
International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

73

Framework and Models for Multistep Attack Detection

Mirco Marchetti, Michele Colajanni, Fabio Manganiello

Department of Information Engineering

University of Modena and Reggio Emilia

{mirco.marchetti, michele.colajanni, fabio.manganiello}@unimore.it

Abstract

Cyber attacks are becoming increasingly complex, especially when the target is a modern

IT infrastructure, characterized by a layered architecture that integrates several security

technologies such as firewalls and intrusion detection systems. These contexts can be violated

by a multistep attack, that is a complex attack strategy that comprises multiple correlated

intrusion activities. While a modern Intrusion Detection System detects single intrusions, it is

unable to link them together and to highlight the strategy that underlies a multistep attack.

Hence, a single multistep attack may generate a high number of uncorrelated intrusion alerts.

The critical task of analyzing and correlating all these alerts is then performed manually by

security experts. This process is time consuming and prone to human errors. This paper

proposes a novel framework for the analysis and correlation of security alerts generated by

state-of-the-art Intrusion Detection Systems. Our goal is to help security analysts in

recognizing and correlating intrusion activities that are part of the same multistep attack

scenario. The proposed framework produces correlation graphs, in which all the intrusion

alerts that are part of the same multistep attack are linked together. By looking at these

correlation graphs, a security analyst can quickly identify the relationships that link together

seemingly uncorrelated intrusion alerts, and can easily recognize complex attack strategies

and identify their final targets. Moreover, the proposed framework is able to leverage

multiple algorithms for alert correlation.

Keywords: Multistep attacks, alert correlation, Self-Organizing-Maps, machine learning,

network intrusion detection.

1. Introduction

Nowadays, several technologies and architectures can be used to improve the security of

networked information systems. Current best practices require layered defense infrastructures,

where firewalls and Network Intrusion Detection Systems (NIDS) represent a cornerstone in

any modern architecture for information security. These networked systems are vulnerable to

multistep attacks, that are intrusion activities that leverage a chain of attacks carried out

against different components of the same infrastructure. As modern information systems

become more complex, network topologies are usually fragmented in different interconnected

subnetworks. Hence, the target of an attack may be not directly reachable from the public

Internet. In this scenario attackers are forced to compromise several elements of the network

infrastructure. These elements are then used as stepping stones to reach the final target of the

attack. As a consequence, a single multistep attack usually generates several intrusion alerts.

The problem with existing technologies is that alert analysis and correlation require the

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

74

intervention of a security expert. This is a time consuming activity that is prone to human

errors.

The first contribution of this paper is a new framework for the automatic analysis and

correlation of security alerts generated by state-of-the-art NIDS. The goal of the proposed

framework is to help a security analyst in recognizing and correlating the intrusion activities

that are part of the same multistep attack. The output of the proposed framework is

represented by a directed graph that represents a likely multistep attack. The nodes of the

graph are the intrusion alerts generated by the NIDS, while the directed vertexes represent

causal relationships among them. By looking at a correlation graph, a security expert can

immediately recognize the relationships that link together different intrusion activities, and

can easily identify the final target of the whole attack strategy without loosing precious time

on the analysis of individual alerts and false positives.

A second contribution is represented by the inclusion in the proposed framework of two

algorithms for alert analysis and correlation, based two different unsupervised machine-

learning techniques: the former algorithm leverages Self-Organizing-Maps [1]; the latter

algorithm, called pseudo-Bayesian alert correlation, is inspired to Bayes theorem of

conditional probability[2]. These algorithms are included in the proposed prototype, and

combined to produce correlated alert graphs.

This paper is organized as follows. Section 2 presents the architecture of the proposed

framework for alert correlation. The two main algorithms for alert correlation on which our

reference implementation is based, pseudo-Bayesian probability and Self-Organizing maps,

are described in Section 3 and Section 4, respectively. Section 5 presents the experimental

evaluation carried out through our prototype implementation. Related work is discussed in

Section 6, while conclusions are outlined in Section 7.

2. Framework Architecture

The high-level architecture of the proposed framework for security alert correlation is

shown in

Figure 1. Our framework comprises three main processing steps: hierarchical clustering,

alert correlation algorithms, and dynamic threshold.

Hierarchical clustering is the first processing step, and operates directly on the

unmodified security alerts that are generated by a NIDS. Alerts are grouped according to a

clustering hierarchy in a way similar to [3]. This preprocessing phase has two positive effects.

It reduces the number of elements that have to be processed by the subsequent steps, with an

important reduction of the computational cost of the alert analysis and correlation process.

