
International Journal of Security and Its Applications 

Vol. 5 No. 4, October, 2011 

 

 

73 

 

Framework and Models for Multistep Attack Detection 
 

 

Mirco Marchetti, Michele Colajanni, Fabio Manganiello 

Department of Information Engineering 

University of Modena and Reggio Emilia 

{mirco.marchetti, michele.colajanni, fabio.manganiello}@unimore.it 
 

 

Abstract 
 

Cyber attacks are becoming increasingly complex, especially when the target is a modern 

IT infrastructure, characterized by a layered architecture that integrates several security 

technologies such as firewalls and intrusion detection systems. These contexts can be violated 

by a multistep attack, that is a complex attack strategy that comprises multiple correlated 

intrusion activities. While a modern Intrusion Detection System detects single intrusions, it is 

unable to link them together and to highlight the strategy that underlies a multistep attack. 

Hence, a single multistep attack may generate a high number of uncorrelated intrusion alerts. 

The critical task of analyzing and correlating all these alerts is then performed manually by 

security experts. This process is time consuming and prone to human errors. This paper 

proposes a novel framework for the analysis and correlation of security alerts generated by 

state-of-the-art Intrusion Detection Systems. Our goal is to help security analysts in 

recognizing and correlating intrusion activities that are part of the same multistep attack 

scenario. The proposed framework produces correlation graphs, in which all the intrusion 

alerts that are part of the same multistep attack are linked together. By looking at these 

correlation graphs, a security analyst can quickly identify the relationships that link together 

seemingly uncorrelated intrusion alerts, and can easily recognize complex attack strategies 

and identify their final targets. Moreover, the proposed framework is able to leverage 

multiple algorithms for alert correlation. 
 

Keywords: Multistep attacks, alert correlation, Self-Organizing-Maps, machine learning, 

network intrusion detection. 
 

1. Introduction 
 

Nowadays, several technologies and architectures can be used to improve the security of 

networked information systems. Current best practices require layered defense infrastructures, 

where firewalls and Network Intrusion Detection Systems (NIDS) represent a cornerstone in 

any modern architecture for information security. These networked systems are vulnerable to 

multistep attacks, that are intrusion activities that leverage a chain of attacks carried out 

against different components of the same infrastructure. As modern information systems 

become more complex, network topologies are usually fragmented in different interconnected 

subnetworks. Hence, the target of an attack may be not directly reachable from the public 

Internet. In this scenario attackers are forced to compromise several elements of the network 

infrastructure. These elements are then used as stepping stones to reach the final target of the 

attack. As a consequence, a single multistep attack usually generates several intrusion alerts. 

The problem with existing technologies is that alert analysis and correlation require the 
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intervention of a security expert. This is a time consuming activity that is prone to human 

errors. 

The first contribution of this paper is a new framework for the automatic analysis and 

correlation of security alerts generated by state-of-the-art NIDS. The goal of the proposed 

framework is to help a security analyst in recognizing and correlating the intrusion activities 

that are part of the same multistep attack. The output of the proposed framework is 

represented by a directed graph that represents a likely multistep attack. The nodes of the 

graph are the intrusion alerts generated by the NIDS, while the directed vertexes represent 

causal relationships among them. By looking at a correlation graph, a security expert can 

immediately recognize the relationships that link together different intrusion activities, and 

can easily identify the final target of the whole attack strategy without loosing precious time 

on the analysis of individual alerts and false positives. 

A second contribution is represented by the inclusion in the proposed framework of two 

algorithms for alert analysis and correlation, based two different unsupervised machine-

learning techniques: the former algorithm leverages Self-Organizing-Maps [1]; the latter 

algorithm, called pseudo-Bayesian alert correlation, is inspired to Bayes theorem of 

conditional probability[2]. These algorithms are included in the proposed prototype, and 

combined to produce correlated alert graphs. 

This paper is organized as follows. Section 2 presents the architecture of the proposed 

framework for alert correlation. The two main algorithms for alert correlation on which our 

reference implementation is based, pseudo-Bayesian  probability and Self-Organizing maps, 

are described in Section 3 and Section 4, respectively. Section 5 presents the experimental 

evaluation carried out through our prototype implementation. Related work is discussed in 

Section 6, while conclusions are outlined in Section 7. 
 

