
IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 1

Enabling Efficient Peer-to-Peer Resource
Sharing in Wireless Mesh Networks

Claudia Canali, Member, IEEE, M. Elena Renda, Paolo Santi, and Simone Burresi

Abstract —Wireless mesh networks are a promising area for the deployment of new wireless communication and networking
technologies. In this paper, we address the problem of enabling effective peer-to-peer resource sharing in this type of networks.
Starting from the well-known Chord protocol for resource sharing in wired networks, we propose a specialization that accounts for
peculiar features of wireless mesh networks: namely, the availability of a wireless infrastructure, and the 1-hop broadcast nature of
wireless communication, which bring to the notions of location-awareness and MAC layer cross-layering. Through extensive packet-
level simulations, we investigate the separate effects of location-awareness and MAC layer cross-layering, and of their combination, on
the performance of the P2P application. The combined protocol, MESHCHORD, reduces message overhead of as much as 40% with
respect to the basic Chord design, while at the same time improving the information retrieval performance. Notably, differently from
the basic Chord design, our proposed MESHCHORD specialization displays information retrieval performance resilient to the presence
of both CBR and TCP background traffic. Overall, the results of our study suggest that MESHCHORD can be successfully utilized for
implementing file/resource sharing applications in wireless mesh networks.

Index Terms —Wireless mesh networks, community networks, distributed hash tables, peer-to-peer resource sharing, cross-layering.

✦

1 INTRODUCTION

W IRELESS mesh networks are a promising tech-
nology for providing low-cost Internet access to

wide areas (entire cities or rural areas), and to enable
the creation of new type of applications and services
for clients accessing the network. Differently from other
types of wireless multi-hop networks, wireless mesh
networks are composed of two types of nodes: mostly
stationary wireless access points (routers), and mobile
wireless clients. Routers are connected to each other
through wireless links, and provide a wireless access
infrastructure to wireless clients. Some of the routers
are connected to the Internet via wired links, and act
as gateways for the other routers and for the clients.

Among innovative applications enabled by mesh net-
working, we mention wireless community networks
(see, e.g., the Seattle Wireless initiative [23]), in which
users in a community (neighborhood, city, rural area,
etc.) spontaneously decide to share their communication
facilities (wireless access points) and form a wireless
multi-hop network to be used by community members.
Wireless community networks can be used to share the
cost of broadband Internet access, but also to realize

• C. Canali is with the Dept. of Information Engineering, University of
Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena, Italy. This
work was done when Dr. Canali was a Research Assistant at the Istituto
di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy.
E-mail: claudia.canali@unimore.it.

• M. E. Renda and P. Santi are with the Istituto di Informatica e Telematica,
Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, 56124, Pisa, Italy.
E-mail: {elena.renda, paolo.santi}@iit.cnr.it.

• S. Burresi is with the Value Team S.P.A., Italy. This work was done when
the author was a student of the Dept. of Computer Science, University of
Pisa, Italy.

innovative services for the community, such as sharing
of community-related resources, live broadcast of local
events, distributed backup systems, and so on.

As the above mentioned innovative applications sug-
gest, peer-to-peer resource sharing is expected to play an
important role in forthcoming wireless networks based
on the mesh technology. In this paper, we investigate
the feasibility of the well-known Chord algorithm [24]
for peer-to-peer resource sharing in wired networks in
a wireless mesh network environment. Starting from
the basic Chord design, we propose a specialization –
named MESHCHORD – that accounts for peculiar fea-
tures of mesh networks: namely, i) the availability of a
wireless infrastructure, which enables location-aware ID
assignment to peers, and ii) the 1-hop broadcast nature
of wireless communications, which is exploited through
a cross-layering technique that bridges the MAC to the
overlay layer.

We evaluate the performance of Chord and MESH-
CHORD in a wireless mesh network environment
through extensive packet-level simulations. The re-
sults of the simulations show that MESHCHORD out-
performs the basic Chord design both in terms of
reduced message overhead for overlay maintenance
(mainly achieved by location-awareness), and in terms
of increased information retrieval efficiency (mainly
achieved by cross-layering). Since communication band-
width is a limited resource in wireless networks, we
evaluate Chord/MESHCHORD performance also in pres-
ence of different types of background traffic. We con-
sider congestion-unaware, CBR traffic, and congestion-
controlled TCP traffic. To the best of our knowledge,
this is the first similar investigation presented in the
literature on P2P approaches for wireless networks. The

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 2

results of our simulations show that, while Chord in-
formation retrieval performance drastically degrades in
presence of moderate background traffic, MESHCHORD

is relatively resilient to the presence of background traf-
fic, and provides acceptable information retrieval perfor-
mance also in this situation. Interestingly, the lower mes-
sage overhead generated by MESHCHORD w.r.t. Chord
has a positive effect on congestion-controlled TPC traffic,
which observes a relatively higher throughput. Thus,
differently from the basic Chord design, MESHCHORD

has the potential to provide satisfactory performance
in a mixed application environment, where the P2P
application coexists with different types of application-
layer traffic. Summarizing, the study reported in this
paper suggests that MESHCHORD can be successfully
utilized for implementing resource sharing applications
in wireless mesh networks.

The rest of this paper is organized as follows. In Sec-
tion 2, we critically discuss related work and this paper’s
contribution. In Section 3, we present the basic Chord
design and our proposed specialization MESHCHORD

for wireless mesh network scenarios. In Section 4, we
evaluate Chord and MESHCHORD performance through
extensive, packet-level simulation. Finally, Section 5 con-
cludes, and outlines possible directions for future work.

2 RELATED WORK AND CONTRIBUTION

Several Distributed Hash Table (DHT) approaches have
been proposed in the literature to address the problem
of realizing distributed peer-to-peer resource sharing.
The various DHT approaches proposed in the literature
mainly differ on the structure imposed to the virtual
overlay and on the mechanism used to route search
requests in the overlay. Among them, we cite Chord
[24] (which we briefly describe in the next section),
CAN [19], Pastry [21], and Viceroy [14]. However, these
DHT approaches have been designed and optimized for
operation in wired networks, and issues such as limited
bandwidth, node mobility, and so on, are not relevant.

Recent papers have addressed the problem of en-
abling P2P resource sharing in mobile ad hoc net-
works (MANETs). Some of them proposed exten-
sion/modification of existing P2P approaches to work
efficiently on MANETs. Among them, we cite exten-
sion/modifications of Gnutella [4], and of Pastry [16],
[17]. Others proposed their own solutions, mostly tai-
lored at efficiently dealing with peer mobility. Among
them, we cite ORION [12], Mobiscope [6], RBB [25],
and the service discovery protocol proposed in [22]. A
standard technique used to improve performance of P2P
algorithms when used in wireless networks is cross-
layering, i.e., taking advantage of information delivered
from lower layer protocols (typically, the network layer)
when constructing the logical links between peers. The
idea is to try to enforce locality as much as possible, i.e.,
peers which are close in the (logical) overlay topology
should be as close as possible also in the physical

network topology. Approaches based on this idea are
[4], [15], [16]. Although a careful design of the overlay
improves the efficiency of P2P systems for MANETs,
the combination of node mobility, lack of infrastructure,
and unreliable communication medium has hindered the
application of P2P approaches in medium to large size ad
hoc networks. As a consequence of this, P2P approaches
have been successfully applied to MANETs composed
of at most a few tens of nodes, and the problem of
designing scalable P2P systems for ad hoc networks
remains open.

A more recent trend of research pushes the idea of
cross-layering a step forward, basically collapsing the
overlay and network layer into a unique, location-aware
layer, which implements a sort of geographic hash table.
This is the case of the approaches proposed in [7], [13],
[18]. The technique proposed in [13] is targeted towards
MANETs, and is based on the idea of mapping the IDs
of the objects to share to trajectories, and to let the
nodes which are closer to that trajectory manage the
corresponding ID. In [18], the authors propose to use a
geographic hash table for in-network storage of archival
data in wireless sensor networks. In [7], the authors
suggest using a two-tier architecture, where the sensor
nodes store the data, and a certain number of proxy
nodes implements the distributed indexing mechanism.