Moreover, it groups many false positives in the same cluster, thus simplifying human

inspection of security alerts. In our approach, clustered intrusion alerts are modeled as

numerical normalized tuples, where each element represents a given property of the alert

cluster (timestamp, type of alert, source and destination IP addresses, source and destination

port numbers).

Clustered alerts are then analyzed by the alert correlation algorithms included in the

framework. We remark that the proposed framework is modular and extensible, and makes it

possible to easily insert or remove alert correlation algorithms. In the reference

implementation of our framework, that has been used for experimental validation (see Section

5) we included two different algorithms for alert correlation. The first one, based on pseudo-

Bayesian probability, is described in Section 3. The second one, based on Self-Organizing-

Maps, is described in Section 4.

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

75

Figure 1: Architecture of the Framework for Alert Correlation

All the alert correlation algorithms need to expose the same programming interface

towards the proposed framework. In particular, they require two different inputs: the clustered

alerts as generated by the hierarchical clustering processing phase and past intrusion alerts

generated by the NIDS. Past intrusion alerts are accessible through the database of historical

intrusion alerts (see Figure 1). Each alert correlation algorithm analyzes these inputs and

generates as its output a weighted and directed graph. The nodes are the intrusion alert

clusters generated by the hierarchical clustering. Vertices link together clusters of intrusion

alerts that are likely to belong to the same multistep attack scenario. The weight of each

vertex is proportional to the strength of the correlation among the connected clusters, while

the direction of the vertex expresses the causal relationship among the alert clusters. The

absence of a vertex between two alert clusters means that they are not correlated (meaning

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

76

that they do not belong to the same multistep attack scenario) and is equivalent to the

presence of a vertex having zero weight.

Since the alert correlation algorithms are different, in most cases they generate different

correlation graphs. The graph produced as the output of all the alert aggregation algorithms

(called alert correlation index in

Figure 1) is computed by merging the intermediate graphs obtained by all the alert

correlation algorithms. In the current implementation, the weight of each vertex in the alert

correlation index graph is computed as the average of the weights that the same vertex has in

the graphs produced by the two correlation algorithms.

The last processing step, called dynamic threshold takes the alert correlation index as its

input and prunes all the vertexes whose weight is relatively low with respect to the average

weight of all the vertexes. This process has two purposes. First of all, it helps removing false

correlations that are typically characterized by low correlation weights. Moreover, by

preserving only the correlations that are characterized by a high weight, dynamic threshold

highlights only the alert instances that are most likely to belong to the same multistep attack

scenario. This process helps the security analyst to quickly identify a multistep attack among

the multitude of alerts generated by the NIDS. The dynamic threshold algorithm removes

from the alert correlation index graph all the vertexes whose weight v does not satisfy the

following condition:

 (1)

where is the average value of the weight of all the vertexes in the graph, and is its

standard deviation. The user-defined parameter denotes how far from the average we

want to shift in order to consider two alert clusters as correlated. For our purposes, the

feasible values of are in the range [0, 2]. For low values of we consider as correlated all

the pairs of alert clusters having a correlation value higher than the average. This usually

implies a large correlation graph, composed by many interconnected alert clusters. Higher

values of bring to a smaller correlation graph that only contains the most correlated pairs of

alert clusters.

3. Pseudo-Bayesian Algorithm

The pseudo-Bayesian algorithm for computing the correlation index between clusters of

NIDS alert is inspired to the Bayes law of conditional probability. The correlation index is

computed on the basis of the alert types, their timestamps and on the knowledge base of

historical intrusion alerts. In particular, alert history is analyzed periodically, while clusters of

recent intrusion alerts are analyzed as soon as they are received.

In the context of a signature-based NIDS, different signatures trigger alerts of different

types, and each alert contains an identifier of the signature that has been triggered. Let and

 be two types of alert generated by two different attack signatures. They can be modeled as

sets of homogeneous alert instances. Let and be two alert instances of type and ,

respectively. The two alert instances and are considered as correlated if both

conditions are verified:

1. Previous history shows that there is a high pseudo-Bayesian probability that an

alert of type is triggered shortly after an alert of type . We denote the pseudo-

Bayesian probability of given as .

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

77

2. The two alert instances have been generated within a short timeframe, where this is

a configurable parameter.

These conditions reflect the underlying assumption that two intrusion activities that

belong to the same multistep attack exhibit a strong temporal locality. While the second

condition can be verified easily by comparing the timestamps associated with the two alert

instances and , the pseudo-Bayesian probability can only be computed by

analyzing the intrusion alerts that have been generated by the same NIDS.

Given a finite set of historical intrusion alert (alert history) , and any two alert types

 and , such as and , we define the

set containing all the possible correlated instances of alert types and , as

 (2)

where and are the timestamps of alert instances and , respectively, and is the

highest time threshold for considering the two alert instances correlated. If and differ

for more than , then and are considered not correlated, independently of the alert

history.