2. Framework Architecture 
 

The high-level architecture of the proposed framework for security alert correlation is 

shown in  

Figure 1. Our framework comprises three main processing steps: hierarchical clustering, 

alert correlation algorithms, and dynamic threshold.  

Hierarchical clustering is the first processing step, and operates directly on the 

unmodified security alerts that are generated by a NIDS. Alerts are grouped according to a 

clustering hierarchy in a way similar to [3]. This preprocessing phase has two positive effects. 

It reduces the number of elements that have to be processed by the subsequent steps, with an 

important reduction of the computational cost of the alert analysis and correlation process. 

Moreover, it groups many false positives in the same cluster, thus simplifying human 

inspection of security alerts. In our approach, clustered intrusion alerts are modeled as 

numerical normalized tuples, where each element represents a given property of the alert 

cluster (timestamp, type of alert, source and destination IP addresses, source and destination 

port numbers). 

Clustered alerts are then analyzed by the alert correlation algorithms included in the 

framework. We remark that the proposed framework is modular and extensible, and makes it 

possible to easily insert or remove alert correlation algorithms. In the reference 

implementation of our framework, that has been used for experimental validation (see Section 

5) we included two different algorithms for alert correlation. The first one, based on pseudo-

Bayesian probability, is described in Section 3. The second one, based on Self-Organizing-

Maps, is described in Section 4. 
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Figure 1: Architecture of the Framework for Alert Correlation 

 

All the alert correlation algorithms need to expose the same programming interface 

towards the proposed framework. In particular, they require two different inputs: the clustered 

alerts as generated by the hierarchical clustering processing phase and past intrusion alerts 

generated by the NIDS. Past intrusion alerts are accessible through the database of historical 

intrusion alerts (see Figure 1). Each alert correlation algorithm analyzes these inputs and 

generates as its output a weighted and directed graph. The nodes are the intrusion alert 

clusters generated by the hierarchical clustering. Vertices link together clusters of intrusion 

alerts that are likely to belong to the same multistep attack scenario. The weight of each 

vertex is proportional to the strength of the correlation among the connected clusters, while 

the direction of the vertex expresses the causal relationship among the alert clusters. The 

absence of a vertex between two alert clusters means that they are not correlated (meaning 
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that they do not belong to the same multistep attack scenario) and is equivalent to the 

presence of a vertex having zero weight. 

Since the alert correlation algorithms are different, in most cases they generate different 

correlation graphs. The graph produced as the output of all the alert aggregation algorithms 

(called alert correlation index in  

Figure 1) is computed by merging the intermediate graphs obtained by all the alert 

correlation algorithms. In the current implementation, the weight of each vertex in the alert 

correlation index graph is computed as the average of the weights that the same vertex has in 

the graphs produced by the two correlation algorithms. 

The last processing step, called dynamic threshold takes the alert correlation index as its 

input and prunes all the vertexes whose weight is relatively low with respect to the average 

weight of all the vertexes. This process has two purposes. First of all, it helps removing false 

correlations that are typically characterized by low correlation weights. Moreover, by 

preserving only the correlations that are characterized by a high weight, dynamic threshold 

highlights only the alert instances that are most likely to belong to the same multistep attack 

scenario. This process helps the security analyst to quickly identify a multistep attack among 

the multitude of alerts generated by the NIDS. The dynamic threshold algorithm removes 

from the alert correlation index graph all the vertexes whose weight v does not satisfy the 

following condition: 

                (1) 

where       is the average value of the weight of all the vertexes in the graph, and       is its 

standard deviation. The user-defined parameter       denotes how far from the average we 

want to shift in order to consider two alert clusters as correlated. For our purposes, the 

feasible values of    are in the range [0, 2]. For low values of   we consider as correlated all 

the pairs of alert clusters having a correlation value higher than the average. This usually 

implies a large correlation graph, composed by many interconnected alert clusters. Higher 

values of   bring to a smaller correlation graph that only contains the most correlated pairs of 

alert clusters. 
 

3. Pseudo-Bayesian Algorithm 
 

The pseudo-Bayesian algorithm for computing the correlation index between clusters of 

NIDS alert is inspired to the Bayes law of conditional probability. The correlation index is 

computed on the basis of the alert types, their timestamps and on the knowledge base of 

historical intrusion alerts. In particular, alert history is analyzed periodically, while clusters of 

recent intrusion alerts are analyzed as soon as they are received. 

