Cluster Comput (2010) 13: 1-17
DOI 10.1007/s10586-009-0094-y

A Two-level distributed architecture for the support of content

adaptation and delivery services

Claudia Canali - Michele Colajanni -
Riccardo Lancellotti

Received: 12 September 2008 / Accepted: 25 June 2009 / Published online: 22 July 2009

© Springer Science+Business Media, LLC 2009

Abstract The growing demand for Web and multime-
dia content accessed through heterogeneous devices re-
quires the providers to tailor resources to the device ca-
pabilities on-the-fly. Providing services for content adap-
tation and delivery opens two novel challenges to the
present and future content provider architectures: con-
tent adaptation services are computationally expensive;
the global storage requirements increase because multiple
versions of the same resource may be generated for dif-
ferent client devices. We propose a novel two-level dis-
tributed architecture for the support of efficient content
adaptation and delivery services. The nodes of the archi-
tecture are organized in two levels: thin edge nodes on
the first level act as simple request gateways towards the
nodes of the second level; fat interior clusters perform all
the other tasks, such as content adaptation, caching and
fetching. Several experimental results show that the Two-
level architecture achieves better performance and scala-
bility than that of existing flat or no cooperative architec-
tures.

Keywords Content adaptation - Multimedia resources -
Distributed architectures - Performance evaluation

C. Canali - M. Colajanni (X)) - R. Lancellotti

Department of Information Engineering, University of Modena
and Reggio Emilia, Modena and Reggio Emilia, Italy

e-mail: michele.colajanni @unimore.it

C. Canali
e-mail: claudia.canali @unimore.it

R. Lancellotti
e-mail: riccardo.lancellotti@unimore.it

1 Introduction

During the past decade, Web contents have evolved from
mostly text and small size images to increasing percentages
of personalized and multimedia resources [21, 26]. Recent
studies [20, 33] have also evidenced that the popularity of
Web-logs (Blogs) has dramatically augmented the demand
for large images and audio/video clips, that are mainly de-
livered through HTTP streaming [21, 43]. Accessing these
resources through the Web places high requirements on the
client platform, in terms of processing power, display size,
storage resources, and network bandwidth. This issue is ex-
acerbated by the growing popularity of Web-enabled mobile
devices, such as handheld PCs, personal digital assistants
(PDAs) and smart phones, that are characterized by more
limited computational and display capabilities than a tra-
ditional computer. Providing users with contents that can
be accessed from everywhere and through any device re-
quires the content provider architecture to carry out on-the-
fly adaptation that can tailor the resources to the capabili-
ties of the client device (e.g., display size, memory), of the
client interconnection (e.g., protocols, wired/wireless net-
working), and of the user preferences.

Content adaptation involves a large and highly hetero-
geneous set of transformations that are typically obtained
through computationally expensive chains of operations [6].
Another consequence of adaptation is that from the original
set of stored resources, multiple versions may be generated.
This significantly increases the size of the working set that
may augment of one order of magnitude with respect to the
traditional Web. For these reasons, supporting efficient con-
tent adaptation and delivery services is a complex task that
requires intervention at the software level, modification of
existing protocols, and even accurate design of the server
infrastructures that represent the focus of this paper. Any

@ Springer

mailto:michele.colajanni@unimore.it
mailto:claudia.canali@unimore.it
mailto:riccardo.lancellotti@unimore.it

2

Cluster Comput (2010) 13: 1-17

content provider should address the high computational cost
of the adaptation and the augmented storage requirements
due to the presence of multiple resource versions, hence
the most practicable solution is to rely on intermediary ar-
chitectures consisting of multiple geographically distributed
servers interposed in the path from the client to the origin
server [5, 17,23, 27]. This type of architectures opens the
possibility of sharing the load of computationally expensive
services, increases the storage capacity and improves con-
tent delivery.

The main contribution of this paper is the proposal of a
novel architecture for the support of on-the-fly content adap-
tation and delivery services. The server nodes are organized
in two specialized levels: the edge level of thin nodes is lo-
cated on the network borders; the interior level consists of
clusters that are located in well connected Internet regions.
The differentiation of the node functionalities and the use of
a content partitioning at the level of the interior clusters are
two innovative features of the Two-level architecture. The
specialization of the nodes simplifies the management of
the architecture and improves load balancing by assigning
the most expensive tasks (in terms of computation and stor-
age) to the most powerful clusters of the interior level, while
the edge level nodes are devoted to light tasks, such as gate-
way operations. Exploiting content partitioning allows the
provider architecture to limit the increment of the working
set size due to the presence of adapted resource versions.
The motivation is that content partitioning has the effect
of preserving request access locality and avoiding content
replication. The proposed architecture is innovative because
it addresses present and future issues for scalability and per-
formance that are not solved by available solutions based
on geographically distributed architectures [5]. We compare
the Two-level architecture with alternative flat architectures
through several experiments based on prototype systems.
We demonstrate that our proposal achieves better perfor-
mance and scalability than the flat architectures for differ-
ent workloads and scenarios. Moreover, we show that the
Two-level architecture guarantees robust performance and
low sensitivity to network delays and to highly skewed re-
source popularity.

The rest of this paper is organized as follows. Section 2
discusses alternative designs of intermediary distributed ar-
chitectures to support content adaptation and delivery ser-
vices. Section 3 presents the proposed Two-level architec-
ture, while Section 4 describes the flat architecture that is
the best existing alternative. Section 5 introduces the per-
formance metrics for the evaluation of the distributed ar-
chitectures and describes the experimental setup. Section 6
compares the performance of the Two-level and flat archi-
tectures. Section 7 contains a sensitivity analysis with re-
spect to network conditions and resource popularity skew-
ness and analyzes the scalability of the architectures with

@ Springer

respect to different workloads and architecture sizes. Sec-
tion 8 discusses the related work and Section 9 concludes
the paper with some final remarks.

2 Design of architectures for content adaptation and
delivery services

The discussion on the design choices of systems for content
adaptation and delivery is related to architectures composed
by intermediary servers located between the origin servers
and the clients. This choice is popular for two reasons. First,
it allows to improve delivery performance by replicating the
resources close to the user. Second, the deployment of the
architecture can exploit existing intermediary servers, such
as access points or proxies, interposed in the path from a
(mobile) client to an origin server.

When we examine the main tasks that are necessary to
support content adaptation and delivery services, we should
consider that any distributed architecture can make a differ-
ent choice about where to execute these tasks.

2.1 Main tasks

We identify five main tasks that are necessary to an interme-
diary distributed architecture to support content adaptation
and delivery services. We refer to logical tasks that may be
implemented by one or multiple processes and may be lo-
cated on one or different nodes.

Edge (E). This is the front-end component of the interme-
diary architecture that is contacted by the client. A process
receives the client request, identifies the client require-
ments and activates the discovery task. Once the requested
resource is obtained from some node, the edge task deliv-
ers it to the client. (Just the edge task is visible to the client;
the other tasks and the overall architecture are transparent
to the client.)

Discovery (D). This task has the goal to find one or more
nodes that may hold a valid copy of the requested resource
and fetch it from that node.

Cache (C). This task should provide a multi-version cach-
ing service that is able to manage original and adapted re-
sources.

Fetch (F). When the requested resource is not found in any
node of the intermediary distributed architecture, the fetch
task retrieves the resource from the origin server.

Adaptation (A). This task represents the core of the con-
tent adaptation mechanism. When needed, it transforms the
original resources in a form that matches the client require-
ments. Other details are described below.

The adaptation task may involve different chains of trans-
formations depending on the adaptation purpose and on the

Cluster Comput (2010) 13: 1-17

3

type of resource (image, audio or video). For example, in
order to decrease the download time of a client with limited
available bandwidth, the content adaptation task can reduce
the size of the original resource. Such transformations can
be obtained by reducing the quality factor of an image or by
recoding an audio/video stream at a different bit rate. An-
other transformation that may reduce the resource size is the
conversion between different formats and compression stan-
dards (e.g., from BMP to JPEG for an image, from WAV to
MP3 for an audio file, different parameters of MPEG encod-
ing for a video).

Content adaptation can be required to match the limited
computing and display capabilities of most current mobile
devices which are not suitable for high quality decoding and
displaying. These transformations may include different op-
erations, such as reducing the frame size and color depth
of images and video, or decreasing the frame rate of video
streams. It is worth to note that adaptation oriented to the
device characteristics has also the effect of reducing the size
of the adapted resources [6].

