections, respectively. This justifies the choice

12



for MaxConng(SLA(0.5)) = 85 and MaxConnp(SLA(1.2)) = 18. In the same figure it is worth
noticing that the maximum capacity for the server as far of dynamic connections is 26, this is why

we set MaxConnp = 26. Beware that this last parameter is only server-dependent and is not
related to the SLA.

120

MAX_CONN(SLA(T_S)) —— ; ;
MAX_CONN( SLA(T D)) —---- | : : 4

Saticpages --=- | ___#T T FTT

100 — dynamic pages —-=—- T R

Throughput [conn/sec]
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Figure 4: Throughput as a function of the client arrival rate at one server system.

5.3 Static Partitioning algorithms

Performance isolation is one of the main principles that we borrowed from the QoS theory. In
Web systems consisting of one server, performance isolation is achieved through priority scheduling
algorithm operating at the HT'TP server level and/or at the CPU level. On the other hand in a Web
cluster a simple way to enforce performance isolation is through a centralized Web switch mechanism
that uses same classification and admission policy as SwitchAdm, and partitions the servers in as
many sets as the defined service classes. This solution intervenes on the dispatching algorithm and
does not require modifications at the application or operating system level of the servers. In the
hypothesis of two classes of users (top and normal), we partition the servers into two sets, denoted
as High Set (HS) and Low Set (LS). The cardinality of HS is set to a constant value K. Top and
normal user requests are assigned to the servers HS = {1,...,K} and LS = {K +1,...,N},
respectively.

Different algorithms derive from the policy chosen to determine K. For example, a solution is
to set K = [prN|, where pr represents the expected percentage of top user requests. This naive
solution requires that the Web administrator knows a priori the daily distribution of the percentage
of top user requests and then allocates the servers proportionally to it: it is fair and does not give

any advantage to top users. It is easy to assume a knowledge about pr because the top users have
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to be pre-registered. In this paper, we implement the StaticPart algorithm that chooses K by
considering that the dynamic requests have a much deeper impact on system load than that caused
by static requests. Indeed, we have verified that if HS is dimensioned so that SLA(T)) is satisfied,
SLA(Ts) is guaranteed as well. The top users deserves more attention because they have to meet
strict SLAs. Even when the daily distribution of the percentage of top class requests is known a
priori, some variability may occur. From all these premises, it seems convenient to provide some
over provision of the partition size of HS servers.

Hence, when we have to satisfy an SLA of Tp seconds, we find appropriate to choose

MazConnp(SLA(Tp))

K = N+ N x(1-— 1-—
[prN + N ( Pr)( MazConnp

- (1)

where MazConnp is the maximum number of dynamic requests that can be accepted without
overloading a server, as shown in Section 5.2.

The first term of the equation 1 partitions the servers proportionally to the expected percentage
of top user requests. The second term is introduced to increase the cardinality of HS. From the

[N (1 — pr)] remaining servers, we add to HS a number of nodes that is proportional to the

MazConnp(SLA(Tp))
MaxConnp

ratio that we define as the safety factor ranging from 1/MaxConnp to 1. It is

a measure of the percentage of server capacity (expressed in connections per second) that is used
to satisfy the SLA requirements with major probability. The lower is the ratio, the higher is the
possible waste of resources.

The value of K remains constant until the Web administrator realizes that the server partition
of the Web cluster based on the previously chosen pr is highly inadequate and changes it. The
following numerical example shows the choice of K on the basis of the equation 1. Let us consider
a Web cluster with N = 10 Web server nodes, a percentage of dynamic requests equal to pr =
0.2 and Tp = 1.2, as in our test-bed case. From Section 5.2 we have MaxConnp = 26 and
MazConnp(SLA(Tp)) = 18. From equation 1, the cardinality of HS according to StaticPart is
equal to K = 5.

5.4 Dynamic Partitioning algorithms

Any static resource allocation enforces a strong isolation of the requests but does not guarantee
high resource utilization because the percentage of service requests for different classes can be
considered periodic, but not static during a day. Because of the high variability of Web traffic, to
guarantee SLAs for the classes of top users would require a system dimensioning on peak usage for
each combination of offered load: this solution would be unrealistic and expensive.