In the context of a signature-based NIDS, different signatures trigger alerts of different 

types, and each alert contains an identifier of the signature that has been triggered. Let   and 

  be two types of alert generated by two different attack signatures. They can be modeled as 

sets of homogeneous alert instances. Let   and   be two alert instances of type   and  , 

respectively. The two alert instances     and     are considered as correlated if both 

conditions are verified: 

1. Previous history shows that there is a high pseudo-Bayesian probability that an 

alert of type   is triggered shortly after an alert of type  . We denote the pseudo-

Bayesian probability of   given   as       . 
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2. The two alert instances have been generated within a short timeframe, where this is 

a configurable parameter. 

These conditions reflect the underlying assumption that two intrusion activities that 

belong to the same multistep attack exhibit a strong temporal locality. While the second 

condition can be verified easily by comparing the timestamps associated with the two alert 

instances   and  , the pseudo-Bayesian probability        can only be computed by 

analyzing the intrusion alerts that have been generated by the same NIDS.  

Given a finite set of historical intrusion alert (alert history)  , and any two alert types 

                  and                  , such as     and    , we define the 

set           containing all the possible correlated instances of alert types   and  , as 

                                    (2) 

where    and    are the timestamps of alert instances   and  , respectively, and      is the 

highest time threshold for considering the two alert instances correlated. If     and    differ 

for more than     , then   and   are considered not correlated, independently of the alert 

history. 

We now define the set       as the subset of    containing only elements that appear in 

          

                               (3) 

Similarly, we define the set      as the subset of    containing only elements that do not 

appear in            

                              (4) 

It is now possible to define the pseudo-Bayesian probability of having an intrusion alert 

of type   given an intrusion alert of type  , or        as follows: 

         (         )   
      

   
   (5) 

The last term of equation 5 represents the ratio between the number of alerts of type   

that are not correlated to any alert of type   and the total number of alerts of type  . This 

quantity ranges from 0 (if all alerts of type   are correlated to alerts of type  ) to 1 (if no alert 

of type   is correlated to any alert of type  ), and it is subtracted to the value of 

            . Hence, if the number of alerts of type   that are not correlated to alerts of 

type   is much larger than the number of correlated alerts, the pseudo-Bayesian probability of 

  given   is significantly decreased. 

The other term of the equation 5,             , is defined as follows: 

              
 

           
∑   

        

                 (6) 

Each term of the sum represents the time correlation between two alert instances   and  , 

where                . The time correlation value decays exponentially as the difference 

between the timestamps of   and   increases. The decay is modulated by the parameter  . 

For low values of  the decay is faster, and even small time differences result in low 
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correlation values. The parameter  is computed as a function of the parameter     , that was 

introduced in equation 2. We want to compute   so that the value of the function 

        
        

            (7) 

reaches an arbitrarily small cutoff value   when                 . In our 

implementation       , hence the correlation between two alert instances   and   whose 

timestamps differ by      will be 1%. To compute   we have to solve the following 

equation: 

             
    

 

       (8) 

that is an exponential equation in which   is the only variable. By solving it, we obtain 

   
    

 

    
       (9) 

The pseudo-Bayesian algorithm proposed in this section is unsupervised, and does not 

rely on a-priori knowledge about the nature of intrusion alerts or about the topology of the 

protected network. However, useful information about the likelihood of alert correlation is 

extracted from analysis of the historical intrusion alerts. Hence, the reliability of the pseudo-

Bayesian algorithm is influenced by the completeness of this knowledge base, that can be 

approximated by the number of alerts that are known in the alert history. If the number of past 

intrusion alerts (that is, the cardinality of the set   , or     ) is low, then the correlation 

indexes are computed on the basis of incomplete and possibly biased historical data. As     
increases, the correlation indexes becomes more reliable and less sensitive to perturbations 

caused by anomalous alert clusters. 

To embed these results in our model, we multiply the value        by a weight factor  , 

that is close to zero for small values of      and approaches asymptotically 1 as     increases. 

