
An intermediary software infrastructure for edge services

Raffaella Grieco, Delfina Malandrino, Vittorio Scarano, Francesco Varriale
Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,

Università di Salerno, 84081 Baronissi (Salerno), Italy.
E-mail: {rafgri, delmal, vitsca}@dia.unisa.it

Francesca Mazzoni
Dipartimento di Ingegneria dell’Informazione,

Università di Modena e Reggio Emilia, 41100 Modena, Italy.
E-mail: mazzoni.francesca@unimo.it

Abstract

We describe the goals and architecture of a new frame-
work that aims at facilitating the deployment of adapta-
tion services running on intermediate edge servers. The
main goal is to guarantee robustness and quick prototyp-
ing of functions that should integrate mobile/fixed-network
services. Moreover, we intend to design a distributed archi-
tecture with the purpose of guaranteeing efficient delivery.

1. Introduction

The World Wide Web and the services it provides are
a remarkable reality in our society. In the last decade, the
obscure and, somewhat, “technical” Internet, mainly used
by scientists, has been diffused among all the population in
the industrialized world. Many different explanations are
usually brought to motivate this astonishing success, from
technological to sociological to economical ones. Among
the former, very important is the emphasis on the capabil-
ities of the standards to accommodate a wide range of ser-
vices, therefore, pushing the World Wide Web as a universal
access portal to the information, wherever located and how-
ever accessed.

A challenge of different nature has been posed to the
World Wide Web by mobile communication. In fact, the
only technological trend that can be compared to the WWW
in terms of growth, diffusion and size are the ubiquitous
services offered by mobile terminals connected by wireless
networks. Such services are growing in nature and acces-
sibility, with more and more dynamic, multimedia and in-
teractive content offered to mobile users. In particular, the
access to the content traditionally accessed via Web comes,

now, from a wide range of heterogeneous devices that are
connected to the Internet through different wireless tech-
nologies, such as GPRS, UMTS, Bluetooth etc. The chal-
lenge to the World Wide Web is to be able to seamlessly
integrate these services, in order to convey to the user the
feeling of a unique platform that follows him and suits his
needs, wherever and however located.

Wireless and mobile environments involve more chal-
lenges to end users than wired network environments. Mo-
bile terminals are characterized by several constraints, such
as battery power, device weight, graphical displays, porta-
bility, limited I/O, limited bandwidth and intermittent con-
nection to the network. Moreover, other limitations come
from servers’ inability to handle software variations, such
as the different data formats and protocols that clients can
support. Intermediaries infrastructures represent the suit-
able way to address these problems, as they are able to deal
with different network conditions and client heterogeneity.
These systems can also efficiently provide context aware-
ness and context adaptation, very important features of mo-
bile and ubiquitous environments. In fact, bandwidth limi-
tation and constraints on user interfaces require that all the
information transmitted and visualized is strictly pertinent
to the user’s query.

Here, we present the status of an ongoing project, that
is to deliver a framework for easily and efficiently deploy-
ing intermediary services on the WWW. The main over-
all goals of the architecture are efficiency, programmabil-
ity, life-cycle support, security, scalability, persistence and
personalization. Here, we show how our architecture (as
current status of the project) is innovative since: it pro-
vides programmability without giving up efficiency (with
respect to classical Java-based proxy environments), it of-
fers “horizontal” users’ profiles management primitives,
and deployment/un-deployment mechanisms.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

2. The State of the Art

Our work stems from two complementary research ar-
eas: the application servers for distributed components and
the World Wide Web proxies and intermediary systems.

Application Servers. The World Wide Web was soon rec-
ognized as an ideal platform to deploy distributed appli-
cations. As a matter of fact, when the WWW was pre-
sented, one of the most exciting breakthrough for the av-
erage user (accustomed to, say, pre-WWW programs like
Gopher) was that his requests on a HTML form could be
answered by a server-side computation (via the well-known
Common Gateway Interface Binaries (CGI-BIN) specifica-
tions). This innovation of the server-side computation was
ideally complemented, at that time, by the introduction of
client-side executable content (i.e. the Java applets).

The evolution of the server-side computation model of
the World Wide Web was quick but complete, passing
through a 2-tier model to a 3-tier model, where the presen-
tation logic, the business logic and the data access logic was
separated, respectively, on a Web browser, on a Web server
equipped with executable programs and a Database Man-
agement System as a back-end.

