Exact GPS simulation and its application to an optimally fair scheduler

Paolo Valente Dip. Ingegneria dell'Informazione Università di Pisa - Italy

Subject

- Context: Packet scheduling algorithms
- System: N packet flows sharing a link that can transmit only one packet at a time
- Contributions: computational complexity of
 - the simulation of the Generalized Processor Sharing (GPS) server, and
 - the *implementation* of the Worst-case Fair Weighted Fair Queuing (WF²Q) scheduling algorithm
 - reduced from O(N) to O(logN) per packet transmission time

Summary

Background on GPS and WF²Q

State of the Art

L-GPS: simulating GPS at O(logN) cost

L-WF²Q: implementing WF²Q at O(logN) cost

GPS definition

The GPS server serves all backlogged flows simultaneously, providing each flow i an amount of service:

$$dW_i(t) = \frac{\phi_i}{\Phi(t)} dW(t)$$

- ϕ_i : weight of *flow i*
- $\Phi(t)$: sum of ϕ_i of the flows <u>backlogged</u> at time t
- dW(t)=<u>R(t)</u>·dt: total amount of service provided by the system at time t

GPS benefits

- Due to its perfectly fair allocation, the GPS server can be used as a reference system for:
 - Evaluating the fairness of practical packet schedulers
 - Implementing fair packet schedulers through on-line simulation of a GPS server
- <u>Fairness measure</u>: maximum per-flow deviation with respect to the GPS service

 No packet scheduler can avoid a *minimum* deviation equal to one maximum packet size

WF²Q guarantees the minimum deviation

- WF²Q internally simulates a GPS server by tracking a function called <u>system virtual time</u>
 - Timestamping arriving packets
 - Choosing next packet to transmit

System virtual time 1/2

System virtual time function:

 $V(t) \equiv \int_0^t \frac{1}{\Phi(\tau)} dW(\tau)$

7

System virtual time 2/2

- Hereafter we will report W(t) instead of t on the x-axis
 - Since W(t) is an increasing function of time, there is a one-to-one correspondence between t and W(t)

Summary

Background on GPS and WF²Q

State of the Art

L-GPS: simulating GPS at O(logN) cost

L-WF²Q: implementing WF²Q at O(logN) cost

Summary

State of the Art:

- GPS emulation
- GPS simulation

10

GPS emulation

- To the literature, all packet schedulers, apart from WF²Q, exhibit O(N), or, worse yet, unbounded deviation with respect to the GPS service
- One of them, called Worst-case Fair Weighted Fair Queueing Plus (WF²Q+) has O(1) deviation with respect to the minimum service guaranteed by the GPS server ...

• ... but O(N) deviation when some flows are idle

GPS simulation

Provided that <u>W(t) is known at any time instant</u>, compute $V(t_{new})$ at a generic time instant t_{new}

Algorithms for simulating GPS

- Two algorithms in the past literature:
 - 1) The *classical* algorithm [Parekh and Gallager, 1992]
 - 2) Another algorithm [Greenberg and Madras, 1992] recently *re-discovered* [Zhao and Xu, 2004]

 For describing both of them, we will use the concept of <u>state of the GPS server</u>

State of the GPS server

Classical algorithm 1/2

Update the state variables each time \$\Phi(t)\$ changes

Classical algorithm 2/2

 Let t_i be the smallest time instant such that Φ(t) does not change in (t_i, t_{new}] ...

Greenberg et al. algorithm 1/2

- Variant
 - Store the state in a base tuple
 - Do not update the base tuple each time \$\Phi(t)\$ changes
 - Update it only on packet arrivals

Greenberg algorithm 2/2

Both algorithms are O(N)

 O(N) departures can occur in an arbitrarily short time interval, e.g. minimum packet transmission time

 Both algorithms make one step per event (arrival/departure), hence they have O(N) complexity per packet transmission time

Summary

Background on GPS and WF²Q

State of the Art

State of the Art

GPS & WF²O

L-GPS: simulating GPS at O(logN) cost

L-WF²Q: implementing WF²Q at O(logN) cost

L-GPS

Main idea 1/3

- The state changes O(N) times in an arbitrarily short time interval...
- ... but a practical scheduler does not need to know V(t_{new}) so often
- We can use a solution similar to the Greenberg and Madras algorithm previously shown
 - Store the state in a <u>base tuple</u>
 - Do not update the base tuple each time \$\Phi(t)\$ changes, but only on packet arrivals
- When $V(t_{new})$ is to be computed the base tuple contains the state corresponding to $t_{old} \le t_1$...