For a given set of historical alerts  ,   is defined as         , where      represents a 

suitable weight function. In our implementation we use the hyperbolic tangent (    ) as the 

weight function: 

         (
 

 
)  

 
 
    

 
 
 

 
 
    

 
 
 

     (10) 

The parameter   allows us to tune the weight function by letting the user choose how fast 

it approaches 1 as     grows. It is computed as a function of two parameters,   and   .   is 

an arbitrary value close to 1. In the proposed implementation       .    represents the 

value for which        . By choosing    and imposing          , we obtain 

the following equation: 

            
 
  
    

 
  
 

 
  
    

 
  
 

     (11) 

where   is the only variable. In particular, let      ⁄ . For a fixed value of  , an 

approximated solution      can be computed through numerical approximation. For   
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    ,             . The parameter   can then be computed by solving the equation 

        ⁄ . 

The output of this correlation algorithm is a graph that denotes how strong is the 

correlation likelihood among different alert clusters. Each alert cluster is represented by a 

node in the graph. If two alert clusters contain alert instances of type   and   that were 

generated within the same timeframe (of length     ) and if the pseudo-Bayesian probability 

       is higher than 0, then the two alert clusters are connected by a vertex whose weight is 

       . The direction of the vertex is inferred by the timestamps that are associated with 

alert instances that are included in the two clusters. The vertex originates from the cluster that 

contains the earliest alert instance and points toward the other cluster. This graph is then 

merged with the analogous graph produced by the other correlation algorithms as described in 

Section 2. 
 

4. Self-Organizing Maps 
 

The second alert correlation algorithm included in the proposed framework is based on the 

application of a neural network called Self-Organizing Map. It consumes two inputs: 

clustered intrusion alerts produced by the hierarchical clustering algorithm shown in  

Figure 1, and information about past alerts retrieved from the historical alert database. The 

whole correlation algorithm consists of three processing phases: SOM, k-means clustering 

and correlation, that are described in Sections 4.1, 4.2 and 4.3 respectively. 
 

4.1. First Processing Phase: SOM 
 

A Self-Organizing Map (SOM) is an auto-associative neural network [4] that is used to 

produce a low-dimensional (typically two-dimensional) representation of input vectors 

belonging to a high-dimensional input space. Input vectors are mapped to coordinates in the 

output layer by a neighborhood function that preserves the topological properties of the input 

space. Hence, input vectors that are close in the input space are mapped to near positions in 

the output layer of the SOM.  

Given a SOM having   neurons in the input layer, and     on the output layer (that 

is, a two-dimensional output layer having a height of   and a width of  ), the SOM is a 

completely connected network having       links, so that each input neuron is 

connected to each neuron of the output layer. Each link from the input to the output 

layer has a weight that expresses its strength.  

Before the use of SOM to classify input alert clusters, it is necessary to initialize the 

weights of the links between the input and the output layer. Since the training algorithm 

is unsupervised, it is important to have an optimized weight initialization instead of a 

random initialization. The weight initialization algorithm used in this model is similar 

to the one already proposed in [5]. It involves a heuristic that aims to map on near 

points the items which are close in the input space, and on distant points the items 

which are distant in the input space. 

Let us consider the set of   input vectors            , whose elements are D-

dimensional vectors. We choose the two vectors       
    

      
   and       

  
  

      
   among those belonging to   that have the maximum D-dimensional 

Euclidean distance: 

                    (     )            (12) 
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where 

 (     )  √∑ (  
    

 
)
 

 
        (13) 

The two vectors    and    are used to initialize the vectors of weights on the lower 

left,   
    , and upper right   

     corners of the output layer of the SOM. The idea 

is to map the two most distant input vectors on the two opposite corners of the output 

layer. The values of the upper left corner   
  are initialized by picking the input vector 

             having the maximum distance from    and   . Finally, the input 

vector                 having the maximum distance from   ,    and    initializes 

the values of the bottom right corner   
 . 

We then initialize the neurons on the four edges of the output layer through the 

following linear interpolations: 

  
  

   

   
  

  
   

   
  

              (14) 

  
  

   

   
  

  
   

   
  

              (15) 

  
  

   

   
  

  
   

   
  

              (16) 

  
  

   

   
  

  
   

   
  

              (17) 

The remaining neurons are initialized according to the following two-dimensional linear 

interpolation: 

  
  

          

          
  

  
          

          
  

  
          

          
  

  
          

          
  

  (18) 

This heuristic-based initialization strategy for the SOM reduces the number of  

learning steps that are necessary to reach a good precision, and improves the accuracy 

of the network with respect to a random initialization scheme [5]. 