The needs for quick prototyping and deploying, as well
as the increase in complexity and requirements, promoted
the introduction of distributed components that were exe-
cuted in an application server or container. An application
server provides common middleware services, such as re-
source pooling, networking, security, etc. in such a way
that the designer can focus on the application that is going
to be run by the server. In order to allow for interoperabil-
ity, the application is built as a number of distributed com-
ponents, i.e. programs that implement a set of well-defined
interfaces. By leveraging on portability and reusability, dis-
tributed components represent an important and durable in-
vestment for companies.

Two are the main middleware platforms that currently
offer application servers: Sun Java 2 Enterprise Edition
(J2EE) and Microsoft .NET. The former represents a multi-
vendor standard that enrolls several major players in the In-
formation technology (such as IBM Websphere Application
Server or Oracle Application Server 10g) while the latter is
mainly based on Microsoft servers.

Intermediary Systems. One of the current research trend
in distributed systems is how to extend the traditional
client/server computational paradigm in order to allow the
provisioning of intelligent and advanced services. One of
the most important motivation is to let heterogeneous de-
vices access to WWW information sources through a vari-
ety of emerging 3G wireless technologies.

This computational paradigm introduces new actors
within the WWW scene, the intermediaries [7, 17], i.e.
software entities that act on the HTTP data flow exchanged
between client and server by allowing content adaptation
and other complex functionalities, such as geographical lo-
calization, group navigation and awareness for social navi-
gation [6, 9], translation services [15], adaptive compres-
sion and format transcoding [2, 14, 23], etc.

Web Based Intermediaries (WBI) [15] is a pro-
grammable proxy, written in Java, developed at IBM Al-
maden Research Center, in order to simplify the develop-
ment and the deployment of Web Intermediaries, i.e. appli-
cations that deal with HTTP information flows. The WBI
approach is based on the notion of information streams [6],
on which transformations can be applied in order to allow
content adaptation and personalization. These functional-
ities are provided by WBI components, called MEGs, dy-
namically invoked on the HTTP request/response flow.

The BARWAN project [16] by UC/Berkeley has the goal
to provide intermediary systems to support ubiquitous ac-
cess to Internet services from mobile and thin clients. An
important system component of this project is the proxy ar-
chitecture, TACC, that acts as intermediary between servers
and mobile clients. The TACC programming model pro-
vides important functionalities, such as transformation, ag-
gregation, caching and customization of the Web con-
tent [8, 10].

iMobile architecture [21], by AT&T Research, aims to
hide the complexity of multiple devices and content sources
from mobile users. It provides a framework for developing
and composing intermediary components in complex dis-
tributed applications. Its main component is iProxy [3], a
programmable proxy server that provides personalized ser-
vices, which are implemented as reusable building blocks
in Java.

SEcS: Scalable Edge-computing Services architec-
ture [13], is a programmable networking infrastructure
whose main goal is to address the challenge of develop-
ing and deploying Internet services, that is, scalable, robust,
highly available and, more recently, added-value services,
the Edge services, that are able to adapt, aggregate and
transform many information sources at the network Edge,
nearer to the end users.

SEcS provides support for personalization and configu-
ration of the services required on a per-user basis, and also
supports the dynamic composition of services into a data
path, as well as the adaptation along such data path.

An important direction toward standardization is being
conducted by the IETF Working Group for “Open Plug-
gable Edge Services” (OPES) [4, 5]. Their goal is to define
an open standard that allows intermediaries to provide ser-
vices on the HTTP data flow exchanged between client and
server. In OPES, intermediaries can also employ local or re-

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

mote servers (called “callout servers”) in order to facilitate
the efficient delivery of complex services. OPES ruleset are
applied in order to choose which service to apply to the data
flow.

3. The requirements

In this section, we describe some non-functional require-
ments. Later, in Section 4 we provide a sketch of the over-
all architecture, because of the work in progress on the
project, and describe the currently implemented function-
alities (Section 5).