We now define the set as the subset of containing only elements that appear in

 (3)

Similarly, we define the set as the subset of containing only elements that do not

appear in

 (4)

It is now possible to define the pseudo-Bayesian probability of having an intrusion alert

of type given an intrusion alert of type , or as follows:

 ()

 (5)

The last term of equation 5 represents the ratio between the number of alerts of type

that are not correlated to any alert of type and the total number of alerts of type . This

quantity ranges from 0 (if all alerts of type are correlated to alerts of type) to 1 (if no alert

of type is correlated to any alert of type), and it is subtracted to the value of

 . Hence, if the number of alerts of type that are not correlated to alerts of

type is much larger than the number of correlated alerts, the pseudo-Bayesian probability of

 given is significantly decreased.

The other term of the equation 5, , is defined as follows:

∑

 (6)

Each term of the sum represents the time correlation between two alert instances and ,

where . The time correlation value decays exponentially as the difference

between the timestamps of and increases. The decay is modulated by the parameter .

For low values of the decay is faster, and even small time differences result in low

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

78

correlation values. The parameter is computed as a function of the parameter , that was

introduced in equation 2. We want to compute so that the value of the function

 (7)

reaches an arbitrarily small cutoff value when . In our

implementation , hence the correlation between two alert instances and whose

timestamps differ by will be 1%. To compute we have to solve the following

equation:

 (8)

that is an exponential equation in which is the only variable. By solving it, we obtain

 (9)

The pseudo-Bayesian algorithm proposed in this section is unsupervised, and does not

rely on a-priori knowledge about the nature of intrusion alerts or about the topology of the

protected network. However, useful information about the likelihood of alert correlation is

extracted from analysis of the historical intrusion alerts. Hence, the reliability of the pseudo-

Bayesian algorithm is influenced by the completeness of this knowledge base, that can be

approximated by the number of alerts that are known in the alert history. If the number of past

intrusion alerts (that is, the cardinality of the set , or) is low, then the correlation

indexes are computed on the basis of incomplete and possibly biased historical data. As
increases, the correlation indexes becomes more reliable and less sensitive to perturbations

caused by anomalous alert clusters.

To embed these results in our model, we multiply the value by a weight factor ,

that is close to zero for small values of and approaches asymptotically 1 as increases.

For a given set of historical alerts , is defined as , where represents a

suitable weight function. In our implementation we use the hyperbolic tangent () as the

weight function:

 (

)

 (10)

The parameter allows us to tune the weight function by letting the user choose how fast

it approaches 1 as grows. It is computed as a function of two parameters, and . is

an arbitrary value close to 1. In the proposed implementation . represents the

value for which . By choosing and imposing , we obtain

the following equation:

 (11)

where is the only variable. In particular, let ⁄ . For a fixed value of , an

approximated solution can be computed through numerical approximation. For

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

79

 , . The parameter can then be computed by solving the equation

 ⁄ .

The output of this correlation algorithm is a graph that denotes how strong is the

correlation likelihood among different alert clusters. Each alert cluster is represented by a

node in the graph. If two alert clusters contain alert instances of type and that were

generated within the same timeframe (of length) and if the pseudo-Bayesian probability

 is higher than 0, then the two alert clusters are connected by a vertex whose weight is

 . The direction of the vertex is inferred by the timestamps that are associated with

alert instances that are included in the two clusters. The vertex originates from the cluster that

contains the earliest alert instance and points toward the other cluster. This graph is then

merged with the analogous graph produced by the other correlation algorithms as described in

Section 2.

4. Self-Organizing Maps

The second alert correlation algorithm included in the proposed framework is based on the

application of a neural network called Self-Organizing Map. It consumes two inputs:

clustered intrusion alerts produced by the hierarchical clustering algorithm shown in

Figure 1, and information about past alerts retrieved from the historical alert database. The

whole correlation algorithm consists of three processing phases: SOM, k-means clustering

and correlation, that are described in Sections 4.1, 4.2 and 4.3 respectively.

4.1. First Processing Phase: SOM

A Self-Organizing Map (SOM) is an auto-associative neural network [4] that is used to

produce a low-dimensional (typically two-dimensional) representation of input vectors

belonging to a high-dimensional input space. Input vectors are mapped to coordinates in the

output layer by a neighborhood function that preserves the topological properties of the input

space. Hence, input vectors that are close in the input space are mapped to near positions in

the output layer of the SOM.

Given a SOM having neurons in the input layer, and on the output layer (that

is, a two-dimensional output layer having a height of and a width of), the SOM is a

completely connected network having links, so that each input neuron is

connected to each neuron of the output layer. Each link from the input to the output

layer has a weight that expresses its strength.

