
A Scalable Framework for the Support of

Advanced Edge Services

Michele Colajanni1, Raffaella Grieco2, Delfina Malandrino2,

Francesca Mazzoni1, and Vittorio Scarano2

1 Dipartimento di Ingegneria dell’Informazione,

Università di Modena e Reggio Emilia, 41100 Modena, Italy.

{colajanni, mazzoni.francesca}@unimore.it
2 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,

Università di Salerno, 84081 Baronissi (Salerno), Italy.

{rafgri, delmal, vitsca}@dia.unisa.it

Abstract. The Ubiquitous Web requires novel programming paradigms and dis-

tributed architectures for the support of advanced services to a multitude of user

devices and profiles.

In this paper we describe a Scalable Intermediary Software Infrastructure (SISI)

that aims at efficiently providing content adaptation and combinations of other

complex functionalities at edge servers on the WWW. SISI adopts different user

profiles to achieve automatic adaptation of the content according to the capabili-

ties of the target devices and users.

We demonstrate SISI efficiency by comparing its performance against another

framework for content adaptation at edge servers.

1 Introduction

The World Wide Web, thanks to its simplicity, visibility, scalability and ubiquity, is

considered the inexhaustible universe of information available through any networked

computer or device and is also considered as the ideal testbed to perform distributed

computation and to develop complex distributed applications.

In the Pervasive and Ubiquitous Computing era the trend is to access Web con-

tent and multimedia applications by taking into account four types of important re-

quirements: anytime-anywhere access to any data through any device and by using any

access network. Nowadays, the existing and emerging wireless technologies of the 3
rd

generation (GSM, GPRS and UMTS), involve a growing proliferation of new rich, mul-

timedia and interactive applications that are available on the Web. On the other hand,

these appealing services are requested from a growing variety of terminal devices, such

as Desktop PC, pagers, personal digital assistants (PDAs), hand-held computers, Web-

phones, TV browsers, laptops, set top boxes, smart watches, car navigation systems, etc.

The capabilities of these devices widely range according to different hardware and soft-

ware properties. In particular, for mobile devices relevant constraints concern storage,

display capabilities (such as screen size and color depth), wireless network connec-

tions, limited bandwidth, processing power and power consumption. These constraints

involve several challenges for the delivery and presentation of complex personalized

applications towards these devices, especially if there is the necessity of guaranteeing

specified levels of service.

The most simple solution (still used by many Web portals) is to follow the “one-

size-fits-all” philosophy. The idea is to provide content that is specifically designed for

Desktop PC, without taking care of the troubles that, for example, could affect mobile

users.

The effective presentation of Web content requires additional efforts and in par-

ticular new computation patterns. Providing a tailored content in an efficient way for

different client devices, by addressing the mismatch between rich multimedia content

and limited client capabilities, is becoming increasingly important because of the rapid

and continuous evolving of the pervasive and ubiquitous devices.

One of the current research trend in distributed systems is how to extend the tra-

ditional client/server computational paradigm in order to allow the provisioning of in-

telligent and advanced services. One of the most important motivation is to let het-

erogeneous devices access WWW information sources through a variety of emerging

3G wireless technologies. This computational paradigm introduces new actors within

the WWW scene, the intermediaries [1, 2] that is, software entities that act on the HTTP

data flow exchanged between client and server by allowing content adaptation and other

complex functionalities, such as geographical localization, group navigation and aware-

ness for social navigation [3, 4], translation services [5], adaptive compression and for-

mat transcoding [6–8], etc.

The major research in this area is how to extend the capabilities of the Web to pro-

vide content adaptation and other complex functionalities to support personalization,

customization, mobility and ubiquity. The idea of using an intermediate server to de-

ploy adapted contents is not novel: several popular proxy systems exist, which include

RabbIT [9], Muffin [10], WebCleaner [11], FilterProxy [12] and Privoxy [13]. These

systems provide functionalities such as compressing text, removing and/or reducing im-

ages, removing cookies, killing Gif animations, removing advertisement, java applets

and javascripts code, banners, pop-ups, and finally, protecting privacy and controlling

access.