The proxy-applications server (or proxy container)
should provide the following “horizontal” services to each
proxy services infrastructure, therefore alleviating the pro-
gramming effort to quickly build efficient Internet proxy
services.
• Life-cycle support: the proxy container must fully sup-
port the deployment and un-deployment of proxy services,
by making these tasks automatic and accessible by remote
locations. Moreover, support for pausing and restarting ser-
vices is also necessary.
• Programmability: programming under existing inter-
mediaries cannot involve the same power, efficiency, ex-
pressiveness and generality like developing an open system
from scratch. This means that we need a compositional
framework and a programming model that allow us to re-
alize a general-purpose programmable environment, whose
functionalities will be implemented by APIs provided by
the intermediary system.
• Security: the proxy container must be able to allow ac-
cess to resources in a trusted way allowing both authoriza-
tion and authentication for each user’s session. Moreover,
services management mechanisms must control that users
are allowed to perform only the operations that they have
rights to perform.
• Persistence: services must be guaranteed to keep a per-
service status as well as a per-user and per-transaction sta-
tus. Per-user and per-transaction status allow, e.g., personal-
ization services while per-service status offers cooperation
and sharing of resources. In general, persistence should en-
sure that status is also kept in case of a server shutdown and
restart.
• Scalability: the proxy container could be (seamlessly)
run on a cluster. Several instances of the proxy container
would transparently collaborate over a LAN to offer a sin-
gle execution environment for proxy services. The location
transparency requirement implies that neither the proxy pro-
grammer (during the development of the proxy service) nor
the user (during his interaction with the proxy services) are
aware of the fact the service is provided by (any node of)
a cluster. It also means that services can be dynamically
located in the cluster and that some level of fault-tolerance

should be allowed (transparent fail-over). Notice that scal-
ability can heavily impact on persistence; in fact, HTTP re-
quests from the same user (or within the same transaction)
are guaranteed to reach the same node of the cluster and,
therefore, additional mechanisms are to be employed.
• Back-end integration: our proxy container should be
also accessible as a traditional Web server in order to en-
hance traditional applications. As application servers pro-
vide an easy interaction with DBMS and Naming server,
each proxy service should be easily integrated with the other
services provided by the Web server. A classical example
could be the integration with portals and cooperative sys-
tems.
• Logging and auditing: the proxy container should pro-
vide mechanisms to record security-related events (logging)
by producing an audit trail that makes possible the re-
construction and examination (auditing) of a sequence of
events. The process of capturing user activity and other
events on the system, storing this information and produc-
ing system reports is important for understanding and re-
covering from security attacks. Logging is also important
to provide billing support, since services can be offered
with different price models (flat-rate, per-request, per-byte
billing options). The container should offer the possibility
to manage accounting to users for each service, as specified
by the proxy service manager.
• Inter-services communication: when deploying differ-
ent proxy services on a WAN, the programmer can cas-
cade by chaining them with HTTP, therefore, there is no
(strong) need for an additional communication medium
among proxy services that are run on different container.
Different is the situation when proxy services, run on the
same container, need to exchange information. In that case,
a communication protocol (necessarily asynchronous, as
any message-oriented middleware) is needed.

4. The architecture and the implementation

Here, we provide a sketch of the architecture and provide
some details of what we already implemented.

As preliminary step, our decision was to base our work
on top of existing open-source, mainstream applications,
such as Apache Web server. First of all, it will make our
work widely usable because of the popularity of the Apache
Web server [22]. Then, our results will be released as
open source (by using some widely accepted open-source
license) so that it will be available for improvements and
personalizations to the community. Then, last but not least,
Apache is a high quality choice, since it represents one of
the most successful open-source projects (if not the most
successful) that delivers a stable, efficient and manageable
software product to the community of Web users.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

4.1 Apache and mod perl

Apache [1] is recognized as the world’s most popular
Web server (HTTP server) [22]. It provides a full range of
Web server features, including CGI, SSL, and virtual do-
mains. Apache also supports plug-in modules for extensi-
bility and is reliable and relatively easy to configure. Fi-
nally, it is a free software distributed by the Apache Soft-
ware Foundation, that promotes various open source ad-
vanced Web technologies.

mod perl [19] represents the perfect marriage of the Perl
programming language [20] and the Apache Web server [1].
It brings together the power of these two powerful technolo-
gies by providing a programmable framework for building
and accelerating dynamic content, providing mechanisms
for database integration, allowing a simple customization
of new modules that can be directly and easily integrated
into Apache, managing the Apache configuration file, etc.