Another interesting idea is to integrate the overlay
with the network layer, providing a scalable routing
scheme with DHT functionality [2], [8]. The motivation
is that in very large and dynamic wireless networks,
traditional routing mechanisms perform poorly, since
they are based either on proactive dissemination of
routing information, or on frequent network flooding to
discover routes. In the scalable routing concept, nodes
are logically organized in a virtual ring (as in a DHT),
and proactively maintain routes only to a very limited
number of other nodes in the ring (r-successors and r-
predecessors in [2], predecessor/successor and a number
of Chord-like fingers in [8]). This way, message over-
head is considerably reduced with respect to traditional
routing mechanisms, and scalability is improved. With
scalable routing, messages are routed in a DHT-like
fashion: a route request is routed through the virtual ring
until a path to the destination is found.

Wireless mesh networks present a potential advantage
with respect to MANETs for a successful realization
of scalable P2P approaches, namely the presence of a
stationary, wireless infrastructure that can be used by
mobile clients to communicate with each other (or to
access the Internet). Only a few recent papers have
explored how P2P approaches can be applied to wireless
mesh networks. In [1], the authors evaluate the gain that
can be obtained by using network coding when run-
ning file sharing applications in wireless mesh networks,
and conclude that some gain can actually be achieved,
although not as much as in a wired network. In [10],
the authors present an incentive model for file sharing
in wireless mesh networks. In [9], some of the authors

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 3

of this paper introduced a two-tier architecture for file
sharing in wireless mesh networks. The main idea is to
decouple content user/providers from the distributed
resource index: the lower tier is composed of mobile
mesh clients, which provide the content (files/resources
to share) to the P2P overlay; the upper tier is composed
of stationary mesh routers, and implements a distributed
hash table for locating resources within the network.

The investigation presented in this paper complements
our previous work [9] under many respects. While the
emphasis in [9] was on the procedures for dealing with
client mobility at the lower tier of the architecture, in
this paper we are concerned with the efficiency of DHT
implementation in the upper tier of the architecture,
i.e., stationary mesh routers. Another major difference
with respect to [9] is that we consider Chord instead of
Viceroy for implementing the DHT, and that we perform
packet-level simulations to investigate the performance of
Chord and of our proposed specialization MESHCHORD

in realistic wireless mesh network scenarios. The simu-
lations carried out in the present paper account also for
the (considerable) message exchange needed to maintain
the Chord overlay, and for dynamic join/leave of nodes
at the upper tier of the architecture. On the contrary, the
efficacy of GeoRoy (the location-aware version of Viceroy
proposed in [9]) was tested only through high level
simulations (no MAC layer implementation) performed
assuming static topology of the upper tier (no mesh
router joining/leaving the network during the simulated
time interval), which ignored maintenance overhead. As
the results presented in this paper show, the overhead
for overlay maintenance is considerable and, in some cases,
can lead to network congestion. Hence, results obtained from
high level simulations that ignore maintenance overhead and
do not implement the MAC layer can be very inaccurate
(this applies not only to the results presented in [9], but
also to most of simulation-based results presented in the
literature). Finally, differently from [9], we investigate
the performance of information retrieval in terms of
percentage of successful queries and query response
time, also in presence of background traffic.

Another major contribution of this paper is the notion
of cross-layering that we exploit in the MESHCHORD

design: while existing works exploit cross-layering to
extract information from the network layer (typically,
IDs of physical neighbors of a peer node) to improve
performance [4], [15], [16]1, in MESHCHORD we extract
information from the MAC layer. The main idea is to
exploit the “wireless advantage” (1-hop broadcast nature
of wireless communications) to possibly capture packets
which are not destined to a certain peer node u, but for
which u possesses relevant information (e.g., u stores
the key requested for in the packet). This technique
proves very useful in improving the information re-
trieval performance and in increasing the number of

1. Note that we also exploit this information in MESHCHORD, but
we use the term ‘location-awareness’ instead of cross-layering to refer
to this technique.

successful join operations2 in highly dynamic networks,
while only marginally increasing (if not decreasing) the
total number of packets circulating in the network. To
the best of our knowledge, MESHCHORD is the first
proposal exploiting MAC cross-layering for improving
performance in P2P file sharing applications for wireless
networks.

Finally we want to cite [5], where the authors present
a (packet-level) simulation-based investigation of Chord
performance in MANETs environments. The authors
consider three different routing protocols, and show that
Chord performance is only marginally influenced by the
choice of the routing protocol. The main finding of [5]
is that node mobility considerably impairs Chord con-
sistency, with a dramatic effect on information retrieval
performance: in presence of even moderate mobility, the
percentage of successful queries can drop below 10%.

There are several differences between our study and
the one reported in [5]. The application scenario is differ-
ent: stationary mesh networks instead of MANETs. Most
importantly, in our work we consider not only the basic
Chord design, but also a location-aware, cross-layer spe-
cialization of Chord for stationary mesh networks. Our
analysis shows that these improvements to the original
design are indeed fundamental to provide satisfactory
performance in wireless mesh networks, especially when
background traffic is present. Hence, the main finding
of this work is that our proposed specialization MESH-
CHORD can successfully be applied in a wireless mesh
network, also in scenarios in which the P2P application
coexists with different types of application-layer traffic.

3 MESHCHORD

In this section, we shortly describe the two-tier architec-
ture used in our design, and the basic Chord operations.
We then describe in details MESHCHORD, our proposed
specialization of Chord for wireless mesh networks.

3.1 Network architecture

Similarly to [9], we assume a two-tier architecture for
file/resource sharing (see Figure 1): the lower tier of
the architecture is composed of (possibly) mobile mesh
clients (clients for short), which provide (and use) the
content to be shared in the P2P system; the upper tier of
the architecture is composed of stationary mesh routers,
which implement a DHT used to locate file/resources
within the network. Unless otherwise stated, in the
following we use the term peer to refer exclusively to
a mesh router forming the DHT at the upper tier of the
architecture.

We assume routers are stationary and plugged, but
they can be switched on/off during network lifetime.
This is to account for situations that might arise in some
mesh network application scenarios (e.g., community

2. As explained in the following, join operations are not necessarily
successful.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 4

Fig. 1. Two-tier architecture assumed in our design.

networking), in which routers might be managed by
users and occasionally shut down. Also, changes in the
upper tier topology might be caused by failures of some
router.

Mesh clients are the content users and providers:
they share file/local resources with other mesh clients,
as well as access resources shared by others. When
a client u wants to find a certain resource, it sends
to its responsible router a (a mesh router within its
transmission range) a FindKey message, containing the
key (unique ID) of the resource to find (see next section
for details on key assignment to node/resources). The
responsible router forwards the resource request in the
DHT overlay according to the rules specified by the
Chord protocol (see below), until the resource query can
be answered. In case of successful query resolution, a
message containing the IP address of the client hold-
ing the requested file/resource is returned to client u
through its responsible router a. For details on the rules
for responsible router selection, and on the procedures
needed to deal with client mobility (handoff between
responsible mesh routers, locating a mobile client in
the network, etc.), and to add/remove shared resources
to/from the distributed index, the reader is referred to
[9].

3.2 Basic Chord operations

The DHT approach investigated in this paper is Chord
[24]. Chord is based on the idea of mapping both peer
(mesh router) IDs and resource IDs (keys) into the same
ID space, namely the unit ring [0, 1]. Each key resides
on the peer with the smallest ID larger than the key (see
Figure 2), i.e., peer p manages keys comprised between
its own ID and the ID of the predecessor of p in the unit
ring (denoted range(p)). Associated with each key is the
IP address of the mesh client holding the corresponding
resource. Chord maps peer and resource IDs into the
unit ring using a hashing function, named Sha1, which
has the property of uniformly distributing IDs in [0, 1].
Indeed, IDs in Chord are represented through m-bit

0

P21

range(p)

peer ID

resource key

P12

P7

P31

P40

P49

p

P60

Finger Table (P21)

P21+1 P31

P21+2 P31

P21+4 P31

P21+8 P31

P21+16 P40

P21+32 P60lookup(45)

Fig. 2. Basic Chord operations. m is set to 6.

numbers, i.e., at most 2m distinct (peer or resource) IDs
are present in the Chord system. In the following, we set
m = 24, which corresponds to having about 16 millions
possible IDs. This is a reasonable ID space for wireless
mesh networks, in which the number of shared resources
is expected to be in the order of several thousands, and
the number of mesh routers (peers) in the order of a
few hundreds. Indeed, larger ID spaces can be easily
included in our design with no modification, and with
negligible impact on performance. This allows dealing
with larger networks and number of shared resources,
which might lead to a non-negligible probability of
conflicting ID assignment with relatively low values of
m (see also Section 4).