From a computational point of view, content adaptation
represents the most expensive task and different adaptations
can involve response times of different orders of magnitude.
For example, modifying the quality factor of a large JPG im-
age may require hundreds of milliseconds, while the format
conversion of a short video clip (few minutes of length) may
take up to several seconds [6]. The type of transformation
is not the only factor that determines the computational cost
of the adaptation task, that depends also on the initial qual-
ity level of the resource. We should consider that multiple
versions of the same resource may be generated through the
adaptation task and cached in some nodes of the distributed
architecture. Hence, the required resource can be obtained
not only from the original version, but also from an already
adapted resource that may be further transformed to obtain a
less detailed (or lower resolution) version. In this paper, we
assume that each version of a resource can be obtained from
any higher quality version. However, our proposal may han-
dle any relation scheme between the multiple versions of the
same resource and the allowed transformations among them.
These relation schemes are usually represented through an
adaptation graph, as described in [27]. The presence of mul-
tiple versions of the same resource opens novel issues be-
cause it multiplies the working set, and forces the architec-
ture and its caching mechanism to manage multi-versioning
through some efficient solution, because, even in the case
where each adapted resources is smaller than the original
content, the overall working set size is multiplied by the
number of versions that each resource may have.

2.2 Mapping tasks over multiple nodes

Once defined the main tasks, the design of an intermediary
distributed architecture requires to determine how to map

the tasks over the nodes of the system. In this section, we
consider some mapping alternatives suggested by popular
architectures for Web content delivery that have been pro-
posed in literature [5, 18, 35, 39, 40] and then we present our
alternative in Section 3. We can consider that the proposed
solutions are based on architectures where multiple nodes
are located on the network edge. Each node performs edge,
adaptation, cache and fetch tasks. The main difference con-
cerns the management of the discovery task, where we can
identify three main schemes:

— a non cooperative architecture that does not provide any
discovery task;

— a cooperative architecture with a centralized discovery
task;

— a cooperative architecture with distributed discovery
tasks.

Figure 1 outlines the three mapping alternatives. The
boxes represent the nodes of the architecture, that are placed
on the network edge. The circles indicate the tasks (each task
is denoted by a capital letter) that are executed by a node.
We analyze the pros and cons of each scheme to determine
a convenient way to map the tasks over the nodes of a dis-
tributed architecture that should support efficient adaptation
and delivery of Web and multimedia contents.

The simplest alternative is represented by a non coopera-
tive architecture where the nodes operate individually for the
generation, adaptation and delivery of contents. As shown
in Fig. 1(a), every node performs the same four tasks, while
the discovery task is not necessary. As there is no cooper-
ation among the nodes, either the resource is found on the
contacted edge node or is fetched from the origin server.
Independent nodes located on the network edge have been
widely used in the context of Web caching and content de-
livery [39, 40], since the user perceived response time can
be reduced when the requests are served by nodes that are
close to the clients. However, the lack of cooperation among
the nodes leads to a limited cache hit rate and a limited scal-
ability in the context of content adaptation and delivery ser-
vices [39]. The high computational cost of the adaptation
tasks, the explosion of the working set due to multiple re-
source versions and the non uniform distribution of the client
requests among the edge nodes can easily exhaust the com-
putational and storage capabilities of a stand-alone node,
that cannot take advantage of already adapted resources on
other nodes.

A first cooperation among the nodes exploits a central-
ized discovery task, as shown in Fig. 1(b). An example
of this scheme has been proposed in the context of Web
caching [18, 35]. This architecture introduces a first differ-
entiation among the nodes: the edge nodes perform edge,
adaptation, cache and fetch tasks; a central node performs
the discovery task by storing a complete directory of all

@ Springer

Cluster Comput (2010) 13: 1-17

00
00

4
1
1
\
AN

(a) No discovery task

\
\
1
T
1
1

00
()