The most important characteristic of the Apache Web
server is that it can be extended with new modules, com-
monly written in C programming language, but since it is
a hard work, the new opportunity is to write such modules
entirely in Perl programming language and integrate them
in Apache through mod perl. This leads to extend the be-
havior of the Apache Web server by taking advantage of the
power and flexibility of the Perl language.

Having a persistent Perl interpreter embedded in Apache
Web server allows to avoid the overhead of starting an exter-
nal interpreter for any HTTP request which needs to run Perl
code. An important feature is the code caching: the mod-
ules and scripts are loaded and compiled only once, when
the server is first started. Then for the rest of the server’s
life the scripts are served from the cache, so the server only
has to run the pre-compiled code.

Each HTTP request is processed in sequential phases,
and at each phase different decisions can be taken about the
request (processed, rejected, or simply forwarded to the suc-
ceeding phase). HTTP requests can be managed by the stan-
dard Apache core, or by new and external modules. With
mod perl all phases of the HTTP request cycle can be ac-
cessed and controlled, allowing to enhance and personalize
the behavior of the Web server. Each HTTP request goes
through twelve phases, and on each phase it is possible
to provide a specialized handler, such as a PerlTransHan-
dler to manipulate the requested URI, the PerlAccessHan-
dler to provide restrictions, the PerlAuthenHandler and Per-
lAuthzHandler to provide authentication and authorization
mechanisms, the PerlHeaderParserHandler to inspect the
HTTP requests and perform tasks according to conditions,
the PerlResponseHandler to produce HTTP responses, etc.

4.2 Architecture Overview

Our server is entirely written in Perl and utilizes
mod perl within Apache to speed up performance. Our
framework consists of several modules: each of them acts
in a specific phase of the Apache HTTP Request Life-
cycle (see Fig. 1). In particular the ProxyPerl and the
Authorization Handlers have been implemented as standard
Apache/mod perl 2.0 HTTP Handlers, the Registry and the
Deploy Modules as standard Apache/mod perl 2.0 HTTP
Response Handlers, and finally the FilterPlugin Module as
the standard Apache Filter Handler.

Figure 1. How our modules fit in the HTTP Request Life-
cycle of Apache.

Moreover, the ProxyPerl and FilterPlugin Modules are
part of a what we call the Proxy View, that is the func-
tionalities offered by these modules are all implemented
proxy-side. On the other hand, the Registry and Deploy
Modules are part of what we call the Server View since
all functionalities offered by these modules are server-side,
offering users/administrator an interaction to manage (per-
sonal/services) configurations (see Fig. 1). It must be em-
phasized that the Authorization Module is a hybrid mod-
ule since any functionality is usually managed with a server
view control and then provided as proxy view.

Let us start with a detailed description of the functional-
ities offered by these modules.

The ProxyPerl Module. The ProxyPerl Module is a Perl
Module that represents the proxy component of our archi-
tecture. It intercepts all clients requests and initializes the
transaction process. Its most important task is to fetch the
requested URLs manipulating, if necessary, HTTP headers.
If no transformation must be applied on the HTTP flow, the
requested document will be returned back to the client, else

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

the transaction will be managed by the handlers invoked ac-
cording to users’ profiles.

When the client issues an HTTP request, the Prox-
yPerl Module identifies the user (or provides to initiate a
challenge-response authentication), and then loads the con-
figuration of the services that the user selected during the
configuration. Once the client is identified by the ProxyPerl
Module, the personalized navigation begins: the services
selected by the user will be applied to the HTTP flow of
requests/responses.

The Authorization Modules. Each proxy service must
be able to rely on a module to easily and safely authenti-
cate the proxy user (“Are you who you say you are?”) as
well as to check the operations that the user is performing
on the component (“Are you allowed to do what you are
asking for?”).

This means that the proxy must verify that the user issu-
ing a request is authorized to do so, or that user is charged
for a specified operation. Then, the Authorization service is
useful both for restricting access to a proxy server as well
as to distinguish between users. If we are interested in ser-
vices that treats users differently, e.g., per-user settings, it
is important provide a mechanism that is able to distinguish
between them. An example is the creation of user profiles
that necessarily requires a mechanism to identify Web users.