The main objective of this paper is to present SISI, a flexible and distributed inter-

mediary infrastructure that enables universal access to the Web content. This framework

has been designed with the goal of guaranteeing an efficient and scalable delivery of

personalized services. SISI adds to the existing frameworks two main novelties:

– per user profiles. Many existing proxies only allow just one system profile, which

is applied to all requests, coming from any user. That is, all the requests involve the

same adaptation services. SISI, instead, allows each user to define one (or more)

personal profiles, in such a way that the requests of a user may involve the appli-

cation of some services, and those of another user may involve the application of

completely different services.

– high scalability, because these services are computationally onerous and the large

majority of existing frameworks does not support more than few units of contem-

porary requests per second.

The rest of the paper is organized as following: in Section 2 we present SISI, an

intermediary software infrastructure, whose main objective is to provide advanced edge

services by efficiently tackling the dynamics nature of the Web. To this end, we present

the integration of a per-user profile mechanism into the SISI framework to dynamically

allow different Web content presentations according to users’s preferences. In Section 3

we present SISI advanced functionalities. Section 4 describes the workload model that

we used to benchmark the SISI framework, whose results are shown in Section 5; fi-

nally, some remarks and comments will conclude the paper in Section 6.

2 Scalable Intermediary Software Infrastructure (SISI)

In this section we provide a description of the SISI architecture. This framework is

based on top of existing open-source, mainstream applications, such as Apache Web

server [14] and mod perl [15]. The motivations are threefold: first of all, it will make our

work widely usable because of the popularity of these products. Then, our results will

be released as open source (by using some widely accepted open-source license) so that

it will be available for improvements and personalizations to the community. Last but

not least, Apache is a high quality choice, since it represents one of the most successful

open-source projects (if not the most successful) that delivers a stable, efficient and

manageable software product to the community of Web users.

2.1 SISI Overview

The main guidelines and objectives of the SISI project are described in [16]. The idea is

to create a new framework that aims at facilitating the deployment of efficient adaptation

services running on intermediate edge servers.

SISI framework uses a simple approach to assemble and configure complex and

distributed applications from simple basic components. The idea is to provide function-

alities that allow programmers to implement services without taking care of the details

of the infrastructure that will host these services.

SISI provides a modular architecture that allows an easy definition of new function-

alities implemented as building blocks in Perl. These building blocks, packaged into

Plugins, produce transformations on the information stream as it flows through them.

Moreover, they can be combined in order to provide complex functionalities (i.e. a

translation service followed by a compression service). Thus, multiple Plugins can be

composed into SISI edge services, and their composition is based on preferences spec-

ified by end users. Technically, SISI services are implemented as Apache handlers by

using mod perl.

An handler is a subroutine, implemented by using mod perl, whose goal is to manip-

ulate HTTP requests/responses. Since Apache has twelve different phases in its HTTP

Request Life-cycle, it provides different hooks to have the full control on each phase.

mod perl provides a Perl interface for these hooks. In such a way Perl modules will be

able to modify the Apache behavior (for example, a PerlResponseHandler configures

an Apache Response object). Handlers can be classified according to the offered func-

tionality, in different categories that is, Server life cycle, Protocols, Filters and HTTP

Protocol. We used the last two to implement our handlers under Apache.

A detailed description of the functionalities of SISI modules is presented in [16].

3 SISI Advanced Functionalities

SISI is a modular architecture composed of basic building blocks applications that can

be easily assembled to cooperate and provide complex functionalities.

SISI programmability is a crucial characteristics since it allows an easy implemen-

tation and assembling of edge services that can enhance the quality and the user percep-

tion of the navigation. Often the introduction of new services into existing networks is

an expensive and time-consuming process. To simplify this task, SISI provides mech-

anisms to obtain a general-purpose programmable environment. Programming under

existing intermediaries could involve difficulties in term of efficiency, generality or in-

tegration. For this reason SISI offers an execution environment, in which a composi-

tional framework provides the basic components for developing new services, and a

programming model is used to make this execution environment highly programmable.