Before the use of SOM to classify input alert clusters, it is necessary to initialize the

weights of the links between the input and the output layer. Since the training algorithm

is unsupervised, it is important to have an optimized weight initialization instead of a

random initialization. The weight initialization algorithm used in this model is similar

to the one already proposed in [5]. It involves a heuristic that aims to map on near

points the items which are close in the input space, and on distant points the items

which are distant in the input space.

Let us consider the set of input vectors , whose elements are D-

dimensional vectors. We choose the two vectors

 and

 among those belonging to that have the maximum D-dimensional

Euclidean distance:

 () (12)

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

80

where

 () √∑ (

)

 (13)

The two vectors and are used to initialize the vectors of weights on the lower

left,
 , and upper right

 corners of the output layer of the SOM. The idea

is to map the two most distant input vectors on the two opposite corners of the output

layer. The values of the upper left corner
 are initialized by picking the input vector

 having the maximum distance from and . Finally, the input

vector having the maximum distance from , and initializes

the values of the bottom right corner
 .

We then initialize the neurons on the four edges of the output layer through the

following linear interpolations:

 (14)

 (15)

 (16)

 (17)

The remaining neurons are initialized according to the following two-dimensional linear

interpolation:

 (18)

This heuristic-based initialization strategy for the SOM reduces the number of

learning steps that are necessary to reach a good precision, and improves the accuracy

of the network with respect to a random initialization scheme [5].

After the weight initialization, the network undergoes a phase of unsupervised and

competitive training by using the same training set as that of the

initialization phase. For each input vector , the learning process finds the output

neuron that has the minimum distance from :

 (19)

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

81

Figure 2: Plot of the Learning Rate Function

where is the Euclidean distance defined in equation 13, and is the “best” output

neuron for the input vector . At the t-th learning step, the weights of the SOM are updated

according to the following relation:

 (
) [

] (20)

The value of the function is inversely proportional to the distance between the two

neurons taken as arguments. Considering two neurons
 and

 with coordinates and

 , respectively, can be defined as:

 (

)

 (21)

The term in round parenthesis at the denominator of equation 21 is the Manhattan

distance between the coordinates of the two neurons.

The next step is the definition of a learning rate for the SOM, expressed as a function of

the learning step . In many SOM applications, this value is high at the beginning of the

learning phase, and it decreases monotonically as the learning phase continues. However, as

discussed in [6], this approach makes the learning process too sensitive with respect to

the first learning vectors, and not suitable to the high variable context of NIDS alert

analysis. To mitigate this issue, in this paper we use a learning rate function that is

close to that proposed in [6], and shown in

Figure 2:

 (

)

 (22)

 is a parameter denoting how fast the learning rate should tend to 0. A small value of

implies a faster learning process on a smaller training set, while a large value of implies a

slower learning process on a larger training set. is computed as a function of two user-

defined parameters: and . represents the cutoff threshold for the learning process, that is

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

82

the value below which the feedback of the learning process becomes negligible. represents

the number of learning steps that should be executed before the learning rate reaches the

cutoff value , that is the number of learning steps after which the SOM becomes nearly

insensitive to further learning feedback.

For given values of and , it is possible to compute in equation 22 by imposing

 , which implies

 (

) (23)

This is a logarithmic equation having as the only variable. Its approximated solution is

 (

)
 (24)

The term is the analytic continuation of the Lambert function. An approximation

of this function can be computed through the Taylor series, as proposed in [7]:

 ∑

 (25)

where

 √ (26)

(

)

 (27)

 ∑
 (28)

 , , , (29)

The first terms of the series of equation 25 are:

 (30)

The SOM is retrained at regular intervals. The training phase, that is computationally

expensive, can be executed in a separate thread. On multi-core machines this design choice

allows us to execute training in parallel with analysis, and to retrain the SOM at short time

intervals (in the order of 30 to 60 seconds). After the first learning phase, the SOM is ready to

associate the clustered alerts provided as numerical normalized tuples by the hierarchical

clustering algorithm shown in

Figure 1.

4.2. Second Processing Phase: k-means Clustering

The next step if the SOM correlation algorithm is to apply the k-means clustering to the

output layer of the SOM. K-means is used to recognize different attack scenarios, under the

assumption that alert clusters that belong to the same attack scenarios are mapped to nearby

neurons in the output layer by the SOM. Hence, we need to initialize centers, for a given

value of .