The main operation implemented by Chord is the
lookup(x) operation, which can be invoked at any peer
to find the IP address of the peer with ID= x if x is a
peer ID, or the IP address of the peer responsible of key
x in case x is a resource ID. lookup operations are used
both for query resolution (FindKey operation) and for
overlay maintenance.

To speed up lookup operations, every peer maintains a
table of up to m distinct peers (fingers). The i-th finger of
peer j, with 1 ≤ i ≤ m, is the peer which has the smaller
ID larger than j + 2i−1. Note that some of the fingers
(especially for low values of i) can actually coincide (see
Figure 2). In order to facilitate join/leave operations,
each peer maintains also the ID of its predecessor in the
Chord ring (peer P12 for peer P21 in Figure 2).

When a lookup(k) operation is invoked at peer p and
the operation cannot be resolved locally (because k is not
within range(p)), a message is sent to the peer p′ with
largest ID < k in the finger table of node p. If p′ cannot
resolve the lookup operation, it replies to peer p with a
message containing the ID of the peer p′′ with largest
ID < k in its own finger table. Peer p then forwards the
request to peer p′′, and so on, until the lookup operation

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 5

can be resolved (in at most m steps)3. Referring to Figure
2, a lookup operation for key 45 issued at node P21 is
first forwarded to node P40, and then to node P49, which
is responsible for the key and can resolve the lookup.

To deal with dynamic join/leaves of peers in the sys-
tems, the following procedures are implemented. When
a new peer p joins the network, it first needs to initialize
its predecessor and finger table. This is done by sending
requests to any peer currently joining the network peer p
is aware of (called hook peer). Then, the finger tables and
predecessor pointers of currently active peers must be
updated to account for the new peer joining the network.
Finally, peer p must contact its successor s in the ring so
that the key range previously managed by s can be split
with p. In case no (active) hook peer can be found, the
join operation fails, and the peer cannot join the Chord
overlay. When an existing peer p leaves the network, it
first informs its predecessor and successor in the ring
about its intention of leaving the network, so that they
can change their finger tables and predecessor pointers
accordingly; then, peer p transfers to its successor the
key range it is responsible for.

Finally, we mention that, in order to deal with dynamic
network conditions, each active peer in the network pe-
riodically performs a Stabilize operation, which verifies
and possibly updates the content of the finger table and
predecessor pointer. The period between consecutive
Stabilize operations is a critical parameter in the Chord
design: if the period is relatively short, the network
is more reactive, but a higher message overhead is
generated; on the other hand, a longer stabilize period
reduces message overhead, at the expense of having a
less reactive network. How to set the stabilize period
in order to satisfactorily address this tradeoff when
Chord is executed in wireless mesh networks is carefully
investigated in Section 4.

3.3 Location-awareness
The first modification we propose to the basic Chord
design concerns the function used to assign ID to
peers (hash function Sha1 is still used to assign key to
files/resources). The idea is to exploit locality, and to
assign peers which are close in the physical network with
close-by IDs in the unit ring. This choice is motivated by
the observation that, according to Chord specifications,
most of the messages are exchanged between a peer and
its successor/predecessor in the unit ring.

More specifically, location-awareness is implemented
by assigning IDs to peers according to the following
function (see [9]):

ID(x, y) =







x∆
s2 + ⌊ y

∆⌋ · ∆
s

if⌊ y

∆⌋ is even

(s−x)∆
s2 + ⌊ y

∆⌋ · ∆
s

if⌊ y
∆⌋ is odd

,

3. This corresponds to the iterative method for implementing lookup

operations in Chord [24]. Also recursive lookup implementation is con-
sidered in the original Chord design. A comparison between iterative
and recursive lookup implementation in MESHCHORD is reported in
[3].

ss

s

0

1

(100,650)

ID(100,650) = 0.78

s = 1000m

Δ = 200m

0

0.20.4

0.4 0.6

0.6
0.8

0.8

0.2

u

Fig. 3. Location-aware mapping of peer IDs and interac-
tion with cross-layering.

where ID(x, y) is the ID of a peer with coordinates
(x, y) ∈ [0, s]2, s is the side of the deployment region,
and ∆ is a parameter which defines the ‘granularity’ of
location-awareness: the lower the value of ∆, the closer
the peers must be in the physical network in order to
be mapped into close-by regions of the unit ring. Figure
3 shows an example of location-aware ID assignment
when s = 1000m and ∆ = 200m. The deployment
region is divided into s/∆ = 5 sub-regions of width
∆ and length s (shaded area). A segment of the unit
ring bisects each sub-region, with alternate left/right
orientation. This is required to ensure that peers in the
same physical vicinity and close to the border of the
deployment region are mapped to close-by segments
of the unit ring (see Figure 3). Each bisecting segment
of the unit ring has virtual length ∆/s. Peers in the
same sub-region of the deployment area (shaded area)
are mapped to the same segment of the unit ring, thus
converting physical proximity into proximity in the unit
ring. In the example reported in Figure 3, a peer located
at coordinates (100, 650) is assigned ID 0.78 in the unit
ring.

Note that the above location-aware ID assignment
function requires that peers are aware of their location,
which can be easily accomplished in wireless mesh
networks through, e.g., the use of GPS receivers.

3.4 Cross-layering

The second contribution of the MESHCHORD proposal
concerns the introduction of a MAC cross-layering tech-
nique. This technique aims at speeding up the lookup
operations by exploiting the information that is available
at the MAC layer due to the 1-hop broadcast communi-
cation occurring in wireless networks. The basic idea is
that a peer u may capture packets for which it owns
relevant information, even if they are not destined to

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 6

u. This technique is motivated by the possibility that
peer u, that may actually be able to resolve a lookup
request, is physically close to the peer invoking the
lookup operation, while they are far away in the unit
ring.

More specifically, whenever a peer u receives a packet
at the MAC layer, u sends it up to the application
layer for further processing, even if the packet was
not destined to u. If the packet does not contain a
lookup request, it is discarded. Otherwise, u checks if it
may resolve the lookup(x) operation. This occurs if x is
comprised between u’s ID and the ID of the predecessor
of u in the unit ring. In this case, u sends a message
containing its own ID to the peer that invoked the
lookup(x) operation. It is important to note that, since
the lookup process is invoked for both query resolution
and overlay maintenance, cross-layering may improve
the performance of both these operations.

3.5 Interactions between location-awareness and
cross-layering

Location-awareness is designed to map neighboring
peers to close-by IDs in the unit ring. On the other
hand, cross-layering tends to be more effective when
physical neighbor peers have far-away IDs in the unit
ring (this results in a higher likelihood of “capturing”
packets). Hence, an ideal ID mapping function should,
for a certain peer u, both i) map pred(u)’s and succ(u)’s
IDs to peers which are physical neighbors of u, and ii)
assign the remaining u’s physical neighbors far-away IDs
in the unit ring. The design of a mapping function which
achieves both i) and ii) is a very complex combinatorial
problem, which is left for future work. In this paper, we
focus on property i), and show that, even in presence
of location-aware peer ID assignment, cross-layering is
indeed beneficial to the performance of the P2P appli-
cation. This can be explained referring back to Figure
3. In the lower right corner of the deployment area, the
transmission range of a peer u is shaded. It is easy to
see that, if the transmission range and parameter ∆ are
adequately set (in the figure, ∆ = TxRange = 200m), al-
though most u’s physical neighbors are actually assigned
close-by IDs in the unit ring, we do have a number of
u’s physical neighbors whose IDs are far away in the
unit ring. These physical neighbors have opportunities
for capturing packets generated by/destined to peer u,
explaining the relative benefits of cross-layering that
can be observed also in presence of location-aware ID
assignment (see figures 7 and 10).

3.6 MESHCHORD analysis

Using techniques similar to those reported in [9], we
provide a theoretical characterization of MESHCHORD

performance in random networks, which are formally
defined as follows:

Definition 1. In a random network deployment, n peers
are distributed uniformly at random in a square region

R = [0, s)2. The peers have transmission range r, with

r = 2s
√

2 log n

n
.