The goal of Dynamic Partitioning policies is to permit a more efficient use of the resources

in different load conditions while still providing isolation among service classes and users. They
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determine the initial value for K as in the StaticPart policy, but then they use some mechanism
to adapt the size of each partition to the actual workload composition and server load state. In
this paper, we consider a representative policy, namely DynamicPart?, even if it is important to
observe that many alternative algorithms exist. Some of them have been proposed in literature [26,
10], another example is given in Section 6, others have not been explored yet, so that we can state
that there is still room for research in this field.

DynamicPart periodically evaluates whether the servers dedicated to top users (HS) are able
to satisfy the SLAs and, if not, changes server partition as following. Let us suppose that at
time ¢ the size of the HS partition is K (¢ — 1) and the sum of the servers load in HS(t — 1)
is SumLoadys(t). This policy adds the least loaded server of LS(t) to HS(t) that is, K(t) =
K(t—1)+1,if SumLoadgs(t) > K(t — 1) - MazConnp(SLA(Tp)). From that point, the moved
server will receive only new requests from the top users, while it will continue to serve requests of
already accepted connections belonging to the normal users. (Stronger actions can be used, such as
dropping all pending normal requests, but we do not used them because it is considered an unfair
solution.) The server moved to HS(t) will return to LS(t) that is, K(¢f) = K(t — 1) — 1, when
SumLoadys(t) < (K(t—1) — 1) - MaxConnp(SLA(Tp)).

In the basic version of the DynamicPart policy, only requests from normal clients can be rejected

when SumLoadrs(t) > (N — K(t)) - MaxzConnp(SLA(Tp)).

The DynamicPart algorithm is a feedback controlled system that aims to keep %‘W

constant: increasing the ratio augments K (t) that decreases the ratio and vice-versa. Hence, we
can say that DynamicPart guarantees stability and responsiveness to variations of SumLoadpgs(t),
at least until some server is available.

The following example motivates that any constant choice of K, as done by StaticPart, may
result inadequate. Let us consider again our test-bed case: a Web cluster with N = 10 Web
server nodes, Tp = 1.2 and a SafetyFactor = 18/26. The safety factor is a function of the
server capacity and SLA requirements, hence it is a constant when the system architecture and
the SLA requirements are fixed. The parameter pr is variable and it is a function of the workload
composition. Any static choice may work if the workload composition does not vary much from
the average during the day. In the reality, the Web workload may be subject to high fluctuations
around the average values because of the heavy-tail characteristics of its distributions.

When we vary pr from 0 to 1, we obtain the K plot shown in Figure 5. Our example evidences
that also little variations of pr require a change of K. The value of K = 5, given by the equation
1 is valid only for an expected percentage of top class requests equal to 20%. If pr augments, K

increases to 6 and then to 8 servers when the percentage reaches 60%. An additional important

2Unlike the DynamicPart algorithm in [10], the version proposed in this paper considers the number of requests

for static and dynamic documents as its system load measure.
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Figure 5: Number of servers dedicated to Top class users as a function of the percentage of top class requests
pT

information given by this figure is the maximum percentage of high class requests that the system
is able to satisfy for the type of considered workload. Indeed, when pr = 0.8, K = 9 servers are
needed in the HS to satisfy the SLAs with high probability. If p augments another server would
be required, but this choice would implicate an empty LS. This unfair solution is not acceptable,

because all low priority requests would be refused.

6 Experimental results

The experimental results are oriented to verify whether and which of the described QoWS-aware
policies satisfy all SLA targets for different scenarios. The workload and system architecture here

considered are described in Section3.

6.1 Sensitivity of dynamic partition of servers

We have proposed an example of dynamic partitioning algorithm with the goal of having a QoWS-
enhanced Web cluster that should be characterized by stability and responsiveness. Hence, the first
set of experiments aim to check whether DynamicPart satisfies these two characteristics.