After the weight initialization, the network undergoes a phase of unsupervised and 

competitive training by using the same training set              as that of the 

initialization phase. For each input vector   , the learning process finds the output 

neuron      that has the minimum distance from   : 

                   
                       (19) 
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Figure 2: Plot of the Learning Rate Function 

where   is the Euclidean distance defined in equation 13, and       is the “best” output 

neuron for the input vector   . At the t-th learning step, the weights of the SOM are updated 

according to the following relation: 

  
       

        (        
 )    [     

      ] (20) 

The value of the function   is inversely proportional to the distance between the two 

neurons taken as arguments. Considering two neurons   
  and   

  with coordinates       and 

     , respectively,    can be defined as:  

 (  
    

 )  
 

                
 (21) 

The term in round parenthesis at the denominator of equation 21 is the Manhattan 

distance between the coordinates of the two neurons. 

The next step is the definition of a learning rate for the SOM, expressed as a function of 

the learning step  . In many SOM applications, this value is high at the beginning of the 

learning phase, and it decreases monotonically as the learning phase continues. However, as 

discussed in [6], this approach makes the learning process too sensitive with respect to 

the first learning vectors, and not suitable to the high variable context of NIDS alert 

analysis. To mitigate this issue, in this paper we use a learning rate function      that is 

close to that proposed in [6], and shown in  

Figure 2: 

     (
 

 
)
   

 

 
 
 (22) 

  is a parameter denoting how fast the learning rate should tend to 0. A small value of   

implies a faster learning process on a smaller training set, while a large value of    implies a 

slower learning process on a larger training set.   is computed as a function of two user-

defined parameters:   and   .   represents the cutoff threshold for the learning process, that is 
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the value below which the feedback of the learning process becomes negligible.    represents 

the number of learning steps that should be executed before the learning rate reaches the 

cutoff value  , that is the number of learning steps after which the SOM becomes nearly 

insensitive to further learning feedback. 

For given values of   and    , it is possible to compute   in equation 22 by imposing 

       , which implies 

  

 
           (

   

 
) (23) 

This is a logarithmic equation having   as the only variable. Its approximated solution is 

  
   

 

   ( 
 

 
)
 (24) 

The term     is the analytic continuation of the Lambert   function. An approximation 

of this function can be computed through the Taylor series, as proposed in [7]: 

       ∑   
  
      (25) 

where 

   √        (26) 

    
   

   
(
    

 
 

    

 
)  

  

 
 

    

   
 (27) 

    ∑            
    (28) 

     ,     ,     ,       (29) 

The first terms of the series of equation 25 are: 

            
 

 
   

  

  
   

  

   
   

   

     
     (30) 

The SOM is retrained at regular intervals. The training phase, that is computationally 

expensive, can be executed in a separate thread. On multi-core machines this design choice 

allows us to execute training in parallel with analysis, and to retrain the SOM at short time 

intervals (in the order of 30 to 60 seconds). After the first learning phase, the SOM is ready to 

associate the clustered alerts provided as numerical normalized tuples by the hierarchical 

clustering algorithm shown in  

Figure 1. 
 

4.2. Second Processing Phase: k-means Clustering 
 

The next step if the SOM correlation algorithm is to apply the k-means clustering to the 

output layer of the SOM. K-means is used to recognize different attack scenarios, under the 

assumption that alert clusters that belong to the same attack scenarios are mapped to nearby 

neurons in the output layer by the SOM. Hence, we need to initialize   centers, for a given 

value of  . 
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Let     be the size of the output layer of the SOM, and   the dataset containing all the 

coordinate pairs                  , that identify output neurons to which is 

associated at least one alert cluster. Let            and            be the two neurons 

belonging to   that have the maximum Euclidean distance. These two points of the output 

layer of the SOM identify the first two centers for the k-means clustering algorithm. The third 

center is chosen as the neuron belonging to   that has the maximum distance from    and   , 

the fourth center as the neuron having the maximum distance from the centers chosen so far, 

and so on. 

After this initialization step, each element in the dataset   “chooses” the closest center as 

the identifier of its cluster. Therefore, at the t-th iteration, the set   
 , that contains the 

elements in   that are associated to the    center, for      , is defined as: 

  
  {        (     

 )   (     
 )       } (31) 

where   
  represents the coordinates of the     center at the step  . Once all the elements of   

have been clustered, the centers of all the clusters are updated as the average of the points that 

belong to the cluster: 

  
     

 
 

|  
 |
∑        

  (32) 

This process is iterated until   
 =  

     
      , that is until the clustering converge 

and the centers become stable. 