The specified value of r in the above definition guar-
antees that the resulting network is connected w.h.p.4

(see [9]). We first show that MESHCHORD location-aware
ID assignment preserves the property of uniformly dis-
tributing IDs in the unit ring. This result implies that
the nice properties of the original Chord design (load
balancing on the overlay, query resolution in O(log n)
steps, etc.) are preserved in MESHCHORD.

Lemma 1. Assume a random network deployment; then,
the peer IDs computed according to mapping ID(x, y) are
distributed uniformly at random in the [0,1] interval (unit
ring).

Proof: The proof is along the same lines as proof of
Theorem 1 in [9].

We now turn to analyzing the stretch factor, which is
formally defined as follows:

Definition 2. Given a lookup operation on key k on an
overlay network O, let l(k) be the hop distance in the physical
network between the peer at which the lookup is invoked
and the peer that manages the key range to which k belongs;
furthermore, let P (k) be the path traversed by the lookup(k)
in the overlay network, and let l(P (k)) be the hop length of
P (k) in the physical network. The stretch factor is defined as:

stretch(O) = max
k

{

l(P (k))

l(k)

}

. (1)

Informally speaking, the stretch factor measures how
close a virtual overlay is to the topology of the underly-
ing network. The next theorem provides an upper bound
to MESHCHORD stretch factor in random networks:

Theorem 1. Assume a random network deployment; then,
MESHCHORD stretch factor is O(

√
n log n) w.h.p.

Proof: Given Lemma 1 and Chord’s properties, we
have that a lookup operation is resolved traversing
O(log n) hops in the virtual overlay, w.h.p. By Lemma
1 of [9], under the assumption of random network de-
ployment, each hop in the virtual overlay corresponds to

O
(
√

n
log n

)

hops in the physical network, w.h.p. Hence,

a lookup operation is resolved traversing O(
√

n log n)
hops in the physical network, w.h.p. We now observe
that, given a key k, l(k) ≥ 1 whenever the peer issuing
the lookup(k) operation cannot resolve the query locally.
It is easy to see that, given a random key k, Lemma
1 implies that the probability of locally resolving a
lookup(k) converges to 0 as n → ∞. It follows that
l(k) ≥ 1 w.h.p., and the theorem is proved.

Note that the bound stated in Theorem 1 is the same
holding for the GeoRoy protocol of [9]. This means
that, in asymptotic terms, we can expect comparable
performance in terms of message overhead between

4. W.h.p. means with probability approaching 1 as n → ∞.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 7

the two protocols. However, MESHCHORD implements
also cross-layering, which is not considered in GeoRoy.
Hence, we expect that MESHCHORD performs consider-
ably better than GeoRoy in terms of information retrieval
performance and resiliency to inconsistencies in the fin-
ger tables (see Section 4).

4 PERFORMANCE EVALUATION

We have evaluated the performance of Chord and of
the proposed specialization MESHCHORD on mesh net-
works using GTNetS, a packet-level network simulator
developed at Georgia Institute of Technology [20]. To
better understand the contribution of location-awareness
and MAC cross-layering on Chord performance, we
have also considered a version of Chord in which only
location-awareness is implemented (ChordLoc), and a
version of Chord in which only MAC cross-layering is
implemented (ChordXL).

The starting point of our work was a pre-existing
implementation of Chord developed by the Network
Security and Architecture Lab at Georgia Tech, which,
however, did not implement join/leave procedures and,
more importantly, it had never been tested on wireless
networks. Hence, in a first phase we had to fix several
bugs in order to have a perfectly working implementa-
tion of Chord in wireless mesh networks.

We considered two network topologies in simulations:

– grid: peers are located in a square, equally spaced
grid; peer separation is 100m;

– random uniform: n peers are distributed uniformly
at random in a square area of side s, where s =√

n · 100m.

In both cases, we assume peers are equipped with
802.11b radios, the link data rate is 11Mbs, and radio
signal obeys free space propagation. For routing mes-
sages between far-away peers, we used the DSR routing
algorithm [11]. This choice is motivated by the fact that
energy consumption, which is not optimal for DSR, is
not an issue in our target application scenario. Most
importantly, DSR is one of the most popular routing
algorithm for wireless multi-hop networks, and that the
simulation-based analysis of [5] has shown that DSR
performs best among the various routing protocols con-
sidered when used in conjunction with Chord (although
in a MANET scenario). Note that scalable source routing
algorithms (see [2], [8]) can be used in combination
with our P2P algorithms. However, given the specific
application scenario we consider (stationary networks
of moderate size with a modest peer churn rate), we do
not expect significant benefits from using scalable source
routing instead of DSR. In fact, as discussed in Section 2,
scalable source routing performance benefit over tradi-
tional routing mechanisms becomes considerable in very
large, dynamic networks. For instance, the extensive
simulation results reported in [2] show that VRR (the
approach proposed in [2]) displays performance similar

to DSR in our reference scenario of stationary networks
of moderate size.

To model dynamic join/leaves of peers into the net-
work (which occur only after all peers have initially
joined the network, and the Chord overlay is stabilized),
we assume that each peer updates its status every 30sec,
possibly making a transition to active/inactive state.
More specifically, a peer which is currently active be-
comes inactive with probability pleave, while a currently
inactive peer becomes active with probability pjoin. By
acting on the values of pleave and pjoin, we can carefully
tune the number of join/leave events in the network.
Unless otherwise stated, in the following we assume
pleave = pjoin.

When a peer u leaves the network, it notifies its succes-
sor u′ by sending it key range range(u). Considering that
in our proposed architecture the information associated
to a key is the IP address of the mesh client storing the
requested resource, that IP addresses are very short (4
bytes), and that key IDs are 24 bits long, each entry
in the key table is composed of 56 bits. Given this,
we have implemented key range transfer trough the
communication of a single UDP message with a 2KB
payload between the leaving peer and its successor,
which is sufficient to transfer as many as 292 entries in
the key table. Note that, even if we use longer IDs to deal
with a larger number of peers and shared resources, we
can still pack a large number of key table entries in a
single UDP message. For instance, with m = 48, we can
pack as many as 204 key table entries is a single UDP
message.

When a peer u (re-)joins the network, it first has to
find an active peer u′ it is aware of (hook peer). The
selection of the hook peer is different depending on
whether the peer joins the network for the first time.
If a peer u has already been part of the network in the
past, it stores the IP address of the last three fingers in
its finger table (this is because the last fingers in the
table are most likely distinct – recall Figure 2) before
leaving the network. Peer u then tries to contact the first
finger in the list, then, in case it is not responding, the
second one, and so on, until u is able to join the network,
or the join operation fails. In case of the first join, the
finger table is empty, and the above procedure cannot
be performed. Hence, upon the first join each peer uses
the IP address of a special peer (the first node joining the
network, which is always the same) as hook peer. In the
bootstrapping phase, peers join the network one at the
time at fixed time intervals (1sec) using the special hook
peer, thus allowing setting up and stabilizing the finger
tables. Overall, this bootstrapping phase takes 200sec in
our simulations.

If the join operation is successful, and after the succes-
sor pointer is stabilized, peer u sends a message to its
successor u′′, so that u′′ can send to u a part of its key
range. This is also implemented through communication
of a single UDP message with 2KB payload.

A certain number of queries is generated during

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 8

Chord lifetime. Queries are generated uniformly over
time (every tquery seconds); when a new query is gener-
ated, the peer that issues the query is chosen uniformly
at random among the currently active peers, and the
ID of the key k to be searched is chosen uniformly at
random in [0,1] (expressed as an m-bits binary number).

In the following, we present the results of four dif-
ferent sets of simulations, focusing on the effect of i)
increasing the number n of peers, ii) changing the num-
ber of join/leave events in the simulated time interval,
iii) changing the query rate, and iv) different types
of background traffic, on MESHCHORD performance.
For all the sets of experiments, the simulated time in-
terval was 3800sec, where the first 200sec were used
to incrementally add peers to Chord, and to stabilize
the overlay; all the simulation results presented in the
following refer to data gathered in the last 3600sec of the
simulation, and are averaged over 10 (50) runs in case
of grid (uniform random) topology. The largest sample
set in case of random topologies was needed to account
for the higher degree of randomness (which also plays a
role in determining the network topology) in this setting.
The simulation parameters are summarized in Table 1.