The Apache Authentication phase is called whenever the
requested file or directory is password protected. Our Au-
thentication Module, that acts in this phase, is used to verify
user’s identification credentials. If the user is authenticated,
the handler loads the user’s profile and starts the navigation,
otherwise it provides a challenge-response authentication
mechanism asking for the credentials by using the Proxy
Authorization HTTP headerProxy-Authorization as
detailed in [11].

The Registry Module. The Apache Registry Handler is
the standard Apache module that allows to run CGI scripts
very fast under mod perl, by compiling all scripts once and
then caching them in main memory.

Our architecture uses the Apache Registry Handler to
handle the user’s and services data. In particular the scripts
are part of three different categories: the first gives infor-
mation about the available services; in the second one the
administrator manages the user’s home and, finally, the last
category of scripts is used by users to modify their own data
and profiles. In order to obtain a services’ list, the user must
enter its credentials (login and password), and access the
Change Profile Section. At this point the user can choose
among the offered services. The page representing the list
of services is composed of a set of HTML forms each of
them is used to set the parameters of a specific service. In
addition, the administrator, after the authentication phase,

can perform some tasks such as adding or removing users
from the system. After the initialization phase, any user can
access the system (providing username and password) and
then perform some operations such as change the password,
create, modify or change his profile.

The FilterPlugin Module. The FilterPlugin Module acts
as dispatcher within our architecture. A list of available ser-
vices is deployed into Apache and it can be accessed by the
dispatcher in order to activate the services according to the
users’ preferences (users’ profiles). To this end, the Filter-
Plugin Module uses an internal parser to dynamically in-
voke the requested services. Services are applied on the
HTTP requests/responses only if all prerequisites are satis-
fied.

Modules that implement the services are preloaded in
main memory, but only the modules that correspond to the
requested services will be allocated. Each service is identi-
fied by a task-based service name, with a set of parameters
that each user can modify according to his preferences.

The Deploy Module. Application deployment is an im-
portant system functionality that allows client anytime-
anywhere access to provided services and applications. It
consists of an automatic modules generation process that
implements intermediary services starting from simple Perl
files (i.e. with .pl extension).

If the programmer follows some easy and well defined
rules (templates), his Perl programs can be used to build the
body core of the service modules to be loaded into Apache.
In detail, the Deploy Module is an Apache module activated
via URI. It uses an XML file (.reg) that defines the param-
eters needed in the dynamic creation and installation of the
service.

In order to make a service available and to show its sys-
tem properties to the users, is necessary adding it to the ser-
vices’ list. This happens inserting an HTML file in the lo-
cation designed to contain all services. The HTML file con-
tains the service name, the activation parameters and other
values characterizing the service.

5. Functionalities

Here we describe some of the functionalities that are ac-
tually implemented by our architecture. In particular, what
we have addressed in the current version of our framework
is personalization, programmability, efficiency and easiness
of management.

User & Profiles. User profiling is becoming more and
more important in the future with heterogeneous devices
used to access all kinds of information and services. Within

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

ubiquitous computing user profiling and their management
is a valid research subject, since it is the only efficiently
way to provide personalized content for each type of mo-
bile and ubiquitous client. The devices that characterize the
ubiquitous Web show significant differences regarding the
storage, display, processing power and connectivity capa-
bilities. This drives the providers to offer adapted contents.
That is, when a user connects with a cellphone he may be
given black and white images or not given images at all,
according to his preferences.

All the user preferences are kept in a user profile. A
single user may have various profiles, according to the fact
he may use many devices and with a click he can switch
from a profile to another.

When a new user is added to the system, a default profile
is automatically generated. When the user logs on the proxy
for the first time, he has to modify the default profile, in or-
der to capture his own needs. This can be accomplished by
filling an on-line form. In the same way the user is also able
to create new profiles, to modify or delete existing ones, to
change the current profile and password. The form is gen-
erated on the fly by parsing several files that refer to each
module and filling the fields with the current user parame-
ters. In this way the user can see his current choices and can
change them easily.

In our implementation, all information is coded in XML.
Each piece of information translates in a tuple like (param-
eter name, parameter value).

HTML/HTTP Parsing Libraries. This library, imple-
mented in Perl, realizes an efficient parsing of HTML pages.
Several methods have been provided to programmers, such
as methods for searching all links (HTML A tag), images,
scripts, etc. in a Web page.