The SISI programming model provides APIs and software libraries (Perl language) for

programming and deploying new services into the intermediary infrastructure.

Another important aspect of the SISI framework is the user and device profiling

management. In particular, the administrator manages users’ accounts, by adding or

removing users from the system, resolving incorrect situations (for example, forgotten

passwords), providing information about the allowed services for a given user. When a

new user is added to the system, a default profile is automatically generated and he/she

can modify the profile the first time he/she enters the system.

SISI approach in user profiling management is to explicit ask the user what he/she

needs and use this information with a rule-based approach to personalize the content. In

particular, users have to fill-out forms to create new profiles and to modify or delete ex-

isting ones. For example, when a user connects with a PDA, he/she could want his/her

device to display only black and white images or not to be given images at all to save

bandwidth. Through this services configuration, SISI is able to affect the adaptation of

a given delivery context, and to change the user experience accordingly. Moreover, SISI

allows a simple configuration mechanism to add, remove, enable or disable function-

alities and a more complete configuration mechanism where service parameters can be

specified by asking the user to fill-out Web-based forms.

In this context another important characteristics is the hot-swap of services com-

position i.e. the capability to load and execute different services according to different

profiles at run-time without recompiling and restarting the software infrastructure.

SISI supports the deployment and un-deployment of advanced services, by making

these tasks automatic and accessible through local and remote locations. Application

deployment is an important system functionality that provides clients with an anytime-

anywhere access to services and applications. By making the deployment an automatic

task (i.e. wizard) it is possible to add new functionalities into the intermediary system

without taking care of the complexity of the system itself.

Finally, SISI supports logging and auditing functionalities. The intermediary entity

provides mechanisms to record security-related events (logging) by producing an audit

trail that allows the reconstruction and examination (auditing) of a sequence of events.

The process of capturing user activities and other events on the system, storing this

information and producing system reports is important to understand and recover from

security attacks. Logging is also important to provide billing support, since services can

be offered with different price models (flat-rate, per-request, per-byte billing options).

4 Workload Models and Testbed

Since studies on real traces show great differences, the difficulty of defining a “typical”

workload model is a well known issue. Traces were collected form a real dynamic Web

site, but they were modified in order to artificially stress the content adaptation process,

so to emulate a worst case scenario. The number of HTML pages has been raised, so that

adaptation occurs more frequently, many GIF images were substituted with animated

GIFs in order to stress GIF de-animation process.

Requests are referred to a mix of content types consisting of images (49%), HTML

documents (27%), others (24%). HTML resources typically contain embedded objects

ranging from a minimum of 0 to a maximum of 25, with a mean value of 10. Embed-

ded objects are images (GIFs and JPGs), CSS or SWF files. Animated GIF images are

about 6% of the whole workload. These percentages tend, once again, to stress the con-

tent adaptation process. HTML pages also contain links to other pages, ranging from a

minimum of 0 to a maximum of 25, with a mean value of 5.

The workload is characterized by small inter-arrival times for client requests.

To avoid possible non predictable network effects, the experiments were conducted

in a LAN environment.

In order to test the SISI framework we set up a testbed composed of three nodes

connected through a switched fast Ethernet LAN. One node, equipped with a Pentium

4 1.8GHz and 512MB RAM, running Gentoo Linux with kernel 2.6.11, ran an Apache

Web server deploying the origin resources. Another node, equipped with a Pentium 4

2.4GHz and 1GB RAM, running Fedora Core 3 Linux with kernel 2.6.9, ran the ap-

plication proxy, being it SISI rather than Muffin, deploying adapted contents. Finally

a third node, equipped with a Pentium 4 1.8GHz and 1.5GB RAM, running Gentoo

Linux with kernel 2.6.11, ran httperf [17] by D. Mosberger, which is is a tool for mea-

suring Web server performance. It provides a flexible facility for generating various

HTTP workloads and for measuring server performance.