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

83

Let be the size of the output layer of the SOM, and the dataset containing all the

coordinate pairs , that identify output neurons to which is

associated at least one alert cluster. Let and be the two neurons

belonging to that have the maximum Euclidean distance. These two points of the output

layer of the SOM identify the first two centers for the k-means clustering algorithm. The third

center is chosen as the neuron belonging to that has the maximum distance from and ,

the fourth center as the neuron having the maximum distance from the centers chosen so far,

and so on.

After this initialization step, each element in the dataset “chooses” the closest center as

the identifier of its cluster. Therefore, at the t-th iteration, the set
 , that contains the

elements in that are associated to the center, for , is defined as:

 { (

) (
) } (31)

where
 represents the coordinates of the center at the step . Once all the elements of

have been clustered, the centers of all the clusters are updated as the average of the points that

belong to the cluster:

|
 |
∑

 (32)

This process is iterated until
 =

 , that is until the clustering converge

and the centers become stable.

A well known drawback of the k-mean clustering algorithm is the need to set a fixed

value of k beforehand. To solve this issue, we apply the Schwarz criterion [8] as a heuristic to

compute the optimal number of clusters for our dataset. For all the possible values of

 , we compute the distortion index, defined as the average distance between

each point and its center:

 ∑ () (33)

where is the center associated to the neuron . The best value for , denoted as , is the

one having the smaller distortion: .
The Schwarz heuristic allows us to build a clustering algorithm based on a near-optimal

number of clusters without having to rely on fixed constants or on user-provided parameters.

This approach is able to adapt to the heterogeneity of the dataset, at the expense of a higher

computational cost.

4.3. Third Processing Phase: Correlation

Alert cluster correlation is the last phase of the SOM algorithm for alert correlation. It

takes as input the results of both the previous phases, and generates as output the correlation

value among all the alert clusters that have been grouped within the same multistep attack

scenario by the k-means clustering algorithm.

The correlation index between two alert clusters and , mapped by the SOM on the

output neurons and respectively, is always zero if and have been assigned to

different clusters by the k-means algorithm. If and belong to the same cluster, the

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

84

correlation index between them is computed on the basis of the distance between the two

neurons.

Let be the output neuron whose coordinates on the output layer of the SOM are

 [] [] . Similarly, the coordinates of the neuron are ([] []) The correlation

between and , , can then be computed as a function of the Euclidean distance

among them (as measured on the output layer of the SOM), normalized over the maximum

possible distance, that is the distance between two opposite corners of the output matrix.

{

 √([] [])

 ([] [])

(34a)

(34b)

The case of the equation 34a is verified when the Euclidean distance between and is

the same as the diagonal of the output layer of the SOM, that is, if the two alerts are mapped

to the two neurons that have the maximum possible distance. If this is not the case, correlation

between and is computed according to equation 34b. Correlation values are always

normalized in the range [].
The definition of correlation given in equation 34 is commutative, and does not express

any causality relation. On the other hand, we want to leverage the direction of a vertex

between two correlated alert clusters to express possible causal relationships. The direction is

computed on the basis of the timestamps of the alerts that are included in the two alert

clusters that are connected by a vertex, according to the following approach:

 If the timestamps of the alert instances included in the alert cluster is smaller than

the timestamps of the alert instances that are included in the alert cluster , and if

we have no historical information about timing relationships between the alert

types included in and in , than we assume that the alert cluster was likely to

“cause” the alert cluster in this specific attack scenario. We denote this concept

with the notation .

 If the historical alert database already contains previous instances of alerts of the

same type of those included in and in , and if the number of instances in which

alerts of the same type of those included in preceded those included in is larger

than the number of instances in which alerts of the same type of those included in
preceded those included in , than we assume that the alert cluster was likely to

“cause” the alert cluster in this specific attack scenario. We denote this concept

with the notation .

Since this correlation algorithm is completely unsupervised, and it extracts useful

information from the database that contains past intrusion alerts generated by the same NIDS,

correlation results are influenced by the size of the alert history .

To embed this notion in our model, we multiply the value by a weight factor ,

that is close to zero for small values of and approaches asymptotically 1 as increases.

For a given set of historical alerts , is defined as , where represents a

suitable weight function. In our implementation of the SOM correlation algorithm we use the

same weight function that have already been presented in Section 3 for the pseudo-Bayesian

correlation algorithm, and that is described in equations 10 and 11.

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

85

The correlation graph between alert clusters generated by this correlation algorithm is

then merged with the correlation graphs generated by the other correlation algorithms

included in the framework, as described in Section 2.

Figure 3: Memory usage of snort with and without the proposed alert

correlation and multistep attack detection

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

86

5. Experimental Results

We carried out several experiments using a prototype implementation of the framework

for alert correlation and multistep attack detection proposed in Section 2. The framework is

mainly implemented in C as a module for the popular open source NIDS Snort (version 2.9

and later). It also includes a Web-based interface for the visualization of correlation graphs

implemented in Perl, HTML and AJAX.