Topology grid/random
numb. peers 49 ÷ 144
depl. region side 1000m

Radio technology 802.11b
Link data rate 11Mbps

TxRange 200m

∆ 200m

1 − pleave (= 1 − pjoin) 0.9 ÷ 0.999
query rate 2 ÷ 60 queries/min/peer
sim duration 3600(+200)secs
background traffic CBR/TCP
CBR rate 20Kbs ÷ 200Kbs

TABLE 1
Simulation parameters.

The performance of the various versions of Chord
considered in our simulations is expressed in terms of:

– message overhead: total number of network-level
packets exchanged by Chord to maintain the over-
lay, and to resolve the queries;

– query resolution: percentage of queries which are suc-
cessfully resolved; a query on key k is successfully
resolved if the IP address of the peer responsible
for key k is returned to the peer which issued the
query;

– query response time: for successful queries, the time
elapsed between the instant the query is issued by
peer p, and the instant the answer is received at peer
p;

– successful join ratio: percentage of successful join
over all join operations; the percentage is computed
accounting only for the join operations occurring
after the initial stabilization period.

4.1 Preliminary simulations

In a preliminary set of simulations, whose results are
not shown, we have optimized a set of parameters such
as node transmission range, value of ∆ in the location-
aware versions of Chord, and the stabilize interval.

We have verified that, in case of grid topology, setting
the transmission range to 200m (i.e., twice the node sep-
aration) is the best choice for reducing Chord overhead.
For uniformity, we have used the same transmission
range also in the case of random uniform topology. Note
that in this case disconnected network topologies might
arise; since Chord operation is not guaranteed in case the
underlying network is disconnected, we have discarded
these topologies in our simulations.

We have also verified that the values of ∆ resulting in
the better performance (in terms of message overhead)
are in the order of the transmission range. For this rea-
son, we have set ∆ = 200m in the following experiments.

Finally, we have investigated the optimal setting for
the stabilize interval which, we recall, is the interval
between consecutive invocations of the Stabilize op-
eration by a peer. This parameter has a major effect
on Chord performance, since it determines the control
overhead generated to maintain the overlay. We have
experimentally verified that if the stabilize interval is
too short (in the order of 1 − 3secs), the network is
close to congestion (using the basic version of Chord)
when only Chord-related messages are exchanged. On
the contrary, if the stabilize interval is too long (10secs or
higher), the Chord overlay is not responsive enough, and
several queries and join operations fail. We have verified
through extensive simulations that setting the stabilize
interval to 7.5secs results in the best compromise be-
tween message overhead and network responsiveness.

4.2 Increasing network size

In the first set of experiments, we considered networks
of size ranging from 49 to 144 peers (mesh routers). This
is an appropriate range of sizes for our target application
scenario, in which the DHT overlay is realized over
the stationary infrastructure nodes of a wireless mesh
network. The number of queries during the simulated
time interval is fixed at 120 · n, corresponding to having
(on the average) each node generating a new query
every 30sec. We consider both a relatively static network
configuration, in which the average up/down time of a
peer is 8hr, and a very dynamic network configuration,
in which the average up/down time of a peer is 5min.
We remark that peers in our scenario are mesh routers
part of the wireless infrastructure, hence the above churn
rates are deemed adequate to represent static and dy-
namic network conditions.

Figure 4 reports the total number of network-layer
packets exchanged during the simulated time interval
in the grid topology. Location-awareness is very effective
in reducing message overhead: the reduction can be as
high as 40% in the almost static scenario, while it is

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 9

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 40 50 60 70 80 90 100 110 120 130 140 150

#
 p

a
c
k
e

ts

nodes

Chord
ChordXL

ChordLoc
MeshChord

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 40 50 60 70 80 90 100 110 120 130 140 150

#
 p

a
c
k
e

ts

nodes

Chord
ChordXL

ChordLoc
MeshChord

Fig. 4. Total number of packets exchanged in grid networks for increasing number of n: almost static network (left) –
(1 − pleave) = 0.999, and very dynamic network (right) – (1 − pleave) = 0.9.

somewhat lower in the very dynamic scenario. On the
other hand, cross-layering seems to have only marginal
effect on message overhead, if not actually increasing
the number of exchanged messages in very dynamic
networks. Indeed, this higher overhead is caused by a
very positive effect of cross-layering, which is depicted
in Figure 5. As seen from the plots, cross-layering sig-
nificantly increases the number of successful join opera-
tions, especially in case of very dynamic networks: while
the number of successful join operation is consistently
above 95% with cross-layering, with the original Chord
protocol this percentage can drop to as low as 70%
in case of very dynamic networks. We believe this is
due to the fact that cross-layering mitigates the negative
effects of having inconsistent finger tables, which tend to
increase the percentage of unsuccessful join operations.
Inconsistencies in the finger tables are clearly more likely
to occur under dynamic network conditions, which ex-
plains the relatively greater benefits of cross-layering
on the percentage of successful join operations under
such conditions. Hence, the higher message exchange
observed with cross-layering in dynamic networks is
caused by the larger number of peers joining the Chord
overlay in this situation.

It is also worth observing that location awareness
tends to decrease the number of successful join operations
under very dynamic network conditions. We believe this
is due to the fact that, while location-awareness is very
effective in reducing message overhead (Figure 4), its
effect on lookup operations (which are at the basis of
both new join and query resolution procedures) can
actually be detrimental. In fact, as explained in Section
3.5, location-aware ID assignment tends to rule out the
possibility of having close-by peers in the physical net-
work which are far-away in the unit ring. This negative
effect of location-awareness becomes more evident for
larger networks (see Figure 5-right).

The results for the random topology scenario confirm
the trends observed in the grid scenario, with a some-
what lower reduction in terms of message overhead of
MESHCHORD with respect to Chord (as high as 30%).
This lower reduction is due to the fact that cross-layering

is even more effective in increasing the percentage of
successful join operations in case of random network
topology than with grid topologies.

Figure 6 reports the percentage of unsuccessful queries
in very dynamic networks ((1 − pleave = 0.9)). MESH-
CHORD tends to slightly decrease the query success
rate with respect to the original Chord; however, this
apparent shortcoming of MESHCHORD is indeed caused
by the fact that MESHCHORD tends to operate on a larger
network (recall Figure 5), where the success rate is phys-
iologically smaller. The results obtained in the almost
static scenario showed an above 99% query success rate
even for the basic Chord protocol.

Figure 7 reports the average query response time in
very dynamic networks. As seen from the plots, cross-
layering has a significant effect on response time in
both grid and random topologies. On the other hand,
location-awareness only achieves marginal reductions
with respect to the basic Chord protocol. Overall, MESH-
CHORD achieves as high as 60% reduction in query
response time with respect to Chord. The results for the
almost static scenario show very similar trends.

4.3 Varying the number of join/leaves

In the second set of experiments, we fixed the size of
the network to n = 100, and considered different values
of pleave. The results reported in Figure 8 show that
location-awareness considerably reduce message over-
head, over the entire range of pleave values considered.
These results are in accordance with those reported in
Figure 4. It is also worth observing that the relative
advantage of MESHCHORD over Chord tends to become
smaller for more dynamic networks; as observed in the
previous section, this is due to the increased number of
successful join operations achieved by cross-layering.

Figure 9 clearly shows the decreasing trend of the per-
centage of unsuccessful queries as the network becomes
less and less dynamic: while the success rate is above
96% for almost stationary networks, it becomes as low
as 93% for more dynamic networks. This trend is less
pronounced when the network topology is random.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 10

 75

 80

 85

 90

 95

 100

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

S
u

c
c
e

s
s
fu

l
jo

in
 o

p
e

ra
ti
o

n
s
 [

%
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 70

 75

 80

 85

 90

 95

 100

 40 50 60 70 80 90 100 110 120 130 140 150

S
u

c
c
e

s
s
fu

l
jo

in
 o

p
e

ra
ti
o

n
s
 [

%
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

Fig. 5. Percentage of successful join operations in grid networks for n = 100 and increasing values of (1−pleave) (left),
and for increasing value of n with (1 − pleave) = 0.9 (right).

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 40 50 60 70 80 90 100 110 120 130 140 150

U
n

s
u

c
c
e

s
s
fu

l
q

u
e

ri
e

s
 [

%
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 40 50 60 70 80 90 100 110 120 130 140 150

U
n

s
u

c
c
e

s
s
fu

l
q

u
e

ri
e

s
 [

%
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

Fig. 6. Percentage of unsuccessful queries in very dynamic networks for increasing values of n: grid topology (left),
and random topology (right).