5 Performance Evaluation

The SISI architecture is implemented on top of the Apache Web server software [14].

The prototype was extensively tested to verify its scalability and to compare its perfor-

mance with Muffin [10], which is a Web HTTP proxy that provides content adaptation

functionalities such as removing cookies, killing GIF animations, removing advertise-

ments, adding, removing, or modifying any HTML tag, etc. It is a Java-based pro-

grammable and configurable proxy: new services or filters can be developed through a

set of provided APIs and can be added at run time, using the provided graphical inter-

face.

The first set of experiments focuses on the different response times the user gets

when connecting to a proxy, instead of directly connecting to the origin Web Server. A

second set of experiments aims at comparing SISI with another intermediary: Muffin.

It is worth noting that SISI supports user authentication, while Muffin does not. Thus,

we can expect that Muffin is advantaged with respect to SISI because of this lack. A

third set of experiments, finally, aims at verifying SISI scalability by applying different

services at the same time.

In all the experiments, the response time is referred to a whole page, including its

embedded objects. That is, the response time represents the necessary time to com-

pletely download both the (possibly adapted) page content and all of its (possibly

adapted) embedded objects.

5.1 Intermediary Overhead

In this section we evaluate the impact on the user response time given by the overhead

of contacting a proxy adaptation server instead of the origin Web server. We configured

SISI and Muffin so that they only forward resources to users, without applying any

content adaptation. This is done in order to understand how much the user response

time is affected by the use of an intermediary. We configured httperf to request 3000

pages, with the respective embedded objects. At a slow rate of 5 pages per second,

the 90 percentile of user response time is 44 ms, 87 ms and 120 ms for the origin Web

server, Muffin and SISI, respectively. The user response time contacting an intermediary

is slightly less than two to three times the one obtained by contacting the origin Web

server. It is worth noting that contacting an intermediary implies an increase of one

hop, thus there is a slight network delay due to the additional three way handshaking,

necessary to open the connection between the intermediary and the origin Web server.

Furthermore, SISI authenticates the user, thus there is an additional computational

step, in order to satisfy the request, which possibly justifies a further increase in the user

response time, with respect to Muffin.

To sum up, with a very slow rate and without any adaptation process, Muffin out-

performs SISI, but the ranking will definitely change, as soon as we apply some content

adaptation and/or increase the request rate, as we will see in the next subsections.

5.2 Performance Comparison of Two Intermediaries

In this section we aim to compare Muffin and SISI performance. It is worth noting that

we could not find two services exactly performing the same adaptation process, but we

may assume that Muffin Painter service is very similar to SISI RemoveLink service,

from a computational point of view. That is, both of them parse the HTML content,

search for some tags and rewrite them. Actually, Muffin Painter service can remove

and/or modify colors and background images found in HTML documents, while SISI

RemoveLink searches for a href="" tags and replaces them with plain text. Our

claim is that, even though they do not perform the same tasks, the two services are

computationally comparable.

We set up httperf to request 3000 pages with the respective embedded objects, at

varying rates. Figure 1 and Table 1 show the 90 percentile of user response time when

Muffin or SISI, respectively, are contacted as intermediaries and apply the adaptation

service. An X sign in Table 1 (as well as in the following) means the intermediary is

overloaded.

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20 22

9
0

 p
e

rc
e

n
ti
le

 o
f

u
s
e

r
re

s
p

o
n

s
e

 t
im

e
 [

m
s
]

Page request rate [req/s]

Muffin
SISI

Fig. 1. 90 percentile of user response time as a function of the page request rate

Table 1. 90 percentile of user response time as a function of the page request rate