HTMLParser is a real-time parser for HTML. It is de-
signed to be used as a base class for Perl modules in order
to add the required functionalities.

The two fundamental cases handled by the parser are the
extraction and the transformation of the HTML stream.

The extraction allows to take very useful information
from an HTML page, such as: text extraction, to be used, for
example, for text search engine databases; link extraction,
for crawling through Web pages or harvesting email ad-
dresses; resource extraction, like collecting images or sound
embedded in HTML pages; link checking, that is ensuring
links are valid; site monitoring, that is checking for signifi-
cant page differences i.e. beyond a simplistic diff.

The transformation includes all processing where the in-
put and the output are HTML pages. Some examples are:
URL rewriting, that is modifying many or all links on a Web
page; site capture, e.g. moving content from the Web to lo-
cal disk; censorship, that is removing offending words and
phrases from Web pages; HTML cleanup, correcting erro-

neous or non-standard Web pages; ad removal, by eliminat-
ing URLs that reference advertising.

Image filter Libraries. PerlMagick is an objected-
oriented Perl interface to ImageMagick. It is used to read,
manipulate, or write an image or image sequence within
Perl scripts. In our architecture we use PerlMagick to re-
alize intermediary services working with images, an exam-
ple is the FilterImg Service. It provides functionalities that
match both device limitations and user’s preferences This
service retrieves the image from the Web, and performs
some adjustments, such as changing colors and contrast, ro-
tating, cropping, and/or resizing.

Deployment. The deployment of services simply occurs
by uploading a Perl program by using an HTML form. It
allows a quick and effective life-cycle management of the
services, since a service can be developed offline, as a tradi-
tional Perl program, accessing locally stored HTML files
that act as testbed for the filtering that is required, and,
when ready, the Perl program can be simply deployed on
the proxy-applications server.

Module generation is critical since it requires that
the input Perl file is written according to a template.
Once the module is ready to be used, it must be
loaded into Apache, and a new information (LoadMod-
ule <MyApache::ModuleName>) must be added into the
Apache configuration file (httpd.conf). After Apache
server restarts, the added service is available for dynamic
invocation by the FilterPlugin Module according to user’s
profile and service’s constraints.

6. Conclusions

In this section we conclude with a comparison of our
work with relevant literature. The objectives of our project,
in this phase, were (a) to ensure programmability (b) effi-
ciency, (c) lifecycle support and (d) easy management of
users’ profiles. In literature, several highly programmable
proxy systems can be found, such as, e.g., WBI [6],
SEcS [13] and ALAN [12, 18]. Unfortunately, all of them
are based on Java environments which, in terms of effi-
ciency, are not as efficient as the highly optimized frame-
work that we used (i.e., Apache + mod perl). In spite of not
having conducted formal benchmarks, the clear perception
is that our services are significantly more efficient than other
(Java based) environments. At the same time, our frame-
work preserves the programmability that is offered by the
other systems (see Sec. 5). In fact, several proof-of-concept
services have been realized and deployed on the architecture
and the preliminary feedback on usability and efficiency
is very positive. Finally, all the other proxy environments

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

do not support lifecycle management of proxy applications;
users’ profiles management is also not offered: any applica-
tion has to manage its own profiles (if necessary).

The next steps in our project will be tackling scalability
(i.e. porting the server on a cluster in such a way that it
is transparent both to users and to the service programmer)
and persistence (ensuring a persistent status to services that
is easily usable to service programmers).

The overall objective is to provide a framework that of-
fers to intermediary services the same robustness, efficiency
and quick prototyping provided by the application server
in the world of distributed computing. The role of such a
framework can be crucial to safely and easily employ inter-
mediaries into a smooth mobile/fixed-network integration
of services (see Fig. 2).

Figure 2. How a proxy-applications server lies between
heterogeneous terminals and content providers.

Acknowledgments: The authors gratefully acknowl-
edge several stimulating discussions with Michele Co-
lajanni. This research work was financially supported
by the Italian FIRB 2001 project number RBNE01WEJT
“WEB–MiNDS” (Wide-scalE, Broadband MIddleware for
Network Distributed Services) http://web-minds.
consorzio-cini.it/.