A dynamic partitioning algorithm is stable if K (t) ranges in a small set of values without frequent
oscillations. Figure 6 permits to verify the stability of the dynamic partitioning mechanism adopted
by DynamicPart. We set the pr parameter to 0.2 and we observe the value of K () every 10 seconds.
We find that K(¢) ranges from 4 to 5 servers. The initial value is K = 5, and it remains stable
for most consecutive observations with some acceptable exceptions. The observed peaks (K = 4)

are due to statistical fluctuations of the value of pp occurring during the experiments. From these
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Figure 6: Stability of the mechanism adopted by Figure 7: Responsiveness of the mechanism
DynamicPart, when the percentage of top requests adopted by DynamicPart as a function of the per-
remain constant around an average value. centage of top requests.

results, we can conclude that even when the pr value is known, any static partitioning algorithm
could result in a waste of cluster resource and/or violation of some SLAs.

The responsiveness of a dynamic partitioning policy reflects the capacity of the algorithm to
respond promptly to the fluctuations of the percentage of Top class users, thus avoiding the risks of
violating some SLAs. We test the responsiveness of DynamicPart in a scenario where the percentage
of Top class requests pr varies from 0.2 to 0.8 and we compare it with a static K determined by
StaticPart. As in the previous experiment, pr is sampled every 10 seconds. Figure 7 shows that
the adjustment mechanism provided by DynamicPart is able to change rapidly the value of K(t)..
The initial value of K(t) is 5 for both StaticPart and DynamicPart. When pr goes to 0.4, K(¢)
increases to 6 servers. If the percentage of top requests augments to 0.6, the value of K (t) value
jumps to 8 servers and does not change even when pr = 0.8. These experimental results clearly
show the limits intrinsic to StaticPart: it has to know in advance the pr parameter that has not
to change during the day. Otherwise, any small increment of pr would let StaticPart violate some
SLAs.

6.2 SLA performance analysis

Unlike a traditional performance analysis where the goal is to evaluate which is the policy that
gives best performance results (e.g., minimum response time, maximum throughput), the goal of
the following experiments is to verify whether and which of the described QoWS-aware policies
satisfy all SLA targets for different scenarios. A secondary goal is to compare the performance

of the proposed QoWS-enabled Web cluster against a system using some QoW S-blind dispatching
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algorithm, such as WRR. The SLA represents the most important target, so a policy that satisfies
SLA requirements for all experiments is preferable to a policy that has a lower latency time in most
instances, but it is unable to guarantee SLAs in others.

Figures 8 shows the 95-percentile of the page latency time for the top static requests. This
figure confirms that there is no particular problem to satisfy the SLA for static requests. This is
also due to the fact that the most popular static documents are served from the disk caches of
the Web servers rather than from their disk. All QoW S-aware policies are able to achieve the SLA
target set to T's = 0.6, whereas a QoWS-blind dispatching policy, such as WRR, is unable to satisfy
the SLA when the system load augments. Low percentages of normal requests must be rejected to
guarantee SLAs (Figure 9): less than 4% for the StaticPart policy, less than 2% and 1% for the
DynamicPart and SwitchAdm policies, respectively.

When we pass to consider the top dynamic requests, we have to consider SLAs that are much
more critical for the QoWS-enabled Web cluster. Figures 10 shows the 95-percentile of the page
latency time for QoWS-aware and QoWS-blind policies. From this figure we observe that QoWS-
aware policies are able to satisfy the SLA until the offered load is below 1800 clients per second.
After that point, just the DynamicPart algorithm is able to guarantee the SLA until the Web
cluster receives 2400 clients per second. These results are achieved at the price of high percentages
of dropped requests coming from normal clients, going from 20% for the DynamicPart to 35% for
the StaticPart (Figure 11). However, this price is worth if the counterpart is the respect of SLA
targets.