Page Request Rate [pages/s] 5 7 10 12 15 17 20 22

Muffin Painter service 131 141 938 X X X X X

SISI RemoveLink service 121 124 139 152 168 229 455 X

For Muffin we only report three page request rates because the system is overloaded

with higher rates. SISI, instead, shows a better stability, with a 90 percentile of the user

response time below half a second with a rate of 20 pages per second. Muffin shows a

very poor stability: increasing the page rate from 5 to 7 brings to a 7.6% increment of the

user response time, while passing from 7 to 10 pages per second, brings an increment

of 565.25%. This is a clear sign that Muffin is overloaded. SISI performs much better:

the increase is about 10% up to 15 pages per second, passing from 15 to 17 brings an

increment of about 36%. When the page request rate further increases from 17 to 20

the user response time is nearly doubled, but still under half a second. Finally with a

rate of 22 pages per second there is an increment of about 718%, which evidences an

overloaded intermediary. To sum up, Muffin can sustain a rate of 7, while SISI up to 20

pages per seconds, nearly tripling the sustainable load.

5.3 SISI Scalability

GifDeanimate service. In this section we aim to evaluate SISI scalability. To this pur-

pose, we choose SISI GifDeanimate service, which parses a Graphics Interchange For-

mat (GIF) image into its component parts. The GifDeanimate service produces a de-

animated version of the original image, showing only its first frame. Our main objec-

tive is to save bandwidth in the delivery of Web pages with a lot of animated embedded

images and to spare CPU cycles at the client device.3

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20

9
0

 p
e

rc
e

n
ti
le

 o
f

u
s
e

r
re

s
p

o
n

s
e

 t
im

e
 [

m
s
]

Page request rate [req/s]

Fig. 2. SISI: 90 percentile of user response time with GifDeanimate service.

In this case also, we set up httperf to request 3000 pages with the respective embed-

ded objects, at varying rates. Figure 2 and the third row of Table 2 show the 90 percentile

of user response time when SISI GifDeanimate service is applied to the requests.

We can roughly draw the same observations as for the previous RemoveLink ser-

vice, with a limited increase in the user response time up to a rate of 17 pages per sec-

ond. The fact that the system gets overloaded earlier (with a rate of 20 pages per second,

instead of 22) is a sign that GifDeanimate is a heavier service than RemoveLink.

Composition of services. Finally, we want to test SISI scalability when more services

are applied one after the other to the same request. To this goal, we set up SISI to per-

form both RemoveLink and GifDeanimate services on each request. In this experiment

we have nearly one third of all the requests being adapted.

In this case also, we set up httperf to request 3000 pages with the respective em-

bedded objects, at varying rates. Figure 3 and Table 2 show the 90 percentile of user

response time when SISI GifDeanimate and Remove Link services are applied to the

requests.

From Table 2 we can notice that the influence of the RemoveLink service is very

limited on the whole user response time. If we compare the third and the fourth row

of Table2 for the first two rates the difference is very low. Increasing the rate brings

to slightly bigger differences up to 17 pages per second, when the system is getting

overloaded.

3 Muffin seems to have a similar service to SISI GifDeanimate, which is called AnimationKiller,

but Muffin adaptation is far away from the adaptation performed by SISI, which keeps only

the first frame of the animated GIF. This is why we do not compare SISI with Muffin results.

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20
9

0
 p

e
rc

e
n

ti
le

 o
f

u
s
e

r
re

s
p

o
n

s
e

 t
im

e
 [

m
s
]

Page request rate [req/s]

Fig. 3. SISI: 90 percentile of user response time with GifDeanimate and RemoveLink services.

Table 2. SISI: 90 percentile of user response time with RemoveLink and GifDeanimate services.

Page Request Rate [pages/s] 5 7 10 12 15 17 20

RemoveLink 121 124 139 152 168 229 455

GifDeanimate 130 133 140 147 167 183 X

Both services 131 134 151 158 193 457 X

6 Conclusions and Future Work

In this paper we presented a Scalable Intermediary Software Infrastructure (SISI), whose

main goal is to create a framework that aims at facilitating the deployment of adaptation

services running on intermediate edge server on the WWW. It provides a modular ar-

chitecture that allows an easy definition of new functionalities implemented as building

blocks in Perl.