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 40 50 60 70 80 90 100 110 120 130 140 150

A
v
g

 s
e

a
rc

h
 t

im
e

 [
s
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 40 50 60 70 80 90 100 110 120 130 140 150

A
v
g

 s
e

a
rc

h
 t

im
e

 [
s
]

nodes

Chord
ChordXL

ChordLoc
MeshChord

Fig. 7. Average query response time in very dynamic networks for increasing values of n: grid topology (left), and
random topology (right).

Finally, Figure 10 shows that MESHCHORD, due to
cross-layering, is very effective in reducing the query
response time with respect to Chord over the entire
range of pleave values considered.

4.4 Varying the number of queries

In the third set of experiments, we have fixed n = 100
and set (1 − pleave) = 0.9, and investigated the relative
performance of the various versions of Chord consid-
ered with an increasing number of queries (up to 60
query/min per node on the average). The average query

response time of the various versions of Chord with
increasing query rate is reported in Figure 11.

As seen from the figure, MESHCHORD outperforms
the basic Chord design under all investigated range
of query rates. The relative advantage of MESHCHORD

with respect to Chord becomes larger with increased
query rate. In particular, in the case of grid topology the
average query response time is reduced from 0.2secs to
less than 0.1secs (50% reduction) with the lowest query
rate, while the reduction is from 1.78secs to 0.65secs
(62% reduction) with the highest query rate. A similar

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 11

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

#
 p

a
c
k
e

ts

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

#
 p

a
c
k
e

ts

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

Fig. 8. Total number of exchanged packets for different values of (1− pleave): grid topology (left), and random topology
(right).

 1

 2

 3

 4

 5

 6

 7

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

L
o

s
t

K
e

y
s
 [

%
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

U
n

s
u

c
c
e

s
s
fu

l
q

u
e

ri
e

s
 [

%
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

Fig. 9. Percentage of unsuccessful queries for different values of (1−pleave): grid topology (left), and random topology
(right).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

A
v
g

 s
e

a
rc

h
 t

im
e

 [
s
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

A
v
g

 s
e

a
rc

h
 t

im
e

 [
s
]

1-pleave

Chord
ChordXL

ChordLoc
MeshChord

Fig. 10. Average query response time for different values of (1 − pleave): grid topology (left), and random topology
(right).

trend is observed with the random topology. Consis-
tently with the previous results, slightly higher search
times are observed in the random topology with respect
to the grid topology. It is worth observing that the
average query response time with MESHCHORD remains
below 1sec even with the highest query rate. Finally, the
results of this set of simulations have confirmed that the
reduction in the average query response time is mainly
due to MAC cross-layering, since ChordXL performance
is relatively close to that of MESHCHORD, especially for
relatively low query rates.

4.5 Background traffic

In the fourth set of experiments, we have evaluated
the performance of the basic Chord and of our pro-
posed MESHCHORD specialization in presence of dif-
ferent types of background traffic. More specifically, we
have considered two types of background traffic, one
oblivious to the congestion level in the network (CBR)
and the other congestion-aware (TCP). We have then
evaluated how Chord and MESHCHORD performance
scales with the number n of peer nodes. In this specific
set of simulations, we have restricted our attention to

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 12

Fig. 11. Average query response time for increasing query rate: grid topology (left), and random topology (right).

grid topologies, and initially assumed static networks
(pjoin = pleave = 0)

Let us first consider the case of CBR (Constant Bit
Rate) traffic. For a given network with n nodes, we
have randomly selected

√
n CBR flows with rate 80Kbs.

The resulting Chord and MESHCHORD performance is
reported in Figure 12–left (failed key searches) and –
right (query response time). For the sake of comparison,
we have also included the curves when no background
traffic is present in the network. As seen from the figure,
contrary to the basic Chord design, MESHCHORD is
able to preserve acceptable performance in presence of
background traffic even for relatively large networks:
when n = 144, less than 15% of the searches fail with
MESHCHORD, while more than 35% of the search oper-
ations fail with Chord. Also the average query response
time when using MESHCHORD is considerably reduced
with respect to the basic Chord: from about 2.5sec to less
than 1.5sec when n = 144. It is also worth observing
the considerable impact of CBR background traffic on
Chord and MESHCHORD performance: when n = 144,
the percentage of failed search operations increases from
about 1% to about 35% with Chord, and from nearly
0 to about 15% with MESHCHORD; the average query
response time increases from about 0.4sec to about 2.5sec
with Chord, and from about 0.15sec to about 1.4sec with
MESHCHORD.

In Figure 13, we have considered a specific network
size (n = 100), and varied the rate of the CBR flows
from 20Kbs to 200Kbs. As seen from the figure, the
performance of MESHCHORD is always superior to the
one of Chord, especially for rates ranging from 20Kbs to
160Kbs; for higher rates, the network is congested, and
MESHCHORD can provide only marginal improvements
with respect to Chord for what concerns the average
query response time, while it still provides substantial
improvements in terms of percentage of failed search
operations.

Let us now consider the case of TCP traffic. Sim-
ilarly to the previous scenario, in a network with n
peer nodes we have randomly selected

√
n random

source/destination pairs, and established TCP flows
between them. The main difference between CBR and

TCP traffic lies in the congestion control mechanism
implemented in TCP: i.e., the sending rate is automati-
cally adjusted (with an additive increase, multiplicative
decrease law) to match the current network load, which
is estimated through explicit ACK packets sent back
from the destination to the source node. The effect of
congestion control can be clearly seen from the plots
reported in Figure 14, which reports the percentage of
failed key searches and the average query response time
as a function of n: differently from the case of CBR
traffic, Chord/MESHCHORD performance do not con-
sistently decrease as n increases; instead, performance
worsen until n is around 100, and it stabilizes, if not
even improves, for larger values of n. This effect is
due to the TCP congestion control mechanism: as the
network is relatively small, the relatively few TCP flows
observe a lightly loaded network, and can increase the
sending rates up to the maximal values. However, as the
network becomes larger and the number of active TCP
flows (as well as Chord/MESHCHORD-related traffic)
increases as well, a certain level of network congestion
is observed, and the sending rates of the TCP flows
are significantly reduced. Thus, the actual amount of
background traffic is stabilized (if not reduced), and
Chord/MESHCHORD performance stabilizes as well (if
not improves). The above described effect of the TCP
congestion control mechanisms can be clearly deduced
from Figure 15, which reports the average number of
KB sent for each active TCP flow as n increases. As
seen from the figure, as the network size increases, the
average number of KB sent per flow tends to decrease,
owing to the additive increase, multiplicative decrease
rule used to adjust sending rates. When n = 144, the
active flows are almost starved.

It is also worth observing that MESHCHORD con-
sistently and considerably outperforms Chord also in
presence of TCP background traffic: in the most criti-
cal network conditions (n = 100 − 121), MESHCHORD

percentage of failed search operations is around 13%,
with an average query response time of less than 1.2sec,
which should be compared with 27% and 1.8sec, respec-
tively, provided by Chord. Another notable feature of
MESHCHORD is that its lower message overhead (with

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 40 50 60 70 80 90 100 110 120 130 140 150

F
a

ile
d

 k
e

y
 s

e
a

rc
h

e
s
 [

%
]

Number of nodes

noApp Chord
noApp MeshChord

CBR Chord
CBR MeshChord

 0

 0.5

 1

 1.5

 2

 2.5

 40 50 60 70 80 90 100 110 120 130 140 150

M
e

a
n

 s
e

a
rc

h
 t

im
e

 [
s
]

Number of nodes

noApp Chord
noApp MeshChord

CBR Chord
CBR MeshChord

Fig. 12. Percentage of failed key searches (left) and average query response time (right) in presence of CBR
background traffic.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120 140 160 180 200

F
a

ile
d

 k
e

y
 s

e
a

rc
h

e
s
 [

%
]

CBR rate [Kbs]

Chord
MeshChord

 0

 0.5

 1

 1.5

 2

 2.5

 20 40 60 80 100 120 140 160 180 200

M
e

a
n

 s
e

a
rc

h
 t

im
e

 [
s
]

CBR rate

CBR Chord
CBR MeshChord

Fig. 13. Percentage of failed key searches (left) and average query response time (right) for increasing CBR rates,
with n = 100 peer nodes.