A well known drawback of the k-mean clustering algorithm is the need to set a fixed 

value of k beforehand. To solve this issue, we apply the Schwarz criterion [8] as a heuristic to 

compute the optimal number of clusters for our dataset. For all the possible values of 

         , we compute the distortion index, defined as the average distance between 

each point and its center: 

               ∑ (     )     (33) 

where    is the center associated to the neuron   . The best value for  , denoted as   , is the 

one having the smaller distortion:                     . 
The Schwarz heuristic allows us to build a clustering algorithm based on a near-optimal 

number of clusters without having to rely on fixed constants or on user-provided parameters. 

This approach is able to adapt to the heterogeneity of the dataset, at the expense of a higher 

computational cost. 
  

4.3. Third Processing Phase: Correlation 
 

Alert cluster correlation is the last phase of the SOM algorithm for alert correlation. It 

takes as input the results of both the previous phases, and generates as output the correlation 

value among all the alert clusters that have been grouped within the same multistep attack 

scenario by the k-means clustering algorithm.  

The correlation index between two alert clusters   and  , mapped by the SOM on the 

output neurons    and    respectively, is always zero if    and    have been assigned to 

different clusters by the k-means algorithm. If    and    belong to the same cluster, the 
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correlation index between them is computed on the basis of the distance between the two 

neurons.  

Let    be the output neuron whose coordinates on the output layer of the SOM are 

  [  ]  [  ]  . Similarly, the coordinates of the neuron    are ( [  ]  [  ] )  The correlation 

between    and   ,          , can then be computed as a function of the Euclidean distance 

among them (as measured on the output layer of the SOM), normalized over the maximum 

possible distance, that is the distance between two opposite corners of the output matrix.  

          

{
 
 

 
 

 

 

  √( [  ]   [  ] )
 
 ( [  ]   [  ] )

 

 

(34a) 

(34b) 

The case of the equation 34a is verified when the Euclidean distance between    and    is 

the same as the diagonal of the output layer of the SOM, that is, if the two alerts are mapped 

to the two neurons that have the maximum possible distance. If this is not the case, correlation 

between    and    is computed according to equation 34b. Correlation values are always 

normalized in the range [   ]. 
The definition of correlation given in equation 34 is commutative, and does not express 

any causality relation. On the other hand, we want to leverage the direction of a vertex 

between two correlated alert clusters to express possible causal relationships. The direction is 

computed on the basis of the timestamps of the alerts that are included in the two alert 

clusters that are connected by a vertex, according to the following approach: 

 If the timestamps of the alert instances included in the alert cluster   is smaller than 

the timestamps of the alert instances that are included in the alert cluster  , and if 

we have no historical information about timing relationships between the alert 

types included in   and in  , than we assume that the alert cluster   was likely to 

“cause” the alert cluster   in this specific attack scenario. We denote this concept 

with the notation    . 

 If the historical alert database already contains previous instances of alerts of the 

same type of those included in   and in  , and if the number of instances in which 

alerts of the same type of those included in   preceded those included in   is larger 

than the number of instances in which alerts of the same type of those included in   
preceded those included in  , than we assume that the alert cluster   was likely to 

“cause” the alert cluster   in this specific attack scenario. We denote this concept 

with the notation    . 

Since this correlation algorithm is completely unsupervised, and it extracts useful 

information from the database that contains past intrusion alerts generated by the same NIDS, 

correlation results are influenced by the size of the alert history  .  

To embed this notion in our model, we multiply the value           by a weight factor  , 

that is close to zero for small values of      and approaches asymptotically 1 as     increases. 

For a given set of historical alerts  ,   is defined as         , where      represents a 

suitable weight function. In our implementation of the SOM correlation algorithm we use the 

same weight function that have already been presented in Section 3 for the pseudo-Bayesian 

correlation algorithm, and that is described in equations 10 and 11. 
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The correlation graph between alert clusters generated by this correlation algorithm is 

then merged with the correlation graphs generated by the other correlation algorithms 

included in the framework, as described in Section 2.  
 