References

[1] The Apache Software Foundation. http://www.apache.org.
[2] S. Ardon, P. Gunningberg, B. LandFeldt, M. P. Y. Ismailov,

and A. Seneviratne. MARCH: a distributed content adap-
tation architecture. Intl. Jour. of Comm. Systems, Special
Issue: Wireless Access to the Global Internet: Mobile Radio
Networks and Satellite Systems., 16(1), 2003.

[3] AT&T Labs-Research. iProxy: a Programmable Proxy.
http://www.research.att.com/sw/tools/iproxy/.

[4] A. Barbir, E. Burger, R. Chen, S. McHenry, H. Orman, and
R. Penno. Open Pluggable Edge services (OPES)
Use Cases and Deployment Scenarios, April 2004.
http://www.ietf.org/rfc/rfc3752.txt.

[5] A. Barbir, R. Penno, R. Chen, H. Hofmann, and H. Orman.
An Architecture for Open Pluggable Edge services (OPES),
August 2004. http://www.ietf.org/rfc/rfc3835.txt.

[6] R. Barrett and P. P. Maglio. Adaptive Communities and Web
Places. In Proceedings of 2nd Workshop on Adaptive Hyper-
text and Hypermedia, HYPERTEXT 98., Pittsburgh (USA),
1998. ACM Press.

[7] R. Barrett and P. P. Maglio. Intermediaries: An approach
to manipulating information streams. IBM Systems Journal,
38(4):629–641, 1999.

[8] E. Brewer, R. Katz, E. Amir, H. Balakrishnan, Y. Chawathe,
A. Fox, S. Gribble, T. Hode, G. Nguyen, V. Padmanabhan,
M. Stemm, S. Seshan, and T. Henderson. A Network Archi-
tecture for Heterogeneous Mobile Computing. In IEEE Per-
sonal Communication Magazine, 5(5):8–24, October 1998.

[9] M. G. Calabrò, D. Malandrino, and V. Scarano. Group
Recording of Web Navigation. In Proceedings of the HY-
PERTEXT’03. ACM Press, August 2003.

[10] A. Fox, Y. Chawathe, and E. A. Brewer. Adapting to Net-
work and Client variation using active proxies: Lessons and
perspectives. IEEE Personal Communications, 5(4):10–19,
1998.

[11] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Peach, A. Luotonen, and L. Stewart. “HTTP Authentica-
tion: Basic and Digest Access Authentication”., June 1999.
RFC 2617.

[12] M. Fry and A. Ghosh. Application level active networking.
Comput. Networks, 31(7):655–667, 1999.

[13] R. Grieco, D. Malandrino, and V. Scarano. “SEcS: Scalable
Edge-computing Services”. In Proceedings of the 20th An-
nual ACM Symposium on Applied Computing (SAC 2005).,
March, 13 -17. 2005.

[14] M. Hori, G. Kondoh, K. Ono, S. Hirose, and S. Singhal.
Annotation-Based Web Content Transcoding. In Proceed-
ings of the 9th International World Wide Web Conference,
Amsterdam (The Netherland), 2000. ACM Press.

[15] Web Based Intermediaries (WBI).
http://www.almaden.ibm.com/cs/wbi/.

[16] R. H. Katz, E. A. Brewer, E. Amir, H. Balakrishnan, A. Fox,
S. Gribble, T. Hodes, D. Jiang, G. T. Nguyen, V. Padman-
abhan, and M. Stemm. The Bay Area Research Wireless
Access Network (BARWAN). In Proceedings of the 41st

IEEE International Computer Conference, page 15. IEEE
Computer Society, 1996.

[17] A. Luotonen and K. Altis. World-Wide Web proxies. Com-
puter Networks and ISDN Systems, 27(2):147–154, 1994.

[18] G. MacLarty and M. Fry. Policy-based content delivery:
an active network approach. Computer Communications,
24(2):241–248, 2001.

[19] mod perl. http://www.perl.apache.org.
[20] The Perl Programming Language. http://www.perl.com.
[21] C. Rao, Y. Chen, D.-F. Chang, and M.-F. Chen. imobile: A

proxy-based platform for mobile services. In Proceedings of
the First ACM Workshop on Wireless Mobile Internet (WMI
2001). ACM Press, 2001.

[22] December 2004 web server survey.
http://news.netcraft.com/archives/web server survey.html.

[23] IBM Websphere Transcoding Publisher. http://www-
3.ibm.com/software/webservers/transcoding.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