 0

 5

 10

 15

 20

 25

 30

 40 50 60 70 80 90 100 110 120 130 140 150

F
a

ile
d

 k
e

y
 s

e
a

rc
h

e
s
 [

%
]

Number of nodes

noApp Chord
noApp MeshChord

TCP Chord
TCP MeshChord

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 40 50 60 70 80 90 100 110 120 130 140 150

M
e

a
n

 s
e

a
rc

h
 t

im
e

 [
s
]

Number of nodes

noApp Chord
noApp MeshChord

TCP Chord
TCP MeshChord

Fig. 14. Percentage of failed key searches (left) and average query response time (right) in presence of TCP
background traffic.

respect to Chord) has a positive effect not only on the
performance of the P2P application itself, but also on the
performance of the applications generating background
traffic: from Figure 15, we can see that MESHCHORD

increases the average throughput of TCP flows of as
much as 30% with respect to the basic Chord design.

We have repeated the above experiments in presence
of dynamic network conditions, i.e., when peer nodes
join/leave the network at different times. In particular,
we have considered a setting in which (1 − pjoin) =
(1 − pleave) = 0.9, corresponding to highly dynamic

network conditions. Note that, due to the presence of
background traffic, we impose that peers which are also
source/destination of background traffic flows remain
active for the entire simulated time interval.

Chord and MESHCHORD performance in presence of
CBR background traffic is reported in Figure 16. As seen
from the figure, MESHCHORD considerably reduces the
percentage of failed search operations with respect to
Chord also in this case, although to a somewhat lower
extent. In terms of average query response time, though,
MESHCHORD performs worse than Chord for the largest

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 14

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 40 50 60 70 80 90 100 110 120 130 140 150

F
a

ile
d

 k
e

y
 s

e
a

rc
h

e
s
 [

%
]

Number of nodes

noApp Chord
noApp MeshChord

CBR Chord
CBR MeshChord

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 40 50 60 70 80 90 100 110 120 130 140 150

M
e

a
n

 s
e

a
rc

h
 t

im
e

 [
s
]

Number of nodes

noApp Chord
noApp MeshChord

CBR Chord
CBR MeshChord

Fig. 16. Percentage of failed key searches (left) and average query response time (right) in presence of CBR
background traffic under dynamic network conditions.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 40 50 60 70 80 90 100 110 120 130 140 150

K
B

 s
e

n
t

fr
o

m
 e

a
c
h

 T
C

P
 a

p
p

#nodes

TCP Chord
TCP MeshChord

Fig. 15. Average number of KB sent per TCP flow for
increasing network size.

network size (n = 144). This is due to the fact that,
under dynamic network conditions, the actual overlay
network size with MESHCHORD is considerably larger
than with Chord, due to the higher number of successful
join operations achieved by MESHCHORD (recall Figure
5). Hence, queries tend to traverse a larger number of
hops with MESHCHORD, which results in a relatively
higher average query response time. Again, we stress
that this apparent performance degradation provided by
MESHCHORD in presence of large, dynamic networks,
must indeed be interpreted as an evidence that MESH-
CHORD is more effective than Chord in maintaining a
large and coherent P2P overlay.

Figure 17 reports Chord and MeshChord performance
in presence of TCP background traffic. Differently from
the previous case, MESHCHORD consistently outper-
forms Chord in terms of both percentage of failed
searches and average query response time. It is also
worth observing the much greater impact that back-
ground traffic has on Chord performance, with respect
to the similar impact on MESHCHORD performance: for
instance, when n = 100, the percentage of failed searches
with Chord increases from about 4.5% in case of no
background traffic to about 19% with TCP traffic, while
MESHCHORD displays a much lower increases (from
6% to 10%); for what concerns average query response

 500

 1000

 1500

 2000

 2500

 3000

 3500

 40 50 60 70 80 90 100 110 120 130 140 150

K
B

 s
e

n
t

fr
o

m
 e

a
c
h

 T
C

P
 a

p
p

#nodes

Chord
MeshChord

Fig. 18. Average number of KB sent per TCP flow for in-
creasing network size under dynamic network conditions.

time, it increases from 0.3sec to 1.3sec with Chord, and
only from 0.65sec to 0.8sec with MESHCHORD. This
clearly indicates that, contrary to Chord, MESHCHORD

performance is relatively resilient to the presence of
background traffic (note that a similar trend is displayed
also in presence of CBR background traffic – see Figure
16).

Finally, Figure 18 reports the average number of KB
sent for each TCP flow in presence of dynamic network
conditions. Similarly to the case of static networks, the
effect of the TCP congestion control mechanism can be
clearly deduced, as well as the better performance of
TCP applications achieved by MESHCHORD with respect
to the basic Chord design.

4.6 Discussion

Summarizing, the results of our study have shown that,
differently from what happens in a MANET scenario
[5], Chord can be effectively used for implementing a
distributed file/resource index in wireless mesh net-
works, at least when the co-existing traffic is low. Most
importantly, Chord performance can be considerably
improved by accounting for specific features of the con-
sidered application scenario, namely precise knowledge

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 15

 4

 6

 8

 10

 12

 14

 16

 18

 20

 40 50 60 70 80 90 100 110 120 130 140 150

F
a

ile
d

 k
e

y
 s

e
a

rc
h

e
s
 [

%
]

#nodes

noApp Chord
noApp MeshChord

TCP Chord
TCP MeshChord

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 40 50 60 70 80 90 100 110 120 130 140 150

M
e

a
n

 s
e

a
rc

h
 t

im
e

 [
s
]

Number of nodes

noApp Chord
noApp MeshChord

TCP Chord
TCP MeshChord

Fig. 17. Percentage of failed key searches (left) and average query response time (right) in presence of TCP
background traffic under dynamic network conditions.

of peer location (location-awareness) and 1-hop broad-
cast nature of communications (MAC cross-layering).
Location-awareness proves very useful in reducing mes-
sage overhead, of as much as 40% with respect to the
basic Chord desing. Cross-layering, on the other hand,
is very effective in mitigating the negative effects of
inconsistencies in the finger tables, leading to a con-
siderable increase in the number of peers successfully
joining the network. Cross-layering has also a beneficial
effect on the query response time, which is significantly
reduced with respect to the basic Chord design. The
only price to pay is a marginal increase (less than 2%)
in the percentage of unsuccessful queries. The protocol
resulting from the combination of these two techniques,
MESHCHORD, sums up the relative advantages provided
by location-awareness and cross-layering over Chord,
and considerably outperforms the basic Chord design
under all respects.

MESHCHORD performance gain with respect to Chord
is much more evident in presence of background traffic:
contrary to Chord, MESHCHORD is able to provide satis-
factory performance of the P2P overlay also in presence
of background traffic, while in turn increasing the per-
formance of the applications contributing to the back-
ground traffic (e.g., increasing the average throughput
of TCP flows). In general, MESHCHORD performance
appears to be relatively resilient to the presence of back-
ground traffic (as long as the network is not congested),
which is not the case for Chord.

5 CONCLUSIONS

In this paper, we have carefully investigated through
packet-level simulation the performance of the Chord
approach for peer-to-peer resource sharing in wireless
mesh networks. We have also proposed a specialization
of the basic Chord approach called MESHCHORD, which
exploits peculiar features of wireless mesh networks
(location-awareness, and 1-hop broadcast nature of wire-
less communications) to improve performance.

The main finding of the study reported in this paper is
that, contrary to what happens in MANET environments

[5], the Chord approach can be successfully utilized
for implementing file/resource sharing applications in
wireless mesh networks. However, the basic Chord de-
sign is effective only under relatively static network
conditions and in presence of modest background traffic.
With respect to the basic Chord design, our proposed
MESHCHORD protocol achieves a considerable reduction
in message overhead, and a significant improvement
in information retrieval performance. This performance
improvement allows an effective realization of the P2P
overlay also under very dynamic network conditions
and in presence of considerable background traffic.

Although our investigation has shown that MESH-
CHORD message overhead does not lead to network
congestion by itself, overlay maintenance still requires
the exchange of a relatively high number of messages in
the network, which could induce performance degrada-
tion when other applications are executed concurrently
with MESHCHORD. Quantifying application-layer per-
formance degradation when several applications coexist
with the P2P overlay is matter of ongoing work, as well
as the problem of further reducing the message over-
head induced by applications for file/resource sharing
in wireless mesh networks.