(b) Centralized discovery task

AY
AY
\
\
\
1
)
T
1
1
4
4

e D .
, \
DE 00
D D <>
DC 00,
7
A ’
\\ D P
\\ P
~~~ A (o] "¢’
F E

(c) Distributed discovery task

“""y Network edge @ Fetch

@ Adaptation @ Discovery
® o

@ Cache

Fig. 1 Mapping tasks over the nodes of the distributed architecture

cached resources. The edge nodes cooperate through the
central node that can perform an accurate resource discovery
thanks to its complete knowledge of node caches. Unfortu-
nately, this scheme presents some drawbacks if applied to

@ Springer

a geographically distributed architecture for content adap-
tation and delivery services. A client request may be redi-
rected to a close or very far node because this node is se-
lected by the centralized discovery task on the basis of its
cached resources. The immediate consequence is that the
variance of the user-perceived response time augments sig-
nificantly. A second issue is that the central node represents
a system bottleneck in a highly replicated system with hun-
dreds or thousands of nodes. The same proponents of this
scheme observe that a similar architecture may limit in prac-
tice the geographical expansion of the system [18].

An alternative solution that preserves node cooperation
and avoid bottlenecks is represented by architectures ex-
ploiting distributed discovery tasks. As an example, we con-
sider an architecture where every node carries out all tasks
(Fig. 1(c)). These systems where all nodes are identical
peers are typically referred to as flat architectures. We de-
scribe some of their details in Section 4, because they repre-
sent the state of the art of intermediary distributed architec-
tures for content adaptation and delivery of Web and multi-
media contents.

3 Two-level architecture

In this section we describe the innovative Two-level archi-
tecture for content adaptation and delivery services. The de-
sign of the Two-level architecture takes advantage of some
characteristics of the intermediary distributed architectures
analyzed in Section 2.2 by exploiting:

— cooperation among the nodes of the architecture;
— adistributed discovery task.

Other features related to the node organization and content
partition are original.

3.1 Organization of the nodes

The Two-level architecture organizes the nodes in two sets
that provide different tasks: thin edge nodes and fat interior
clusters. Figure 2 shows how the tasks of adaptation, edge,
discovery, cache and fetch are mapped on the nodes of the
architecture.

The edge nodes are located on the Internet borders. They
are thin nodes executing edge and discovery tasks that are
not intensive from a computational and storage point of
view. Since an edge node is basically a gateway that does
not require complex software and powerful hardware, it can
be easily implemented by one server machine, at most two
for fault tolerance reasons. Edge nodes may be easily repli-
cated and spread around the Autonomous Systems of the
most popular Internet Service Providers. In the version pro-
posed in this paper, we assume that the edge nodes do not



Cluster Comput (2010) 13: 1-17

<~ Edge node

o) el N

.-=""Interior cluster
/ N N N
/ A OO T NOD AN \
l : i !
\ N OOEG AYcYF '," l'
\ \"v \_/,o"'

~ ) Network edge @ Discovery @ Adaptation
~ 2 @ Fetch
«“""3 Network core @Edge @ Cache

Fig. 2 Task organization in the Two-level architecture

provide any resource caching. This choice is motivated by a
twofold goal. First, we aim to reduce storage costs; second,
we avoid the issues of preserving cache content consistency,
that would require a non negligible effort, especially in ar-
chitectures with hundreds or thousands of edge nodes that
may cache any resource.

The second level consists of geographically distributed
clusters executing the tasks of adaptation and caching that
are expensive from a computation and storage point of view,
respectively. Furthermore, the clusters host also the ferch-
ing task that is strictly connected to the caching one. Each
interior cluster consists of multiple physical servers with ad-
equate power and storage capacities.

Clustering techniques guarantee several advantages in
terms of system management. Any modification of the num-
ber of servers in an interior cluster is transparent to the
clients, to the other nodes and, most importantly, to the dis-
covery scheme and resource allocation. We can add, remove,
replace some servers in the interior clusters without the need
of reconfiguring system and data as long as the number of
the interior clusters does not change. The number of inte-
rior clusters is one or two orders of magnitude lower than
that of edge nodes and tends to be constant (in the order
of some units, maximum 10). The limited number of inte-
rior clusters makes it feasible to place them in the best con-
nected Autonomous Systems, that have the largest number
of BGP peers with other Autonomous Systems. The strate-
gic position of the interior clusters in well connected Internet
locations limits the user response time variability, which is
a potential problem of geographically distributed architec-
tures [14, 38].

3.2 Content partitioning

The Two-level architecture exploits a content partitioning
scheme of the global resource space so that each inte-
rior cluster manages a different partition of the original
and adapted resources. We adopt a hash-based partitioning
scheme on the URL of the original resource so that the orig-
inal resource and all its adapted versions are kept in the
same interior cluster. A resource x is associated to an in-
terior cluster through a hash function H (x). This function
takes as input a resource ID (e.g., the URL) and returns a
value k, where k € [1,...,n], and n is the number of inte-
rior clusters. An example of H (x) uses the MD5 algorithm
to distribute the resources uniformly across n nodes:

H (resourcelD) = (MD5(resourcelD) mod n) + 1. (1)

The deployment of a content partitioning technique on a
Two-level architecture is a clear step ahead with respect to
other architectural solutions in terms of response time vari-
ability and infrastructure management.

Applying hashing on a flat architecture would be unfea-
sible. For example, the operation of adding a new edge node
to increase computational power would require a modifi-
cation of the hash function (because the term n in Equa-
tion 1 changes) and would result in a re-configuration and re-
distribution of resources among the nodes. Although some
solutions [38] can mitigate the most negative impacts, the
management overhead is not acceptable when the architec-
ture is large and one server may often join or leave the
system also because of temporary system/network failures.
A further problem preventing the use of hashing in a flat ar-
chitecture and overlay networks, such as DHTs, is related to
network issues [38, 42] because a request may be forwarded
to a close or very far edge node, resulting in high variability
of the user-perceived response time [14, 38].

On the other hand, the use of clusters in the hash-
based partitioning schemes allows the management of the
infrastructure by reducing the need of complex system re-
configurations. Adding a server within a cluster in the Two-
level architecture is transparent with respect to the service
of client requests and does not require the re-allocation of
the resources. System-wide reconfiguration, with migration
of resources on a geographic scale, is required only when a
new interior cluster is added to the architecture. However,
such modification occurs only in case of a significant drift
of the client request patterns from the expected behavior ob-
tained through capacity planning analyses, that is unlikely
to occur more than once a year. Furthermore, the use of a
limited number of large interior clusters, that is one-two or-
ders of magnitude lower with respect to edge nodes, has also
a benefit with respect to network-related issues. The Two-
level architecture adopts hash partitioning only for few log-
ical interior clusters that are located in the best connected

@ Springer



6

Cluster Comput (2010) 13: 1-17

Autonomous Systems, so that the number of hops from any
edge node to any interior cluster is similar and reduces the
variability of user-perceived response time.

We can conclude that the Two-level architecture based
on interior clusters allows to exploit all the advantages of
hashing with no penalty for two reasons.

— It avoids replication of the same resources on different
nodes, so that the system storage capabilities are utilized
at their best. This is especially important in a scenario
where the working set can easily become one order of
magnitude larger than the original set because of adapted
resources.

— It preserves in a simple way the access locality of the re-
quests, because if multiple versions of the same resource
exist, they are stored on the same interior cluster. The ben-
efit on cache hit rate helps addressing the computational
issues of content adaptation.

3.3 Request management

The client requests are managed by the Two-level architec-
ture in a plain way, especially if compared with the request
management carried out by some flat cooperative architec-
tures. Figure 3 outlines the entire scheme. When an edge
node receives a client request (step 1), it extracts the re-
source ID. Then, the edge node applies the hash function to
the resource ID to identify the interior cluster that may hold
a valid version of the requested resource, and it forwards the
client request to that cluster (step 2). Hence, the discovery
task of the Two-level architecture is a simple application of
a hash function. If the selected interior cluster does not hold
the requested resource, no other interior cluster does, hence
there is no need for cooperative lookup.

Due to the presence of multiple versions of a resource, the
caching semantics is more complex than that of traditional
caching systems. We observe that any request to an interior
cluster has three possible results.

Exact hit: if the cache contains the exact version of the re-
quested resource, the interior cluster immediately sends it
to the edge node (step 5).

Useful hit: if the cache contains a more detailed and adapt-
able version of the requested resource, it can be trans-
formed to satisfy the client request (step (4)—the numbers
between brackets in Fig. 3 specify steps that are not always
executed). For example, a video clip with a low frame rate
can be obtained through a content adaptation process from
any version with a higher frame rate. After that the interior
cluster sends the adapted resource to the edge node (step 5).

Miss: if the cache of the interior cluster does not contain any
exact or adaptable version of the requested resource, the in-
terior cluster must fetch the original version from the origin