The goals of the experimental evaluation are twofold:

1. To demonstrate that the computational cost of the proposed solution is

compatible with the temporal constraints of (soft) real-time traffic analysis.

2. To verify the capability of the proposed framework to recognize and correlate

alert instances that belong to the same multistep attack scenario.

5.1. Performance Evaluation

The proposed alert correlation algorithms are based on unsupervised machine-learning

techniques characterized by computationally expensive training processes. However, modern

multi-core architectures can be used to perform training in concurrent threads with respect to

alert analysis and correlation. Our prototype makes extensive use of concurrent threads to

parallelize independent tasks. Training is always and continuously performed in the

background, while alert analysis and correlation continue unaffected. In particular, since

Snort is a monolithic process that only uses one core, all the other cores can be used to

execute the other tasks required for alert correlation with no or minimal influence on Snort’s

performance.

Evaluation of the computational cost of the proposed framework was carried out by

analyzing a PCAP traffic trace of 486 MB, taken from traffic traces recorded during the 2010

Capture the Flag competition (organized by the Computer Science Department of the

University of California at Santa Barbara [9]). We first analyzed this traffic trace through a

basic version of Snort and measured its execution time and its memory footprint. We then

repeated the experiment through our modified version of Snort that includes the prototype

implementation of the alert correlation framework.

Experimental results are show in

Figure 3. The solid line represents the memory usage of Snort augmented with the

proposed framework, while the dashed line represents the memory usage of an unmodified

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

87

version of Snort. Experiments show that the alert correlation framework introduces a

noticeable increase in memory consumption that still remains well within the capabilities of

modern hardware. Moreover, the chart shows how both the modified and unmodified versions

of Snort take exactly the same time (267 seconds) to analyze the traffic dump. Hence the

proposed framework does not impact the processing time required by Snort, and it is

compatible with live traffic analysis.

5.2. Alert Correlation and Multistep Attack Detection

Extensive evaluation of the proposed framework was carried out against the Capture the

Flag (CTF) 2010 dataset. For these experiments we enabled both the pseudo-Bayesian and the

SOM algorithms for alert correlation. Both algorithms include several heuristics that allow

them to autonomously adapt to the characteristics of the input traffic traces, and that

drastically reduce the number of user-defined configurations.

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

88

In particular:

 The first hierarchical clustering phase, shown in

 Figure 1, does not require static initialization, since the number of clusters

is computed dynamically based on the average cluster heterogeneity.

 The results of the SOM are largely insensitive to the size of the SOM output

layer. While larger output layers cause an increase in the average distance

among the neurons, this increase does not impact the normalized correlation

values.

 The k-means clustering algorithm used as second processing step by the

SOM aggregation algorithm uses the Schwarz criterion to determine the

optinal value of k.

For the pseudo-Bayesian correlation algorithm, we used and
 .

The last processing step, called dynamic threshold in

Figure 1, is quite sensitive to the choice of parameter in equation 1. As discussed in

Section 2, feasible values for are in the interval [0,2]. By setting our alert

correlation framework identified four multistep attack scenarios, each characterized by a

different correlation graph. Two examples of multistep attacks are shown in Figure 4 and

Figure 5.

Figure 4 represents a complex attack scenario, in which several reconnaissance activities

targeting the same subnet and executed within the same time window are correlated with an

exploit attempt. Of particular relevance is the correlation between the two alert clusters at the

bottom of Figure 4. These two alert clusters represent a portscan activity that has been

successfully correlated with an alert raised after the detection of a shellcode. Portscans are

performed to identify vulnerable machines and services, hence it is very likely that the

attacker tried to exploit a vulnerable service through a shellcode injection only after having

identified it through a portscan.

Figure 4: Multistep attack scenario that correlates reconnaissance

activities and exploitation through shellcode

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

89

Figure 5: Multistep attack scenario that correlates TCP and ICMP scanning

activities

Figure 5 represents a simpler attack scenario, in which our framework is able to to

correlate reconnaissance activities that originates from the same subnet and that have been

performed within a short time interval.

6. Related Work

The application of unsupervised machine-learning techniques such as neural networks

and Bayesian networks to the field of intrusion detection is not novel. Several papers propose

naïve Bayes classifiers, Bayesian networks, support vector machines [20], neural networks

and self-organizing maps as the main detection engine for their intrusion detection systems.

 In particular, naïve Bayes classifiers have been used in [10] and [11] for the

implementation of anomaly-based NIDS. More complex anomaly-detection algorithms, based

on complete Bayes networks, are proposed in [12] and [13]. Anomaly detection systems

based on Self-Organizing Maps have also been described in [14], [15]. However, all existing

approaches leverage machine-learning techniques to detect intrusions and anomalies, rather

than trying to correlate them as we do in this paper.