REFERENCES

[1] A. Al Hamra, C. Barakat, T. Turletti, “Network Coding for Wireless
Mesh Networks: A Case Study”, Proc. IEEE Int. Symposium on a
World of Wireless, Mobile and Multimedia (WoWMoM), 2006.

[2] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, A. Rowstron,
“Virtual Ring Routing: Network Routing Inspired by DHTs”, Proc.
ACM SIGCOMM, pp. 351–362, 2006.

[3] C. Canali, M.E. Renda, P. Santi, “Evaluating Load Balancing in
Peer-to-Peer Resource Sharing Algorithms for Wireless Mesh Net-
works”, Proc. IEEE MeshTech, pp. 603–609, 2008.

[4] M. Conti, E. Gregori, G. Turi, “A Cross-Layer Optimization of
Gnutella for Mobile Ad Hoc Networks”, Proc. ACM MobiHoc, May
2005.

[5] C. Cramer, T. Fuhrmann, “Performance Evaluation of Chord in
Mobile Ad Hoc Networks”, Proc. ACM MobiShare, pp. 48–53, 2006.

[6] M. Denny, M. Franklin, P. Castro, A. Purakayastha, “Mobiscope: A
Scalable Spatial Discovery Service for Mobile Network Resources”,
Proc. International Conference on Mobile Data Management (MDM),
2003.

[7] P. Desnoyers, D. Ganesan, P. Shenoy, “TSAR: A Two Tier Sensor
Storage Architecture Using Interval Skip Graphs”, Proc. ACM
SenSys, Nov. 2005.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 16

[8] T. Fuhrmann, “Scalable Routing for Networked Sensors and Actu-
ators”, Proc. IEEE SECON, pp. 240–251, 2005.

[9] L. Galluccio, G. Morabito, S. Palazzo, M. Pellegrini, M.E. Renda,
P. Santi, “Georoy: A Location-Aware Enhancement to Viceroy Peer-
to-Peer Algorithm”, Computer Networks, Vol. 51, n. 8, pp. 379–398,
June 2007.

[10] L. Huiqiong, D. Xuyang, L. Hansheng, W. Wenmin, “P2P File
Sharing in Wireless Mesh Networks”, Proc. Conference on Advanced
Parallel Processing and Techniques, LNCS 4847, pp. 402-413, 2007.

[11] D.B. Johnson, D.A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks”, Mobile Computing, n. 353, pp. 153–181, 1996.

[12] A. Klemm, C. Lindemann, O.P. Waldhorst, “A Special-Purpose
Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks”,
Proc. IEEE VTC-Fall, Oct. 2003.

[13] O. Landsiedel, S. Gotz, K. Wehrle, “Towards Scalable Mobility in
Distributed Hash Tables”, Proc. IEEE Conf. on Peer-to-Peer Comput-
ing, 2006.

[14] D. Malkhi, M. Naor, D. Ratajczak, “Viceroy: A Scalable and
Dynamic Emulation of the Butterfly”, Proc. ACM Symposium on
Principles of Distributed Computing (PODC), Jul. 2002.

[15] G. Moro, G. Monti, “W-Grid: a Cross-Layer Infrastructure for
Multi-Dimensional Indexing, Querying and Routing in Wireless
Ad Hoc and Sensor Networks”, Proc. IEEE Conf. on Peer-to-Peer
Computing, 2006.

[16] A. Passarella, F. Delmastro, M. Conti, “XScribe: a Stateless, Cross-
Layer Approach to P2P Multicast in Multi-Hop Ad Hoc Net-
works”, Proc. ACM MobiShare, pp. 6–11, 2006.

[17] H. Pucha, S.M. Das, Y.C. Hu, “Ekta: An Efficient DHT Substrate
for Distributed Applications in Mobile Ad Hoc Networks”, Proc.
IEEE Workshop on Mobile Computing Systems and Applications (WM-
CSA), 2004.

[18] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin,
F. Yu, “Data-Centric Storage in Sensornets with GHT, a Geographic
Hash Table”, Mobile Networks and Applications, Vol. 8, No. 4 pp. 427–
442, 2003.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A
Scalable Content-Addressable Network”, Proc. ACM Sigcomm, Aug.
2001.

[20] G. Riley, “The Georgia Tech Network Simulator,” ACM SIG-
COMM MoMeTools Workshop, 2003.

[21] A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large Scale Peer-to-Peer System”, Proc.
IFIP/ACM Middleware (LNCS 2218), pp. 329–350, 2001.

[22] F. Sailhan, V. Issarny, “Scalable Service Discovery for MANET”,
Proc. IEEE PerCom, 2005.

[23] http://www.seattlewireless.net/
[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan,

“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-
plications”, Proc. ACM Sigcomm, Aug. 2001.

[25] O.Wolfson, B. Xu, H. Yin, H. Cao, “Search-and-Discover in Mobile
P2P Network Databases”, Proc. IEEE ICDCS, 2006.

Claudia Canali is assistant professor at the
University of Modena and Reggio Emilia since
2008. She got the Laurea Degree summa cum
laude in computer engineering from the same
university in 2002, and the Ph.D. Degree in com-
puter engineering from the University of Parma
in March 2006. During the Ph.D. she spent
eight months as visiting researcher at the AT&T
Research Labs in Florham Park, New Jersey.
Her research interests include distributed ar-
chitectures for Internet-based services, content

delivery networks and mobile systems for mobile Web access. On these
topics, she published about twenty articles on international journals and
conferences. She is member of IEEE Computer Society. For additional
information: http://weblab.ing.unimo.it/people/canali.

M. Elena Renda received the Laura Degree in
Computer Science with full marks from the Uni-
versity of Pisa, Italy, in 2000, and the Ph.D. De-
gree in Information Engineering from the Scuola
Superiore Sant’Anna di Studi Universitari e di
Perfezionamento, Pisa, Italy, in 2009. She has
been a research associate at the Istituto di
Scienza e Tecnologie dell’Informazione - CNR
in Pisa, from 2001 till 2005, and, since 2005, a
research associate at the Istituto di Informatica e
Telematica - CNR in Pisa. During the Ph.D. she

spent seven months as visiting researcher at the Language Technolo-
gies Institute of Carnegie Mellon University, Pittsburgh, PA. Her research
interests during Ph.D. included several aspects of information retrieval,
such as personalization, information filtering, meta-search, collection
and document fusion, automatic source selection, and schema match-
ing. More recently, her interests have broadened including P2P resource
sharing protocols for wireless mesh community networks, and efficient
and scalable algorithms for DNA pattern repetitions identification and
extraction. She has published several articles on international journals
and conferences related to her research topics. For additional informa-
tion: http://www.iit.cnr.it/staff/elena.renda.

Paolo Santi received the Laura Degree summa
cum laude and Ph.D. Degree in Computer Sci-
ence from the University of Pisa in 1994 and
2000, respectively. He has been researcher at
the Istituto di Informatica e Telematica - CNR in
Pisa, Italy, since 2001, and Senior Researcher
since 2009. During his career, he visited Georgia
Institute of Technology in 2001, and Carnegie
Mellon University in 2003. His research interests
include fault-tolerant computing in multiproces-
sor systems (during Ph.D. studies), and, more

recently, the investigation of fundamental properties of wireless multihop
networks such as connectivity, topology control, lifetime, capacity, mobil-
ity modeling, and cooperation issues. He has contributed more than 50
papers and a book in the field of wireless ad hoc and sensor networking,
he has been General Co-Chair of ACM VANET 2007 and ACM VANET
2008, he is Technical Program Co-Chair of IEEE WiMesh 2009, and
he is involved in the organizational and technical program committee
of several conferences in the field. Since February 2008, Dr. Santi is
Associate Editor for IEEE Transactions on Mobile Computing. He is a
senior member of ACM and SIGMOBILE. For additional information:
http://www.iit.cnr.it/staff/paolo.santi.

Simone Burresi received the Laurea Degree in
Computer Science from the University of Pisa
in 2007. Currently he is an IT consultant for
Value Team S.P.A., an Italian IT consultancy and
services company of the Value Partners Group.