server (step (3)); if necessary, the interior cluster performs

@ Springer

Origin servers

- Network edge @ Discover @ Adaptation
~ 2 Y @ Fetch
«"7"5 Network core @ Edge

Fig. 3 Two-level architecture for content adaptation and delivery ser-
vices

the required adaptation (step (4)), and sends the adapted
resource back to the edge node (step 5).

The final delivery of the object to the client (step 6) is
always carried out by the edge node.

4 Flat cooperative architectures

For comparison purposes, in this section we consider one
of the most popular flat cooperative architectures that im-
plements content adaptation and delivery services. The flat
architecture consists of peer nodes that are placed on the
network edge. Each node provides all the necessary tasks
for content adaptation and delivery: edge, cache, discovery,
fetch, and adaptation, as shown in Fig. 4.

When the edge node receives the client request resulting
in a miss on the local cache, that is when the edge node does
not own an exact or adaptable version of the required re-
source, it can take advantage of cache contents of other edge
nodes through a discovery task that may result in a remote
useful or exact hit.

Several discovery mechanisms have been proposed in the
context of cooperative Web caching [16, 35, 45]. In a pre-
vious study [5], the authors have adapted two popular dis-
covery mechanisms, commonly known as summary-based
and query-based, to handle the discovery of multi-version
resources in a geographical distributed architecture.

In summary-based schemes, such as Cache Digests [16],
each edge node obtains information about the cache contents



Cluster Comput (2010) 13: 1-17

7

Origin
servers

OO =0 C
v 2 el ezt (42 ,
. .2 =" (3) L’

A D (5a) .~
el F)C T
©® (\ALE
7
7 1 1
Clients

-

<% Network edge @ Fetch @ Cache
@ Adaptation @ Discovery @ Edge

Fig. 4 Flat query-based architecture for content adaptation and deliv-
ery services

of the other peers through periodical exchanges of asynchro-
nous messages and stores this information locally. In query-
based schemes, that are typically based on the ICP proto-
col [45], a message exchange mechanism must be activated
at runtime among the peers to identify the node that owns
the required resource. The pros and cons of the two schemes
are intuitive. Due to the synchronous nature of query-based
interactions, this scheme provides always up-to-date infor-
mation resulting in a higher cache hit rate than a summary-
based scheme. The summary-based cooperation can be af-
fected by obsolete information that hinders the effectiveness
of resource discovery. On the other hand, the discovery op-
erations of the query-based scheme are inherently slower
and more expensive because they require a query/reply mes-
sage exchange at discovery time. Moreover, while a remote
hit is detected as soon as the local node receives an exact
hit reply message, a miss may be expensive. Nevertheless,
in [5] the authors found that the query-based scheme rep-
resents the best performing scheme for flat cooperative ar-
chitectures based on content replication. The query-based
mechanism relies on a modified version of the ICP proto-
col [45], where the resource discovery among the nodes is
carried out through a query-response exchange activated by
the node that has received the client request.

Figure 4 describes the operations carried out in the Flat
query-based architecture when an edge node receives a
client request from possibly heterogeneous devices (step 1).
The first operation is a local cache lookup that can result in
local exact hit, useful hit or miss. Exact and useful hits are

handled locally by delivering exact hits immediately (step 7)
and useful hits after content adaptation (step (6)). In the
case of local miss, the discovery task starts a remote dis-
covery issuing query messages for the requested resource to
the other nodes (step (2)—the dashed lines represent query
messages). Each remote node may reply with an exact hit, a
useful hit, or a miss message (step (3)). Some nodes might
also not reply at all; in this case, the local node assumes
a miss after a certain timeout. The remote discovery may
have multiple consequences: in the case of remote hit, the
resource is fetched from the cache of the peer node (steps
(4a) and (5a)); in the case of useful hit, the resource is also
adapted to obtain the requested version (step (6)). Then the
resource is delivered to the client (step 7). When no adapt-
able resource is found in any peer of the architecture (global
miss), the node contacted by the client must get the original
resource from the origin server (steps (4b) and (5b)). If nec-
essary, the local node adapts the retrieved resource (step (6))
before sending it to the client (step 7).

5 Experimental setup
5.1 Metrics of interest

We compare the performance of the Two-level cooperative
architecture against that of a Flar query-based architec-
ture characterized by query-based cooperation. To provide
a more complete comparison we also consider a non coop-
erative architecture (No_Coop) consisting of geographically
distributed nodes that do not collaborate for adaptation, dis-
covery, and delivery purposes. We evaluate the architectures
on the basis of three main requirements that any architecture
for efficient content adaptation and delivery services should
address.

High performance. The architecture should guarantee the
end-user with an adequate level of performance. We eval-
uate the architecture performance by considering the user
response time, which is the main interest for the user.

Robust performance. The architecture should provide not
only high peak performance, but also ensure good perfor-
mance under not controllable external conditions, such as
network traffic and resource popularity changes.

Scalability. The architecture should be scalable with re-
spect to larger numbers of system nodes and increasing
adaptation costs of the workload model, because it has to
face the current evolution towards large distributed systems
and multimedia-oriented workloads [13, 46].

The user response time is defined as the time between
the client request and the arrival of the complete response
measured on the client. Due to the heavy tail distributions
of the response times in the considered systems [12], mean

@ Springer



8

Cluster Comput (2010) 13: 1-17

values are not representative and we prefer to refer to the 90-
percentile and cumulative distributions. We consider also the
cache hit rate, that is a metric of interest for the system ad-
ministrators. To guarantee performance robustness, we carry
out a sensitivity analysis of the response time with respect
to different network scenarios, workload characteristics and
infrastructure size.

5.2 Workload and service models

To evaluate the performance of the different architectures,
we build a prototype for content adaptation and delivery
services that tailor Web and multimedia resources to the
client requirements. To exercise the prototype, we define a
workload WL1 that aims to represent a realistic Web sce-
nario [46]. Table 1 shows the composition of the workload
WLI1: HTML pages, images, video and audio resources.
HTML pages and images represent together the 90% of the
resources, but they account for just the 42% of the bytes of
the working set. Multimedia (audio and video files) repre-
sent the 10% of the resources, but they account for almost
the 58% in terms of bytes. Images are in GIF and JPEG
formats [6], while audio and video resources are MP3 and
MPEG 4 files, respectively [21]. In this paper we consider
static pre-stored multimedia resources, because in the Web
almost the totality of audio and video clips are delivered
through HTTP streaming [21], that follows a play-while-
downloading approach without RTP-based streaming. We
have introduced a popularity resource distribution by defin-
ing a set of hot resources (corresponding to 1% of the work-
ing set): 10% of the total number of the client requests refers
to this set.

The prototype adapts images, video and audio resources
on the basis of the client requirements. We have identified
four classes of client devices that differ for their capabili-
ties [7].

Table 1 Composition of workload WL1

PC: a full featured PC or a high-end laptop with a LAN or
WiFi connection; this device can consume every resource
in the original form.

Web Appliance: a set-top box that turns a TV into a Web
browser and may be connected through a DSL modem; the
main limits are related to the displaying capabilities of the
TV screen.

Handheld PC: a device that is typically equipped with a
UMTS connection; the main limits are represented by the
small display size and the limited computational power.

Smartphone: a modern cellular phone; besides the limited
display size and computational power, a significant limita-
tion is also represented by the mobile connection, typically
GPRS.

Table 2 summarizes the transformations that are carried
out on images, video and audio resources to match the re-
quirements of the considered device classes. It is important
to note that we focus just on a subset of the possible transfor-
mations that can be performed to tailor resources to connec-
tion and device capabilities, however the main conclusions
of this paper can be applied to any class of applications that
require computationally intensive adaptation services.

For scaling and managing color depth of images we rely
on the Imagemagick program. For video resources we carry
out multiple transformations through the Transcode pro-
gram. In particular, for Web Appliances and Handheld PC
we change the frame rate and we compress the video data
through the MPEG 4 compression, provided through the
DivX codecs. For smartphones, we convert the video stream
into a sequence of JPEG frames, at the rate of 1 frame per
second, according to the Motion JPEG standard. Finally, au-
dio clips are re-sampled at different frequencies through the
Lame software.

Client requests are issued to the system through a client
emulator according to synthetic traces with a request rate of
50 requests per second, for a total experiment duration of 2
hours. The requests are evenly distributed among the nodes
providing the edge task. The probability that a request be-

Resource type Resources (%) Bytes (%) longs to a given client device type is defined through a de-
HTML 22.29% 9.3% ;zsc; vzc;g/r D.hIn th.1s pagér, :)Nvegons?er D; ; {2;‘1%;i(12;‘§
wher ian n
Images 67.9% 32.8% 6, 25%] where i € {PC, Web appliance, Handhe :
Vid 800 19,49 Smartphone}. Although it is difficult to predict the trend of
1aeo o o diffusion of future Web connected devices, in other not re-
Audio 1.9% 8.5% . . . .
ported experiments we found that different mixes of client
Table 2 Resource - . .
transformations Device Images Video Audio
Resolution Color depth Format Frame rate bit rate