 
Figure 3: Memory usage of snort with and without the proposed alert 

correlation and multistep attack detection 
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5. Experimental Results 
 

We carried out several experiments using a prototype implementation of the framework 

for alert correlation and multistep attack detection proposed in Section 2. The framework is 

mainly implemented in C as a module for the popular open source NIDS Snort (version 2.9 

and later). It also includes a Web-based interface for the visualization of correlation graphs 

implemented in Perl, HTML and AJAX. 

The goals of the experimental evaluation are twofold: 

1. To demonstrate that the computational cost of the proposed solution is 

compatible with the temporal constraints of (soft) real-time traffic analysis. 

2. To verify the capability of the proposed framework to recognize and correlate 

alert instances that belong to the same multistep attack scenario. 
 

5.1. Performance Evaluation 
 

The proposed alert correlation algorithms are based on unsupervised machine-learning 

techniques characterized by computationally expensive training processes. However, modern 

multi-core architectures can be used to perform training in concurrent threads with respect to 

alert analysis and correlation. Our prototype makes extensive use of concurrent threads to 

parallelize independent tasks. Training is always and continuously performed in the 

background, while alert analysis and correlation continue unaffected. In particular, since 

Snort is a monolithic process that only uses one core, all the other cores can be used to 

execute the other tasks required for alert correlation with no or minimal influence on Snort’s 

performance. 

Evaluation of the computational cost of the proposed framework was carried out by 

analyzing a PCAP traffic trace of 486 MB, taken from traffic traces recorded during the 2010 

Capture the Flag competition (organized by the Computer Science Department of the 

University of California at Santa Barbara [9]). We first analyzed this traffic trace through a 

basic version of Snort and measured its execution time and its memory footprint. We then 

repeated the experiment through our modified version of Snort that includes the prototype 

implementation of the alert correlation framework.  

Experimental results are show in  

 
Figure 3. The solid line represents the memory usage of Snort augmented with the 

proposed framework, while the dashed line represents the memory usage of an unmodified 
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version of Snort. Experiments show that the alert correlation framework introduces a 

noticeable increase in memory consumption that still remains well within the capabilities of 

modern hardware. Moreover, the chart shows how both the modified and unmodified versions 

of Snort take exactly the same time (267 seconds) to analyze the traffic dump. Hence the 

proposed framework does not impact the processing time required by Snort, and it is 

compatible with live traffic analysis. 
 

5.2. Alert Correlation and Multistep Attack Detection 

 

Extensive evaluation of the proposed framework was carried out against the Capture the 

Flag (CTF) 2010 dataset. For these experiments we enabled both the pseudo-Bayesian and the 

SOM algorithms for alert correlation. Both algorithms include several heuristics that allow 

them to autonomously adapt to the characteristics of the input traffic traces, and that 

drastically reduce the number of user-defined configurations. 
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In particular: 

 The first hierarchical clustering phase, shown in  

 Figure 1, does not require static initialization, since the number of clusters 

is computed dynamically based on the average cluster heterogeneity.  

 The results of the SOM are largely insensitive to the size of the SOM output 

layer. While larger output layers cause an increase in the average distance 

among the neurons, this increase does not impact the normalized correlation 

values. 

 The k-means clustering algorithm used as second processing step by the 

SOM aggregation algorithm uses the Schwarz criterion to determine the 

optinal value of k. 

For the pseudo-Bayesian correlation algorithm, we used             and    
           .  

The last processing step, called dynamic threshold in  

Figure 1, is quite sensitive to the choice of parameter   in equation 1. As discussed in 

Section 2, feasible values for   are in the interval [0,2]. By setting       our alert 

correlation framework identified four multistep attack scenarios, each characterized by a 

different correlation graph. Two examples of multistep attacks are shown in Figure 4 and 

Figure 5. 

Figure 4 represents a complex attack scenario, in which several reconnaissance activities 

targeting the same subnet and executed within the same time window are correlated with an 

exploit attempt. Of particular relevance is the correlation between the two alert clusters at the 

bottom of Figure 4. These two alert clusters represent a portscan activity that has been 

successfully correlated with an alert raised after the detection of a shellcode. Portscans are 

performed to identify vulnerable machines and services, hence it is very likely that the 

attacker tried to exploit a vulnerable service through a shellcode injection only after having 

identified it through a portscan.  

 

 
Figure 4: Multistep attack scenario that correlates reconnaissance 

activities and exploitation through shellcode 
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Figure 5: Multistep attack scenario that correlates TCP and ICMP scanning 

activities 
 

Figure 5 represents a simpler attack scenario, in which our framework is able to to 

correlate reconnaissance activities that originates from the same subnet and that have been 

performed within a short time interval. 
 