Our work relates to other techniques for NIDS alert correlation. According to the

comprehensive framework for NIDS alert correlation proposed in [16], our solution can be

classified as a multistep correlation component. In this context, three interesting works are

[17], [18], [19] and [3].

In [17], the authors propose an alert correlation algorithm based on naïve Bayesian

networks. Their approach aims to predict the target of a multistep attack based on previous

alert history. Their algorithm starts by identifying a set of possible intrusion objectives, and

then it analyzes the historical data to build a naïve Bayes network for each intrusion objective.

On the other hand, the work proposed in this paper does not aim to predict the future

objectives of a possible multistep attack, but to identify and highlight groups of intrusion

alerts that, based on their detection time and on the past alert history, are more likely to be

correlated and to belong to the same multistep attack scenario.

In [18], the authors use Bayes networks to fuse the results obtained by several detection

models, thus improving the overall detection rate of multi-model host IDS. While that work

can be considered as an example of alert correlation, its purpose is to validate single IDS

alerts, without trying to correlate different alerts.

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

90

The use of a SOM to compute the similarity between alerts generated by a NIDS was

introduced in [19]. Our work differentiates from [19] for a twofold reason: our evaluation is

not limited to the use of SOM to compute alert similarity, but the use of SOM is just one

intermediate step of only one correlation algorithm included in our framework; moreover,

with respect to [19] we propose an innovative initialization algorithm for SOM and an

adaptive training strategy that makes SOM more robust with respect to perturbations in the

training data (see Section 4.1).

In [3] security alerts generated by a NIDS are grouped through a hierarchical clustering

algorithm. The classification hierarchy is defined by the user to aggregate alerts of the same

type targeting one host or a set of hosts connected to the same subnet. We use a similar

hierarchical clustering scheme as a pre-processing step (Hierarchical clustering in

Figure 1). We then use the alert clusters generated by this hierarchical clustering

algorithm as an input for all the correlation algorithms that are included in our framework.

Hence we take advantage of the algorithm presented in [3], but the proposed framework and

all the subsequent processing steps are quite novel.

7. Conclusion

This paper proposes a novel framework for the correlation of intrusion alerts generated by

modern network intrusion detection systems, and for the identification of multistep attack

scenarios. One of the main strength of the proposed framework is its ability to leverage

multiple different correlation algorithms, thus achieving better results with respect to previous

efforts in the same field.

The proposed framework is based on two completely unsupervised techniques borrowed

from the machine-learning domain: Self-Organizing maps and pseudo-Bayesian correlation

probability. These two correlation algorithms are modified for the inclusion as modules

within our framework, that can easily be expanded through the addition of novel algorithms.

The performance of the proposed framework are evaluated experimentally through a

prototype implementation based on Snort. Experimental results show that our solution is able

to identify complex multistep attack scenario, and to represent them as directed graphs. This

result is extremely useful to network analysts, that can focus immediately on the real target of

complex multistep attack scenarios without losing focus in the analysis of a high number of

individual alerts.

Moreover, our multithread implementation is able to leverage modern multi-core

architectures to perform expensive learning tasks in parallel with traffic analysis and in a non-

blocking fashion. Hence the proposed framework is compatible with real-time traffic analysis

and has no noticeable impact on the time required by Snort to analyze network traffic.

Acknowledgements

The authors acknowledge the support of MIUR-PRIN project DOTS-LCCI “Dependable

Off-the-Shelf based middleware system for Large-scale Complex Critical Infrastructures”

References

[1] F. Manganiello, M. Marchetti, and M. Colajanni, “Multistep attack detection and alert correlation in intrusion

detection systems”, Proc. of the 5th International Conference on Information Security and Assurance, Brno,

Czech Republic, Aug. 2011.

[2] M. Marchetti, M. Colajanni, F. Manganiello, “Identification of correlated network intrusion alerts”, Proc. of

the 3rd International Workshop on Cyberspace Safety and Security, Milan, Italy, Sep. 2011.

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

91

[3] K. Julisch, “Clustering intrusion detection alarms to support root cause analysis”, ACM Transactions on
Information and system security, Vol. 6, 443-471, 2003.

[4] T. Kohonen, P. Somervuo, “Self-organizing maps of symbol strings”, Neurocomputing, Volume 21, Issues 1-
3, Nov. 1998.

[5] M.C. Su, T.K. Liu, H.T. Chang, “Improving the self-organizing feature map algorithm using an efficient
initialization scheme”, Tamkang Journal of Science and Engineering, Volume 5, Issue 1, 2002.