PC original original original original original
Web Appliance 640x480 16-bit color MPEG 4 20 fps 56 kbps
Handheld PC 480x320 16-bit color MPEG 4 10 fps 32 kbps
Smartphone 160x 120 8-bit Image set - 8 kbps

@ Springer



Cluster Comput (2010) 13: 1-17

device types within 10% of those considered here do not af-
fect the main conclusions of this paper.

5.3 Experimental testbed

For a fair comparison, all the architectures are provided with
the same amount of storage and computing elements. In our
experiments all the architectures use 16 nodes, that are or-
ganized as follows: the Flat query-based cooperative archi-
tecture and the No_Coop architecture exploit 16 edge nodes,
while in the Two-level architecture there are 2 interior clus-
ters, each of which consists of 8 servers. Additional edge
nodes in the Two-level architecture are simple gateways that
do not contribute to storage and computing. The global stor-
age size (that is, the sum of the sizes of all the storage ele-
ments) of each architecture covers 80% of the original work-
ing set. The servers are equipped with our prototype soft-
ware and are connected through a fast Ethernet network.

For the performance evaluation and the sensitivity analy-
ses we consider a controlled network environment that intro-
duces network delays through the WAN emulator provided
through special packet schedulers that are part of the 2.6
Linux kernel. We emulate packet loss and delay through the
netem packet scheduler, while bandwidth limitation is ob-
tained through the token bucket filter traffic shaper. Round
trip delays, loss rates and bandwidth considered in the net-
work scenarios are consistent with the datasets from real-
world measurements in [48].

The WAN emulation scenario aims to represent a real ge-
ographic network, where the origin servers are placed in a
remote location, connected through a geographic link with
14 hops in between, a mean round-trip time of 60 ms, and
a maximum bandwidth of 16 Mb/s, while the intermediary
nodes are on the same LAN and no WAN effects are intro-
duced on these links.

6 Performance evaluation

The main performance comparison of the architectures is
based on the user response time, that is the total elapsed
time between the request and the arrival at the client of the
last byte of the requested resource. Figure 5 shows the cu-
mulative distribution of the response time for the Two-level,
Flat query-based and No_Coop architectures in the case of
workload WL1.

The performance of the Two-level architecture is clearly
superior: about 80% of the requests are served in less than
1.2 s by the Two-level architecture, while for the Flat query-
based and No_Coop architectures this percentage is below
60% and 50%, respectively. This result has two main mo-
tivations. The Two-level architecture has the most efficient
discovery mechanism and a high cache hit rate that seem to

1
b
09 r .
L A /_g,»"’/ ]
0.8 ~
5 0.7 A / 4
R <
h=] i K
05 E 4
2 A
3 04 i 1
e |4/
S 03} A
Y
0.2 f q
[ & Two-level &
019 ./ Flat query-based —@— ]
No_Coop ----&----
0 ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000

Response time [ms]

Fig. 5 Cumulative distribution of response times

4000 T ————
[ Edge

@ Fetch
W Discovery
3000 -1 £ Adaptation

g
g

90-percentile of response time [ms]
L L]
8 8
IO o
i:ﬂ l

~N
g
S

8
o

8

G G
Two-level Flat query-based

o

Fig. 6 Breakdown of the response times

counterbalance the need of contacting two servers for each
request. To fully understand the architecture performance,
let us analyze a breakdown of the response time.

Figure 6 shows the contributions to the response time re-
lated to the various tasks of a distributed system for the sup-
port of content adaptation and delivery services: edge, fetch,
discovery and adaptation. The results are clearly in favor of
the Two-level architecture: all the contributions of the Two-
level architecture achieves better performance than those of
the Flat query-based and No_Coop alternatives.

The lower fetch and adaptation times of the Two-level
architecture are due to its higher cache hit rate. Indeed, a
cache hit avoids to fetch the resource from the origin server;
an exact hit avoids any adaptation; a useful hit requires a
partial and less expensive adaptation.

The result for the discovery task is less intuitive. We re-
call that the No_Coop architecture does not exploit the dis-
covery task. On the other hand, the Two-level architecture
requires a double step lookup for every request, while the
cooperative lookup of the Flat query-based architecture is
activated only in the case of local miss.

@ Springer



10

Cluster Comput (2010) 13: 1-17

Table 3 Cache hit rates

Architecture Local Remote Global
Exact Useful Exact Useful

No_Coop 8.3% 6.4% n/a n/a 14.7 %

Flat query-based 8.0% 7.0% 25.1% 26.8% 66.9 %

Two-level n/a n/a 60.2% 21.0% 81.2%

The lower discovery time of the Two-level architecture
can be explained by considering the communication model
of the two discovery processes. The Two-level architecture
requires a one-to-one communication (from one edge node
to one interior cluster), while the Flat query-based alterna-
tive adopts a one-to-many communication model that may
cause high variability. Its discovery process can be very fast
in the case of local hits, but it can be very time consum-
ing in the case of misses because a miss is detected only
after receiving the response from the slowest peer or after
the expiration of a timeout. This has a major impact on the
90-percentile of the discovery time and explains the results
of Fig. 6.

We now evaluate the cache hit rates, that have an impor-
tant impact on the performance of the considered architec-
tures. Table 3 reports the cache hit rates, that are divided
in local, remote, exact, and useful for the workload WLI.
The last column of this table shows the global cache hit rate,
which is the sum of the previous hit rates. We do not report
the local hits of the Two-level architecture, because the edge
nodes act only as gateways and do not cache any resource.
For the No_Coop architecture there are not remote hits be-
cause there is no lookup among the peers.

From the last column of Table 3 we observe that the
global hit rates differ significantly depending on the archi-
tecture. This table indicates that cooperation can increase the
cache hit rate: the Flat query-based architecture takes advan-
tage of remote hits, thus increasing its global cache hit rate
with respect to the No_Coop architecture. As expected, the
Two-level architecture achieves a global hit rate consider-
ably higher than that of the Flat query-based and No_Coop
architectures. The best cache hit rate is due to the hash func-
tion that maximizes the access locality of the requests and
avoids the presence of duplicated resources in the nodes.
Avoiding cache content duplication allows the distributed
caching system to contain a larger fraction of the working
set and reduces the amount of cache content replacement
operations.

A more detailed analysis of the cache hit rate components
shows an important difference between the Flat query-based
and Two-level architectures. The percentages of exact and
useful hits for the Flat query-based architecture are simi-
lar, while the exact hits of the Two-level architecture are
much higher than the useful hits. This result confirms that

@ Springer

the choice of partitioning the resource space among the in-
terior clusters and keeping all the versions of a resource on
the same interior cluster allows the Two-level architecture to
maximize locality and achieve the highest rates for the most
precious (exact) cache hits.

7 Sensitivity analysis

In this section we evaluate how the considered architectures
can satisfy the requirements of performance robustness and
scalability. To this aim we evaluate how the architectures
can cope with changes in the resource popularity and multi-
ple network scenarios. Furthermore, we study the architec-
ture scalability with respect to the infrastructure size and to
highly multimedia-oriented workloads.

7.1 Experimental setup

For the evaluation of the performance robustness and of the
scalability of the architectures we carry out experiments for
different workloads, network scenarios and infrastructure
sizes.

To evaluate the impact of resource popularity, we use
the workload composition in WL1 and we create workloads
with different Zipf popularity request distributions by vary-
ing the Zipf o parameter from O to 1. Higher values of the
Zipf « parameter correspond to more skewed workloads,
starting from a uniform workload for « = 0. The popular-
ity of each resource is independent of its URL (used for the
computation of the hash function in the Two-level architec-
ture), hence popular resources are spread across the nodes
of the infrastructure randomly for both Flat query-based and
Two-level architectures.

The sensitivity to network characteristics is evaluated
considering two scenarios, namely server scenario and in-
termediary scenario. For each scenario we take into account
two sets of links: the links between the intermediary ar-
chitecture and the origin servers (the E-O and I-O links in
Fig. 7) and the links among the nodes of the intermediary
architecture (the E-E and the E-I links in Fig. 7). Since our
experiments compare the intermediary architecture perfor-
mance, the last mile problem is out the scope of this paper.
Hence, we do not consider network effects among the clients
and the nodes providing the edge task (that is, C-E links in
Fig. 7), because they have the same impact on any architec-
ture.

In the server scenario we consider different delay and
bandwidth for the links between the intermediary architec-
ture and the origin servers, while the characteristics of the
links among the nodes of the intermediary architecture re-
mains unchanged. In the intermediary scenario we change



Cluster Comput (2010) 13: 1-17

11

No_Coop architecture

C-E AYc
A % Edge

E-O D

Client node Origin
server
Two-level architecture
C-E I~ E-l =< 1-0
A copNccomNl
Client Edge Interior Origin
node node server
Flat query-based architecture
Edge
Og*g nodes
E-E
C-E A)c E-O
—_ <>
A 598, [
Client -
E-E Origin
server
(aX<c)
<>
266
Discovery Adaptation Edge Cg‘EDhe gh

Fig. 7 Network scenario

Table 4 Network parameters

Link Server scenario Intermediary scenario
Bandwidth  Delay Bandwidth Delay

C-E n/a n/a n/a n/a

E-E, E-1 32 Mb/s 10 ms 8-32 Mb/s 0-20 ms

E-O,1-O  8-32 Mb/s 20-100 ms 16 Mb/s 20 ms

the characteristics of the links among the nodes of the inter-
mediary architecture and we do not modify delay and band-
width for the links between the intermediary architecture
and the origin servers. Table 4 shows the network parame-
ters for each considered scenario.

We are interested in evaluating whether and how the