Main idea 2/3

- Reconstruct the evolution of V(t) from t_{old} to t_{new} through a <u>specially augmented balanced binary</u> tree, called U_{tree}
- In the Greenberg algorithm the events, stored in two queues, had to be processed <u>one after</u> <u>the other</u>, whereas L-GPS processes them <u>in</u> <u>groups</u> by navigating the U_{tree}
- L-GPS computes V(t_{new}) in O(d) steps, where d is the depth of the U_{tree}

Main idea 3/3

The idea behind the construction of the U_{tree} is pre-computing the expected evolution of V(t)

The expected evolution 1/3

The expected evolution 2/3

The expected evolution 3/3

The shape data structure 1/2

 Pre-computing the expected evolution of V(t) upon each packet arrival is straightforward

 L-GPS stores in the base tuple and the U_{tree} information on the expected evolution of V(t)

 We call <u>shape data structure</u> the union of the base tuple and the U_{tree}

The shape data structure 2/2

Using aggregated information

 If the state in t₁ is known, and Φ(t) does not change during (t₁, t_{min}), the aggregated information in the node allow the state in t_{max} to be computed at O(1) cost

GPS & WF²O

State of the Art

Summary

L-GPS: simulating GPS at O(logN) cost

- Main Algorithm
 - Shape data structure
 - Computing virtual time
 - Updating the shape data structure
- Balanced trees

Computing virtual time 1/4

Defined t_i as the smallest time instant such that *\Phi(t)* does not change in (t_i, t_{new}] ...

L-GPS

State of the Art

GPS & WF²Q

Computing virtual time 2/4

 L-GPS performs a <u>binary search</u> of the leaf representing the time instant t_p, and updates <u>three temporary variables</u> at each search step ...

32

Computing virtual time 3/4

Computing virtual time 4/4

Summary

L-GPS: simulating GPS at O(logN) cost

- Main Algorithm
 - Computing virtual time
 - Updating the shape data structure
- Balanced trees

Updating the shape data structure

- It is updated at each packet arrival
 - U_{tree} never contains more than N leaves
 - U_{tree} is balanced, its max depth is O(logN)
- The information stored in each node depend <u>only</u> on its subtree
- <u>Each node</u> is updated at <u>O(1)</u> cost

L-WF²O

 The shape data structure is updated at O(logN) cost on each packet arrival

GPS & WF²Q

State of the Art

L-GPS

Summary

L-GPS: simulating GPS at O(logN) cost

- Main Algorithm
 - Computing virtual time
 - Updating the shape data structure
- Balanced trees

L-WF²O

37

Balanced Trees 1/2

- The U_{tree} can be implemented by augmenting existing balanced trees
- Patricia Trees
 - O(logN) average depth with any practical distribution of the values stored in the tree
 - O(M) worst-case depth, where M is the number of digits used to represent values
- Red-black Trees
 - O(logN) worst-case depth

Balanced Trees 2/2

- Patricia Trees provide a weaker theoretical bound on the depth with respect to Red-black trees ...
- ... but, in practice, Patricia Trees
 - Have a simpler structure
 - Do not need re-balancing after insertions/extractions
 - Allow entire subtrees to be removed at O(1) cost during the computation of V(t)
- We tested the actual performance of Patricia Trees through simulations

Summary

Background on GPS and WF²Q

State of the Art

State of the Art

GPS & WF²O

L-GPS: simulating GPS at O(logN) cost

L-GPS

L-WF²Q: implementing WF²Q at O(logN) cost

L-WF²Q

- L-WF²Q uses L-GPS to compute V(t) ...
- ... with an additional improvement on L-GPS
- WF²Q meets the Globally Bounded Timestamp (GBT) property, which bounds the maximum value that the virtual time can assume at time t_{new}
- As such, it allows us to know a priori if a certain breakpoint will be met or not when V(t_{new}) is computed
- L-WF²Q filters the breakpoints to be inserted in the U_{tree}

L-GPS

State of the Art

GPS & WF²O

Conclusions

- The upper bound complexity for simulating a GPS server has been reduced from O(N) to O(logN)
- The upper bound complexity to provide the minimum deviation from the GPS service has been reduced from O(N) to O(logN)
 - It has been proven [Xu and Lipton, 2002] that Ω(logN) is the lower bound complexity to provide O(1) deviation from the GPS service
 - L-WF²Q achieves the optimum complexity
- L-WF²Q provides an efficient implementation of WF²Q

Any questions ?

WF²Q+ unfairness/burstiness