Users can define one or more personal profiles, in such a way that the requests of

a user may involve the application of some services, and those of another user may

involve the application of completely different services.

The prototype was extensively tested. In particular our experiments demonstrate

that the response times the user gets when connecting to a proxy, instead of directly

connecting to the origin Web Server are increased from two to three times by proxies

which do not or do use user authentication, respectively. When comparing SISI with

another intermediary (Muffin), we found that SISI provides much better performance.

In particular, it can nearly triple the sustainable load. Finally, SISI is able to efficiently

deliver adapted content on a per-user basis in a scalable way.

Our goal in the very next future is to deploy SISI in a distributed network environ-

ment and to port it to different operating systems.

Acknowledgments

This research work was financially supported by the Italian FIRB 2001 project num-

ber RBNE01WEJT “WEB–MiNDS” (Wide-scalE, Broadband MIddleware for Network

Distributed Services). http://web-minds.consorzio-cini.it/

References

1. Barrett, R., Maglio, P.P.: Intermediaries: An approach to manipulating information streams.

IBM Systems Journal 38 (1999) 629–641

2. Luotonen, A., Altis, K.: World-Wide Web proxies. Computer Networks and ISDN Systems

27 (1994) 147–154

3. Barrett, R., Maglio, P.P.: Adaptive Communities and Web Places. In: Proceedings of 2
th

Workshop on Adaptive Hypertext and Hypermedia, HYPERTEXT 98., Pittsburgh (USA),

ACM Press (1998)

4. Calabrò, M.G., Malandrino, D., Scarano, V.: Group Recording of Web Navigation. In:

Proceedings of the HYPERTEXT’03, ACM Press (2003)

5. Almaden Research Center, I.: Web Based Intermediaries (WBI) (2004)

http://www.almaden.ibm.com/cs/wbi/.

6. Ardon, S., Gunningberg, P., LandFeldt, B., Y. Ismailov, M.P., Seneviratne, A.: MARCH:

a distributed content adaptation architecture. Intl. Jour. of Comm. Systems, Special Issue:

Wireless Access to the Global Internet: Mobile Radio Networks and Satellite Systems. 16

(2003)

7. Hori, M., Kondoh, G., Ono, K., Hirose, S., Singhal, S.: Annotation-Based Web Content

Transcoding. In: Proceedings of the 9
th International World Wide Web Conference, Ams-

terdam (The Netherland), ACM Press (2000)

8. WebSphere: IBM Websphere Transcoding Publisher (2005) http://www-

3.ibm.com/software/webservers/transcoding.

9. Olofsson, R.: RabbIT proxy (2005) http://rabbit-proxy.sourceforge.net/.

10. Boyns, M.: “Muffin - a filtering proxy server for the World Wide Web”. (2000)

http://muffin.doit.org.

11. WebCleaner: A filtering HTTP proxy. (2005) http://webcleaner.sourceforge.net.

12. McElrath, B.: FilterProxy in perl (2002) http://filterproxy.sourceforge.net/.

13. Burgiss, H., Oesterhelt, A., Schmidt, D.: Privoxy Web Proxy. (2004)

http://www.privoxy.org/.

14. The Apache Software Foundation: Apache (2005) http://www.apache.org.

15. The Apache Software Foundation: mod perl (2005) http://perl.apache.org.

16. Grieco, R., Malandrino, D., Mazzoni, F., Scarano, V., Varriale, F.: An intermediary software

infrastructure for edge services. In: Proceedings of the 1st Int. Workshop on Services and

Infrastructure for the Ubiquitous and Mobile Internet (SIUMI’05) in conjunction with the

25
th International Conference on Distributed Computing Systems (ICDCS’05). (2005)

17. Mosberger, D., Jin, T.: httperf - a tool for measuring web server perfor-

mance. SIGMETRICS Performance Evaluation Review 26 (1998) 31–37

http://www.hpl.hp.com/research/linux/httperf.