workload characteristics may affect the architecture perfor-
mance. To this purpose, we consider the robustness of the
performance with respect to the popularity distribution of
the resources, and we evaluate how the architecture may
cope with future workloads with different resource compo-
sition.

To evaluate the scalability of the architectures with re-
spect to a growing demand for multimedia resources, we
consider a workload, namely WL2, where the amount of

multimedia resources is greatly increased with respect to
the workload WL1 described in Section 5. WL2 represents
a likely future scenario where universal access to audio
and video clips is provided through the Web and is based
on the traffic seen by popular resource sharing sites (e.g.,
YouTube [47]) and sites for multimedia downloading (e.g.,
MagnaTune [29]), where multimedia content accounts for
the 30% of the resources and almost the 85% of the bytes
composing the working set. HTML pages and images repre-
sent the 14% and 56% of the resources, respectively.

Finally, to study the scalability of the cooperative archi-
tectures with respect to their sizes, we evaluate the per-
formance for three scenarios, namely S1, S2 and S3, cor-
responding to different system sizes. For the Flat query-
based and No_Coop architectures we consider 8, 16, 32 edge
nodes for the scenarios S1, S2 and S3, respectively. For the
Two-level architecture, S1, S2 and S3 are characterized by 1,
2, 4 interior clusters, where each interior cluster consists of
8 servers. Since our focus is on scalability, for this analysis
we increase the load offered to the system proportionally to
the number of nodes so that the average number of requests
per node remains constant.

7.2 Sensitivity to resource popularity

We now analyze the sensitivity of the Two-level architec-
ture to the resource popularity skewness. Literature on dis-
tributed systems clearly shows that hashing can be sensi-
tive to the so called hot-spot problem [38]. This may repre-
sent a drawback of the Two-level architecture, because the
skewness of the resource popularity could trigger an over-
load condition on some interior cluster of the architecture.
On the other hand, we should consider that a highly skewed
workload may improve the cache hit rate with a consequent
positive effect on the architecture performance. Hence, it is
interesting to evaluate the trade-off due to the impact of the
resource popularity.

To measure the degree of load balancing across the in-
terior clusters of the Two-level architecture we consider the
load balance metric (LBM) [3]. Let us define the load of an
interior cluster i (of n clusters) at the jth observation (of m
observation periods) as load; ; and peak_load; as the high-
est load on any cluster at the jth observation. Since each in-
terior cluster of the Two-level architecture consists of multi-
ple servers, we consider the load of an interior cluster as the
number of active connections at the Web switch level. The
LBM is defined as follows:

> peak_load

I<j<m

( Z Z l()ad,‘,j)’

1<j<ml<izn

LBM =

where the value of the LBM can range from 1/n to 1.
Smaller values of the LBM indicate a better load balance
than larger values.

@ Springer



12 Cluster Comput (2010) 13: 1-17
100 T T —— T 1 T T T T T T T
Cache hit rate —6—
LBM N rg- 5000
920 r 1 0.9 2
= 4000
S 3
2 80 108 s
® ' Z 3000 & 1
= = 3 ¢
E aQ -
2 - 3 M i
5 70F 107 2 20004 1
T c
(@] [0}
o
60 f 106 8 1000 - :
g Two-level ——
o Flat query-based —e—
’+_A,_*—A—A—+H‘ L L L L NO_?OOp L
50 A A A n n 0.5 0

0 0.2 0.4 0.6 0.8 1
Zipf alpha parameter

Fig. 8 Sensitivity to resource popularity skewness

Figure 8 shows the cache hit rate and the LBM values
for the Two-level architecture as a function of the resource
popularity skewness. It is worth to note that an LBM value
equal to 0.5 indicates a perfect load balance among the inte-
rior clusters of the considered architecture (n = 2 in our ex-
periments). We observe that the curve referring to the LBM
metric remains very close to the value 0.5 for every resource
popularity skewness, thus showing that the Two-level archi-
tecture achieves a good load balance and avoids hot-spots
even in the case of highly skewed workloads. This result
may be motivated by considering that the resource popular-
ity skewness has a so positive impact on caching to eliminate
the risk of unbalance. Indeed, the increment of the cache
hit rate in Fig. 8 allows the Two-level architecture to avoid
many content adaptation and fetches from the origin server,
thus preventing overload conditions on the interior clusters
responsible for the most popular resources. We can conclude
that the caching effectiveness achieved through the hash-
based content partitioning allows us to take full advantage
from increased workload skewness and to obtain a balanced
load among the interior clusters of the Two-level architec-
ture.

7.3 Sensitivity to network parameters

We consider also important to evaluate the sensitivity to
network parameters for the considered architectures. This
analysis extends the study of the previous section to evaluate
whether the Two-level architecture provides always better
performance than that of the Flat query-based and No_Coop
alternatives or if there are conditions where the Two-level
architecture does not represent the preferable choice.

We first evaluate the impact of the network conditions
on the links between the intermediary system and the origin
servers (E-O/I-O links depending on the architecture). For
this study we will refer to the server scenario. We can antic-
ipate that the Flat query-based and No_Coop architectures

@ Springer

20 30 40 50 60 70 80 90 100
Mean E-O/I-O delay [ms]

Fig. 9 Sensitivity to delay in link to origin servers (server scenario)

9000 T T T r r
Two-level —&—
@ 8000 r Flat query-based —e— ]
£ No_Coop ——
[0} b 4
£ 7000
® 6000 | i
c
8 5000 ]
o
%5 4000 f |
<@
= 3000 | ]
3
& 2000 [ A\é\'\é\é 1
@
$ 1000 | i
0 1 1 1 1 1
5 10 15 20 25 30 35

E-0O/I-O bandwidth [Mbit/s]

Fig. 10 Sensitivity to bandwidth in link to origin servers (server sce-
nario)

should be more sensitive to the status of the links connect-
ing the nodes to the origin servers because their lower cache
hit rate tends to place a higher load on these network con-
nections with respect to the Two-level architecture.

Figure 9 shows the sensitivity of the 90-percentile of
the response time to the delay in network links connect-
ing the nodes of the distributed architecture with the origin
servers. We can see that the performance difference between
the Two-level architecture and the other two alternatives is
more evident as the delay grows: for a delay of 20 ms, the
speedup of the Two-level architecture is 1.43 over the Flat
query-based architecture and 1.87 over the No_Coop alter-
native, while for a delay of 100 ms the speedup grows to
1.60 and 2.20, respectively. This is a first confirmation that
the Two-level architecture is less sensitive than the other dis-
tributed architectures to network delays on the connections
to the origin servers. This conclusion is even more evident
if we look at the bandwidth. In this case the most signifi-
cant result from Fig. 10 is the poor performance of the Flat



Cluster Comput (2010) 13: 1-17

13

5000
4500
4000
3500
3000 ‘

—_
6]
o
o
T
L

90-percentile of response time [ms]
N
(o))
o
o

Flat query-based —e— 1
Two-level —4—

0 5 10 15 20
Mean E-E/E-| delay [ms]

Fig. 11 Sensitivity to delay in link among intermediary nodes (inter-
mediary scenario)

4000
é 3500 R
(0]
£ 3000 | 1
[0}
2 2500 g
o
&
& 2000 f 1
ks)
@ 1500 | 1
5
© 1000 r b
Q
>
§ 500F Flat query-based —e— )
o Two-level —&— ‘ ‘

5 10 15 20 25 30 35
E-E/E-I bandwidth [Mbit/s]

Fig. 12 Sensitivity to bandwidth in link among intermediary nodes
(intermediary scenario)

query-based and No_Coop architectures when the available
bandwidth is small. The lower cache hit rate achieved by
these architectures causes a higher number of requests to
the origin servers with respect to the case of the Two-level
architecture. The high usage of the links to the origin servers
significantly increases the response times for the Flat query-
based and No_Coop architectures when the bandwidth is re-
duced to 8 Mbit/s because of network congestion on the E-O
links.

The second experiment considers the intermediary sce-
nario that focuses on the links among the nodes of the archi-
tectures (E-E and E-I). These links represent a possible bot-
tlenecks of the Two-level architecture, because each client
request has to pass through an edge node and an interior
cluster. We want to evaluate whether the Two-level architec-
ture can guarantee adequate performance even in the case of
poor network connections among the nodes of the distrib-
uted architecture.

8000

WL [ wL2

7000

6000

5000

4000

3000

2000

1000+—

90-percentile of reponse time [ms]

Two-level Flat query-

based

No_Coop

Fig. 13 Architecture performance for different workloads

Figures 11 and 12 confirm the not negligible impact on
the response time of the network effects in the links among
the nodes of the considered architectures. From Fig. 11, we
see that the response times of the Two-level architecture tend
to converge towards those of the Flat query-based architec-
ture as the network delay grows. This confirms that the Two-
level architecture is really sensitive to E-I delays. On the
other hand, Fig. 12 reports the response times as a func-
tion of the network bandwidth. This parameter influences
the performance of both architectures, but it does not penal-
ize one with respect to the other.

7.4 Scalability to future workloads

In this analysis we evaluate the scalability of the architec-
tures with respect to a growing demand for multimedia con-
tents. To this purpose, we consider also the WL2 workload,
that mainly consists of multimedia resources.

We now compare the performance of the architectures
under the workloads WL1 and WL2. Figure 13 shows the
90-percentile of the response time for the considered archi-
tectures for the two workloads. We observe that the perfor-
mance of the Two-level architecture is clearly superior to
that of the Flat query-based and No_Coop architecture for
every considered workload. However, to fully understand
the causes of the different performance of the architectures,
it is useful to analyze a breakdown of the response time ac-
cording to the multiple tasks necessary to support content
adaptation and delivery services. This study also allows us
to evaluate how the content adaptation time changes as a
function of the workload characteristics.

Figure 14 shows the contributions of the various tasks to
the response time of the three architectures, from which we
can observe that for every workload the main contribution
to the response time is due to the adaptation task. It is the

@ Springer



14 Cluster Comput (2010) 13: 1-17