[6] J.H. Yoo, B.H. Kang, J.W. Kim, “A clustering analysis and learning rate for self organizing feature map”,

Proc. of the 3rd International Conference on Fuzzy Logic, Neural Networks and Soft Computing, Fukuoka,
Japan, Aug. 1994.

[7] F. Chapeau-Blondeau, “Numerical evaluation of the Lambert W function and application to generation of

random gaussian noise with exponent 1/2”, IEEE Transactions on Signal Processing, Volume 50, Issue 9,
2002.

[8] D. Pelleg, A. Moore, “X-means: Extending k-means with efficient estimation of the number of clusters”,
Proc. of the 17th International Conference on Machine Learning, Stanford, CA, USA, Jun. 2000.

[9] Capture the Flag traffic dump, available online at http://defcon.org/html/links/dc-ctf.html

[10] A. Valdes, K. Skinner, “Adaptive model-based monitoring for cyber attack detection”, Proc. of the 3rd

international workshop on Recent Advances in Intrusion Detection (RAID 2000), Toulouse, France, 2000

[11] M. Panda, M.R. Patra, “Network intrusion detection using Naïve Bayes”, International Journal on Computer

Science and Network Security, Volume 7, Issue 12, 2007

[12] M. Mehdi, S. Zahir, A. Anou, M.Bensebti, “Bayesian networks in intrusion detection systems”, Journal of

Computer Science, Volume 3, Issue 5, 2007

[13] A. Cemerlic,, L. Yang, J. M. Kizza, “Network Intrusion Detection based on Bayesian Networks”, Proc. of the

20th International Conference on Software Engineering and Knowledge Engineering (SEKE’08), Redwood
City, CA, USA, 2008.

[14] V.A. Patole, V.K. Pachghare, P. Kulkarmi: “Self Organizing Maps to build intrusion detection systems”,
Journal of Computer Applications, Volume 1, Issue 7, Feb. 2010

[15] Z.G. Chen, G.H. Zhang, L.Q. Tian, Z.L. Geng, “Intrusion detection based on Self-Organizing map and
artificial immunization algorithm”, Engineering Materials, 2010

[16] F. Valeur, G. Vigna, C. Kruegel, R. A. Kemmerer, “A comprehensive approach to intrusion detection alert

correlation,” IEEE Transactions on Dependable and Secure Computing (TDSC), vol. 1, pp. 146–169, 2004.

[17] S. Benferhat, T. Kenaza, A. Mokhtari, “A naive bayes approach for detecting coordinated attacks,” in Proc.

of the 32nd IEEE International Annual Conference on Computer Software and Applications COMPSAC’08,
2008.

[18] C. Kruegel, D. Mutz, W. Robertson, F. Valeur, “Bayesian event classification for intrusion detection,” in

Proc. of the 19th Annual Computer Security Applications Conference (ACSAC ’03), Las Vegas, NV, USA,
2003.

[19] K. Munesh, S. Shoaib, N. Humera, “Feature-based alert correlation in security systems using self organizing

maps”. Proc. of SPIE, the International Society for Optical Engineering, 2009

[20] S. Mukkamala, G. Janoski, A. Sung, “Intrusion detection using neural networks and support vector

machines”, Proc. of the 2002 International Joint Conference on Neural Networks, 2002

Authors

Mirco Marchetti received his Ph.D. in Information and

Communication T echnologies (ICT) in 2009. He holds a post-doc

position at the Interdepartment Center for Research on Security and

Safety (CRIS) of the University of Modena and Reggio Emilia. He is

interested in intrusion detection and in all aspects of information security.

Home page: http://weblab.ing.unimo.it/people/marchetti

http://defcon.org/html/links/dc-ctf.html

International Journal of Security and Its Applications

Vol. 5 No. 4, October, 2011

92

Michele Colajanni is full professor in computer engineering at the

University of Modena and Reggio Emilia since 2000. He received the

Master degree in computer science from the University of Pisa, and the

Ph.D. degree in computer engineering from the University of Roma in

1992. He manages the Interdepartment Research Center on Security and

Safety (CRIS), and the Master in "Information Security: Technology and

Law". His research interests include security of large scale systems,

performance and prediction models, Web-based and cloud-based

systems. Home page: http://weblab.ing.unimo.it/people/colajanni

Fabio Manganiello received his M.Sc. in Information Engineering

from the University of Modena and Reggio Emilia in 2010. He

currently works as software engineer at ION® Trading S.p.a. and

collaborates with the university of Modena and Reggio Emilia.

Former director of the computer security magazine "Hacker

Journal". His interests range from intrusion detection to machine

learning, from distributed systems to advanced techniques of

software engineering