When we consider all four Figures 8- 11, we have that the DynamicPart policy outperforms
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for QoWS-aware algorithms.

all others in term of lowest latency time, lowest percentage of dropped requests and, most impor-
tant, best satisfaction of SLAs for almost all workload conditions. An initially unexpected result
is that StaticPart achieves performance worse than that of SwitchAdm both in terms of page la-
tency time and percentage of dropped requests. We recall that StaticPart guarantees differentiated
services but not a good resource utilization, while the opposite is true for SwitchAdm. Moreover,
experiments are carried out in best conditions for StaticPart that is, with a static percentage of
top requests. Nevertheless, the statistical variations intrinsic in the workload seems to penalize
any static assignment of Web cluster resources. We can conclude that any QoS property, such as
differentiated services, should not be implemented at the price of another important property, such
as resource utilization. Indeed, the best performing policy (DynamicPart) is the only one which

implements all four QoWS principles described in Section 5.1.

7 Related work

If we exclude research results on network QoS and multimedia servers contributing to the largest
part of literature in the QoS field, that is impossible to cite here, we can broadly classify Web
server-side efforts for delivering QoS into two categories: those that support QoWS in single-node
Web servers at the application level or at the operating system level, and those that provide support
for QoWS in cluster-based platforms with multiple server nodes. QoWS in single server systems is
achieved primarily by affecting the admission control and scheduling of HTTP requests [5, 7, 8, 13,
18, 21, 25]. The results for QoWS in cluster-based platforms can be further distinguished on the

basis of the Web service provider that is, solutions for a single Web site or for Web content hosting,
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in which multiple Web sites are co-located on the same cluster-based system. A Web cluster used
as a platform for hosting multiple Web sites is considered in [4, 22], where the authors address
QoWS issues as an optimization problem. An interesting work from Aron et al. has extended the
resource principal abstraction to multi-node Web servers In [4]. the authors have applied to Web
clusters the “cluster reserves” concept they used for single Web servers [5].

One of the first study on Web clusters that support a single site is by Chen et al. [12] that
have evaluated the impact of the request admission and dispatching mechanisms. Their simulation
results clearly show that when the system is highly utilized, differentiated services provide better
performance than those achieved by traditional Web clusters. Kanodia et al. have proposed a
QoWS-aware policy that uses both admission control and performance isolation mechanisms to
guarantee that different classes of service have latencies within pre-specified targets. Unlike our
paper that focus on static and dynamic requests, they consider Web sites providing static content
only [19]. Two dynamic resource partitioning algorithms for static and dynamic Web requests have
been proposed in [10, 26]. Their experiments demonstrate that dynamic server partitioning always
outperforms static server partitioning.

Other QoWS supports for Web hosting have been investigated mainly to assign differentiated
priorities to the requests according to which site is accessed. Many results show that simple
strategies such as controlling the number of processes can improve the response time of high-priority
requests while not penalizing the system throughput [2]. To enforce SLA constraints, Pandey et
al. [24] examine selective allocation of server resources by assigning different priorities to the page
requests. In [1] a control-based approach is proposed for Web service differentiation.

Several companies commercialize as their most recent products content-aware Web switches
which can be used for service differentiation in Web clusters (e.g., Nortel Networks’ Alteon We-
bOS, F5’s BiglP, Resonate’s Central Dispatch, described in [9]). These switches provide only very
simple mechanisms. Service differentiation is typically based on either the request source or the
requested service, and is provided by statically partitioning server nodes and assigning different
classes of requests to different server subsets. Various results in literature [10, 26] and in this pa-
per demonstrate that static partitioning cannot adapt to fluctuating arrival rates and servers load
conditions. Moreover, it may lead to waste of resources when some partitions are not fully utilized

while others might be overloaded.

8 Conclusions

In this paper we propose a cluster-based Web server enabled with Quality of Service principles at the
system level. We first apply the basic QoS principles defined for network routers and protocols to
the server side of the Web, and we call them Quality of Web-based Services (QoWS). We consider

20



various policies that satisfy all or part of the QoWS principles, and we implement them at the

Web switch level of the Web cluster. Our experiments show that only the policies that satisfy all

QoWS principles are able to meet the SLA targets even for stress load conditions. Indeed, the

violation of even one QoWS principle prevents the Web cluster to satisfy the SLAs for the most

demanding requests containing dynamic CPU/disk evaluation. The positive results achieved by the

DynamicPart policy for all types of stress tests motivate further efforts aiming to combine network

and server QoS mechanisms.
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