90001 I Edge 2000 O Two-level O Flat query-based B No Coop
EFetch
w 5000 -— M Discovery 3500
E [ Adaptation o
o E 3000
£ g
£ 2500
a g
8 8 2000 — —
] 5
& @ 1500
5 =
2 % 1000
= g
] 2 s00-
g &
2 5
=] s1 s2 53
Architecture size scenarios

Workload WL2

Workload WL1

Fig. 14 Breakdown of the response time

growth of the adaptation time that causes a significant in-
crease of the response time as we pass from the workload
WLI to the workload WL2. When the computational cost of
content adaptation grows, the impact of the other network-
related costs (discovery and fetch times) is reduced, even
if the global response times augments because of the deliv-
ery of larger resources. We can thus infer that the network
status will reduce its impact on performance in a near fu-
ture for a twofold reason. First, the cost of content adap-
tation is likely to increase due to the growing amount of
rich multimedia resources. Second, the network technology
is evolving towards high bandwidth and low latency links,
thus allowing to reduce the contribution of network-related
delays on the response time. All these reasons indicate that
the Two-level architecture is a preferable solution to support
content adaptation and delivery services for present and fu-
ture workloads.

7.5 Scalability to architecture size

To analyze whether the Two-level architecture can face the
challenge of building a large scale system for supporting
content adaptation and delivery services, we evaluate the
performance of the distributed architectures under the work-
load WL for different system sizes. To this aim, we refer to
the scenarios S1, S2 and S3 introduced in Section 7.1.
Figure 15 shows the 90-percentile of the response time as
a function of the number of nodes. This graph shows a clear
dependency of the performance of the Flat query-based ar-
chitecture on the number of nodes, while the response times
for the No_Coop and Two-level architectures do not signif-
icantly vary as the number of nodes increases. The motiva-
tion for this performance robustness is quite different. Every
node of the No_Coop architecture operates as a stand alone
node, hence the performance is poor independently from the
architecture size. On the other hand, the Two-level archi-
tecture achieves the best performance and an almost perfect

@ Springer

Fig. 15 System scalability to the architecture size

‘T_Adaptaﬁon M T_Discovery ET_Fetch [JT_Edge

§ 2500+

90-percentile of resp
5 o 9
(=] (=] (=]
(=] o o

500+

Architecture size scenarios

Fig. 16 Breakdown of response time for the Flat query-based archi-
tecture

scalability even if the number of nodes quadruples thanks to
the hash mechanism.

The poor scalability results of Flat query-based architec-
ture deserve a further study. In Fig. 16 we show a breakdown
of the response time for an increasing number of nodes from
which we can conclude that the main motivation is the in-
crement of the discovery and fetch times. A high number of
nodes augments the loss or delay probability of a reply mes-
sage, that in turn increases the number of cache misses. This
effect has already been observed for query-based schemes
utilized for Web caching [16, 25]. Even the fetch and adap-
tation times augment because each cache miss causes a re-
trieval from the origin server with a consequent possible
adaptation of the fetched resource.

8 Related work

Content adaptation has attracted the interest of many re-
searchers. The related efforts may be broadly divided into



Cluster Comput (2010) 13: 1-17

15

two categories: proposals of middleware frameworks which
enable innovative adaptation techniques and studies of ar-
chitectures for supporting content adaptation and delivery
services.

Most of the studies on middleware systems for content
adaptation and delivery services evidence the flexibility of
the proposed frameworks [11, 22, 28]. These studies aim to
offer some programmability and configurability by provid-
ing a number of reusable and expandable software compo-
nents and by giving guidelines on how these components can
be programmed, configured, deployed, and can exchange in-
formation. Most of the previous studies on programmable
frameworks pay scarce or no attention on how the soft-
ware components may be suitably mapped over the nodes
of a distributed architecture. Our study provides a detailed
analysis of performance and scalability of the deployed ser-
vices. Novel adaptation techniques to adapt contents to the
client capabilities have been proposed in [1, 6, 8, 10, 24, 34],
mostly based on image and video size scaling or cropping.
In this paper we exploit some of the existing methods for
content adaptation.

The focus on performance and system scalability has
driven the proposal of many novel architectures and our
study clearly fits in this research area. The systems for
content adaptation and delivery services can be divided in
three categories depending on the system component that
performs the adaptation process [4, 23, 27]: client-based,
server-based, and intermediary-based adaptation.

Client-based solutions propose the client as a platform
for adaptation and delivery services [30, 37]. This scheme
suffers from multiple drawbacks. Placing content adaptation
on the client device requires the presence of dedicated soft-
ware and adequate computational power on the client de-
vice. Furthermore, client-based solutions do not avoid the
download of (potentially) large original resources over the
last mile, which is often a narrow-band link. Our Two-level
architecture assumes a thin client and focuses on the deploy-
ment of a platform that can adapt resources even for very
simple devices with limited computational, display and net-
work capabilities.

In the server-based approach, the functionalities of the
content provider platform are enhanced with content adap-
tation [9, 23, 31]. Examples that address content adaptation
at the server side are Apache Cocoon, that allows the au-
tomatic generation of files through the processing of stati-
cally or dynamically generated XML files, Oracle Applica-
tion Server Wireless [32], and IBM WebSphere Transcoding
Publisher [44]. When the resources need to be generated and
adapted on-the-fly (hundreds of different device profiles al-
ready exist [41]), the drawback of the server-based approach
is intuitive. Hardware capabilities of a single server plat-
form can be easily exhausted by adaptation of multimedia
resources, that have significant computational requirements.

Thanks to multiple intermediary cooperative nodes, the pro-
posed Two-level architecture may share the load of compu-
tationally expensive services and reduce the response time
when requests are served by a node caching the requested
version of the resource. Moreover, in the server-based ap-
proach the adaptation concerns just the resources of one con-
tent provider, while our proposal is oriented to the whole
Web.

Intermediary nodes to support content adaptation and de-
livery services have been proposed in the context of Content
Delivery Networks [13, 15, 36]. Projects such as ACDN [36]
and Akamai EdgeComputing platform [13] propose to move
application servers producing adapted contents close to the
network edge to improve the user-perceived performance.
In a similar way, the ESI technology [15] allows the ar-
chitectures to assemble adapted contents on the network
edge starting from Web page fragments, that are composed
through specific rules that take into account user supplied
information. Although all these architectures may support
content adaptation and delivery services, these proposals im-
ply a strict relationship between the content provider and the
entity operating the CDN infrastructure. For this reason, the
adaptation and delivery service concerns only a subset of
Web sites, while we focus on a scenario where a third-party
entity can provide adaptation and delivery services for the
whole Web.

Research efforts on intermediary nodes operated by a
third-party to combine content adaptation and caching have
been proposed in [7, 39, 40]. All these solutions concern the
enhancement of single nodes. On the other hand, we focus
on distributed architectures to support content adaptation of
multimedia resources because of the limited scalability of
single intermediary nodes, that cannot address the high com-
putational and storage requirements of these services.

Several studies have been proposed in literature concern-
ing the use of a cluster of servers to support content adap-
tation and delivery services [2, 17, 19]. In particular, the
study of Fox et al. [17] presents one of the first examples
of cluster-based systems for image adaptation, while more
recent proposals [2] are oriented to video streaming adapta-
tion. The use of a single cluster of nodes may address com-
putational and storage issues. However, it does not resolve
the network constraint: the connection of the cluster to the
Internet may become the system bottleneck and represents a
single point of failure in the case of network congestion or
power outage in the cluster area. The Two-level architecture
is a step ahead, because it exploits the benefit of clustering,
but it is designed to be distributed over a geographical area,
thus preventing network bottlenecks.

In a previous study the authors proposed and compared
flat distributed architectures for content adaptation and de-
livery services oriented to Web workloads consisting of
HTML and small images [S]. However, flat architectures

@ Springer



16

Cluster Comput (2010) 13: 1-17

still leave some open issues. These architectures may be af-
fected by unfair load distribution among the nodes and this
risk is exacerbated by the high computational costs due to
multimedia content adaptations. Moreover, existing flat ar-
chitectures waste global storage capabilities since they allow
multimedia contents to be replicated among multiple nodes.
The Two-level architecture represents a significant step fur-
ther with respect to these proposals. It represents a novel
architecture specifically designed to address the issues of
adapting multimedia content, that exacerbates the require-
ments related to the computational cost and working set size.
The Two-level architecture improves load balancing through
the differentiation of the nodes functionalities and guaran-
tees an optimized usage of the storage space thanks to a re-
source partitioning technique that avoids content replication.

9 Conclusions

In this paper we propose a novel distributed architecture to
support adaptation and delivery services of Web and mul-
timedia contents. The architecture is based on a two-level
organization of the nodes: the edge nodes of the first level
are simple gateways, while the interior nodes of the second
level are based on clusters that execute the most expensive