6. Related Work 
 

The application of unsupervised machine-learning techniques such as neural networks 

and Bayesian networks to the field of intrusion detection is not novel. Several papers propose 

naïve Bayes classifiers, Bayesian networks, support vector machines [20], neural networks 

and self-organizing maps as the main detection engine for their intrusion detection systems. 

 In particular, naïve Bayes classifiers have been used in [10] and [11] for the 

implementation of anomaly-based NIDS. More complex anomaly-detection algorithms, based 

on complete Bayes networks, are proposed in [12] and [13]. Anomaly detection systems 

based on Self-Organizing Maps have also been described in [14], [15]. However, all existing 

approaches leverage machine-learning techniques to detect intrusions and anomalies, rather 

than trying to correlate them as we do in this paper. 

Our work relates to other techniques for NIDS alert correlation. According to the 

comprehensive framework for NIDS alert correlation proposed in [16], our solution can be 

classified as a multistep correlation component. In this context, three interesting works are 

[17], [18], [19] and [3]. 

In [17], the authors propose an alert correlation algorithm based on naïve Bayesian 

networks. Their approach aims to predict the target of a multistep attack based on previous 

alert history. Their algorithm starts by identifying a set of possible intrusion objectives, and 

then it analyzes the historical data to build a naïve Bayes network for each intrusion objective. 

On the other hand, the work proposed in this paper does not aim to predict the future 

objectives of a possible multistep attack, but to identify and highlight groups of intrusion 

alerts that, based on their detection time and on the past alert history, are more likely to be 

correlated and to belong to the same multistep attack scenario.  

In [18], the authors use Bayes networks to fuse the results obtained by several detection 

models, thus improving the overall detection rate of multi-model host IDS. While that work 

can be considered as an example of alert correlation, its purpose is to validate single IDS 

alerts, without trying to correlate different alerts. 
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The use of a SOM to compute the similarity between alerts generated by a NIDS was 

introduced in [19]. Our work differentiates from [19] for a twofold reason: our evaluation is 

not limited to the use of SOM to compute alert similarity, but the use of SOM is just one 

intermediate step of only one correlation algorithm included in our framework; moreover, 

with respect to [19] we propose an innovative initialization algorithm for SOM and an 

adaptive training strategy that makes SOM more robust with respect to perturbations in the 

training data (see Section 4.1).  

In [3] security alerts generated by a NIDS are grouped through a hierarchical clustering 

algorithm. The classification hierarchy is defined by the user to aggregate alerts of the same 

type targeting one host or a set of hosts connected to the same subnet. We use a similar 

hierarchical clustering scheme as a pre-processing step (Hierarchical clustering in  

Figure 1). We then use the alert clusters generated by this hierarchical clustering 

algorithm as an input for all the correlation algorithms that are included in our framework. 

Hence we take advantage of the algorithm presented in [3], but the proposed framework and 

all the subsequent processing steps are quite novel. 
 

7. Conclusion 
 

This paper proposes a novel framework for the correlation of intrusion alerts generated by 

modern network intrusion detection systems, and for the identification of multistep attack 

scenarios. One of the main strength of the proposed framework is its ability to leverage 

multiple different correlation algorithms, thus achieving better results with respect to previous 

efforts in the same field. 

The proposed framework is based on two completely unsupervised techniques borrowed 

from the machine-learning domain: Self-Organizing maps and pseudo-Bayesian correlation 

probability. These two correlation algorithms are modified for the inclusion as modules 

within our framework, that can easily be expanded through the addition of novel algorithms. 

The performance of the proposed framework are evaluated experimentally through a 

prototype implementation based on Snort. Experimental results show that our solution is able 

to identify complex multistep attack scenario, and to represent them as directed graphs. This 

result is extremely useful to network analysts, that can focus immediately on the real target of 

complex multistep attack scenarios without losing focus in the analysis of a high number of 

individual alerts. 

Moreover, our multithread implementation is able to leverage modern multi-core 

architectures to perform expensive learning tasks in parallel with traffic analysis and in a non-

blocking fashion. Hence the proposed framework is compatible with real-time traffic analysis 

and has no noticeable impact on the time required by Snort to analyze network traffic. 
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