tasks, such as content adaptation, caching, and fetching.
We have evaluated through a prototype the performance
of the two-level architecture against that of a flat query-
based architecture and that of a non cooperative distributed
architecture. The message from all our experiments and sen-
sitivity analysis is clearly in favor of the proposed archi-
tecture. The two-level architecture is robust with respect to
changes in network features and resource popularity skew-
ness. Moreover, it guarantees high scalability with respect
to future scenarios characterized by multi media-oriented
workloads and architectures with a large number of nodes.

References

1. Ahmad, I., Wei, X., Sun, Y., Zhang, Y.Q.: Video transcoding: an
overview of various techniques and research issues. IEEE Trans.
Multimed. 7(5), 793-804 (2005)

2. Bhuyan, L.N., Guo, J.: Load balancing in a cluster-based web
server for multimedia applications. IEEE Trans. Parallel Distrib.
Syst. 17(11), 1321-1334 (2006)

3. Bunt, R.B., Eager, D.L., Oster, G.M., Williamson, C.L.: Achiev-
ing load balance and effective caching in clustered Web servers.
In: Proceedings of the 4th International Web Caching Workshop,
San Diego, CA, 1999

4. Butler, M., Giannetti, F., Gimson, R., Wiley, T.: Device indepen-
dence and the Web. IEEE Internet Comput. 6(5), 81-86 (2002)

5. Canali, C., Cardellini, V., Lancellotti, R.: Content adaptation ar-
chitectures based on squid proxy server. World Wide Web J. 9(1),
63-92 (2006)

@ Springer

10.

11.

12.

13.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Chandra, S.: Content adaptation and transcoding. In: Singh, M.P.
(ed.) Practical Handbook of Internet Computing. Chapman Hall &
CRC Press, London, Boca Raton (2004)

Chang, C.Y., Chen, M.S.: On exploring aggregate effect for effi-
cient cache replacement in transcoding proxies. IEEE Trans. Par-
allel Distrib. Syst. 14(6), 611-624 (2003)

Chang, S.F., Vetro, A.: Video adaptation: concepts, technologies,
and open issues. Proc. IEEE 93(1), 148-158 (2005)

Chen, J., Zhou, B., Shi, J., Zhang, H., Fengwu, Q.: Function-based
object model towards Website adaptation. In: Proceeding of the
10th World Wide Web Conference (WWW’01), Hong Kong, 2001
Chen, Y., Xie, X., Ma, W.Y., Zhang, H.J.: Adapting Web pages for
small-screen devices. IEEE Internet Comput. 9(1), 50-56 (2005)
Chen, Y.F, Huang, H., Jana, R., Jim, T., Hiltunen, M., John,
S., Jora, S., Muthumanickam, R., Wei, B.: Imobile ee: an enter-
prise mobile service platform. ACM J. Wirel. Netw. 9(4), 283-297
(2003)

Crovella, M.: Performance evaluation with heavy tailed distribu-
tions. In: Proceedings of the 7th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP’01), 2001
Davis, A., Parikh, J., Weihl, W.E.: EdgeComputing: extending en-
terprise applications to the edge of the Internet. In: WWW Alt.
’04: Proceedings of the 13th international World Wide Web Con-
ference on Alternate Track Papers & Posters, pp. 180-187, 2004
Dykes, S., Robbins, K.: A viability analysis of cooperative proxy
caching. In: Proc. of IEEE Infocom 2001, Anchorage, AK, 2001
Edge Side Includes. http://www.esi.org (2002)

Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scal-
able wide-area Web cache sharing protocol. IEEE/ACM Trans.
Netw. 8(3), 281-293 (2000)

Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P.:
Cluster-based scalable network services. In: Proc. of 16th ACM
SOSP, pp. 78-91, 1997

Gadde, S., Chase, J., Rabinovich, M.: A taste of crispy squid. In:
Proc. of Workshop on Internet Server Performance, 1998

Grieco, R., Malandrino, D., Scarano, V.: A scalable cluster-based
infrastructure for edge-computing services. World Wide Web 9(3),
317-341 (2006)

Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information
diffusion through blogspace. In: WWW ’04: Proceedings of the
13th International Conference on World Wide Web, 2004

Guo, L., Chen, S., Xiao, Z., Zhang, X.: Analysis of multimedia
workloads with implications for Internet streaming. In: WWW
’05: Proceedings of the 14th International Conference on World
Wide Web, 2005

He, J., Gao, T., Hao, W., Yen, L.L.: A flexible content adaptation
system using a rule-based approach. IEEE Trans. Knowl. Data
Eng. 19(1), 127-140 (2007). Member-Farokh Bastani

Hwang, Y., Kim, J., Seo, E.: Structure-aware Web transcoding for
mobile devices. IEEE Internet Comput. 7(5), 14-21 (2003)

Ihde, S., Maglio, P.P., Meyer, J., Barrett, R.: Intermediary-based
transcoding framework. IBM Syst. J. 40(1), 179-192 (2001)
Lancellotti, R., Mazzoni, F., Colajanni, M.: Hybrid cooperative
schemes for scalable and stable performance of Web content de-
livery. Comput. Netw. J. 49(4) (2005)

Li, M., Claypool, M., Kinicki, R., Nichols, J.: Characteristics of
streaming media stored on the Web. ACM Trans. Internet Technol.
5(4), 601-626 (2005)

Lum, W.Y., Lau, F.C.: On balancing between transcoding over-
head and spatial consumption in content adaptation. In: MobiCom
’02: Proceedings of the 8th annual International Conference on
Mobile Computing and Networking, 2002

Maglio, P., Barrett, R.: Intermediaries personalize information
streams. Commun. ACM 43(8) (2000)
MagnaTune: Magnatune—music downloads
http://www.magnatune.com/ (2007)

and licensing.


http://www.esi.org
http://www.magnatune.com/

Cluster Comput (2010) 13: 1-17

17

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Marriott, K., Meyer, B., Tardif, L.: Fast and efficient client-side
adaptivity for SVG. In: WWW ’02: Proceedings of the 11th Inter-
national Conference on World Wide Web, pp. 496-507, 2002
MediaLab: Web content adaptation. Tech. rep., TeliaSonera
(2004)

Oracle Application Server Wireless. http://www.oracle.com/
technology/tech/wireless/ (2008)

Parker, C., Pfeiffer, S.: Video blogging: content to the max. IEEE
MultiMed. 12(2), 4-8 (2005)

Pashtan, A., Kollipara, S., Pearce, M.: Adapting content for wire-
less Web services. IEEE Internet Comput. 7(5), 79-85 (2003)
Rabinovich, M., Spatscheck, O.: Web Caching and Replication.
Addison-Wesley, Reading (2002)

Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the edge:
A platform for replicating Internet applications. In: Proc. of 8th
Int’1 Workshop on Web Content and Distribution, Hawthorne, NY,
2003

Rabinovich, M., Xiao, Z., Douglis, F., Kamanek, C.: Moving edge
side includes to the real edge—the clients. In: Proc. of USITS 03,
4th USENIX Symp. on Internet Technology and Systems, Seattle,
WA, 2003

Ross, K.: Hash-routing for collections of shared Web caches. IEEE
Netw. 11(6), 37-44 (1997)

Shen, B., Lee, S.J., Basu, S.: Caching strategies in transcoding-
enabled proxy systems for streaming media distribution networks.
IEEE Trans. Multimed. 6(2), 375-386 (2004)

Singh, A., Trivedi, A., Ramamritham, K., Shenoy, P.: PTC: Prox-
ies that transcode and cache in heterogeneous Web client environ-
ments. World Wide Web 7(1), 7-28 (2004)

Singh, G.: Guest editor’s introduction: content repurposing. IEEE
Multimed. 11(1), 20-21 (2004)

Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan,
H.: Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In: Proc. of the 2001 ACM SIGCOMM Conference,
2001

Wang, B., Kurose, J., Shenoy, P., Towsley, D.: Multimedia stream-
ing via TCP: An analytic performance study. In: MULTIMEDIA
’04: Proceedings of the 12th Annual ACM International Confer-
ence on Multimedia, 2004

IBM  WebSphere Transcoding Publisher. http://www.ibm.
com/software/pervasive/transcoding_publisher/ (2008)

Wessels, D., Claffy, K.: Internet Cache Protocol (ICP), version 2.
RFC 2186 (1997)

Williams, A., Arlitt, M., Williamson, C., Barker, K.: Web work-
load characterization: ten years later. In: Tang, X., Xu, J., Chan-
son, S.T. (eds.) Web Content Delivery. Springer, Berlin (2005)
YouTube: Youtube—broadcast yourself. http://www.youtube.
com/ (2007)

Zhang, R., Hu, C., Lin, X., Fahmy, S.: A hierarchical approach
to Internet distance prediction. In: Proc. of the 26th IEEE Int’l
Conf. on Distributed Computing Systems (ICDCS’06), Washing-
ton, DC, USA, 2006

Claudia Canali is assistant profes-
sor at the University of Modena and
Reggio Emilia since 2008. She got
the Laurea degree summa cum laude
in computer engineering from the
same university in 2002, and the
Ph.D. degree in computer engineer-
ing from the University of Parma
in March 2006. During the Ph.D.
she spent eight months as visiting
researcher at the AT&T Research
Labs in Florham Park, New Jersey.
Her research interests include dis-
tributed architectures for Internet-
based services, content delivery net-
works and mobile systems for mobile Web access. She is member of
IEEE Computer Society.

Michele Colajanni is full profes-
sor in computer engineering at the
University of Modena and Reggio
Emilia since 2000. He received the
Laurea degree in computer science
from the University of Pisa in 1987,
and the Ph.D. degree in computer
engineering from the University of
Roma Tor Vergata in 1991. His
research activities on high perfor-
mance Web systems began in 1996
during his sabbatical year spent at
the IBM T.J. Watson Research Cen-
ter, New York. His research interests
include also distributed systems, se-
curity, performance and prediction models. He is member of IEEE
Computer Society, ACM and Eurosys.

Riccardo Lancellotti is assistant
professor at the University of Mod-
ena and Reggio Emilia since 2005.
He received the Laurea Degree in
computer engineering cum laude
from the University of Modena and
Reggio Emilia in 2001 and the
Ph.D. in computer engineering from
the University of Roma “Tor Ver-
gata” in 2003. In 2003, he spent
eight months at the IBM T.J. Wat-
son Research Center as a visiting
researcher. His research interests in-
clude privacy and security in distrib-
uted systems, scalable architectures
for mobile Web access, peer-to-peer systems, performance evaluation
and benchmarking. He is a member of the IEEE Computer Society and
ACM.

@ Springer


http://www.oracle.com/technology/tech/wireless/
http://www.oracle.com/technology/tech/wireless/
http://www.ibm.com/software/pervasive/transcoding_publisher/
http://www.ibm.com/software/pervasive/transcoding_publisher/
http://www.youtube.com/
http://www.youtube.com/

	A Two-level distributed architecture for the support of content adaptation and delivery services
	Abstract
	Introduction
	Design of architectures for content adaptation and delivery services
	Main tasks
	Mapping tasks over multiple nodes

	Two-level architecture
	Organization of the nodes
	Content partitioning
	Request management

	Flat cooperative architectures
	Experimental setup
	Metrics of interest
	Workload and service models
	Experimental testbed

	Performance evaluation
	Sensitivity analysis
	Experimental setup
	Sensitivity to resource popularity
	Sensitivity to network parameters
	Scalability to future workloads
	Scalability to architecture size

	Related work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


