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Subject

= Context: Packet scheduling algorithms

= System: N packet flows sharing a link that can
transmit only one packet at a time

= Contributions: computational complexity of

= the simulation of the Generalized Processor
Sharing (GPS) server, and

» the implementation of the Worst-case Fair
Weighted Fair Queuing (WF?Q) scheduling
algorithm

reduced from O(N) to O(logN) per packet
transmission time



Summary

= Background on GPS and WF*Q
» State of the Art
= L-GPS: simulating GPS at O(logN) cost

= L-WF?Q: implementing WF2Q at O(logN)
cost
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GPS definition

= The GPS server serves all backlogged flows
simultaneously, providing each flow i an amount of
service:

dWi(t)ijq?;)dW(t)

= ¢.: weight of flow i
= &(t): sum of ¢ of the flows backlogged at time t

= dW(t)=R(t)-dt: total amount of service provided by
the system at time t
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GPS benefits

= Due to its perfectly fair allocation, the GPS
server can be used as a reference systemn for:

= Evaluating the fairness of practical
packet schedulers

= Implementing fair packet schedulers
through on-line simulation of a GPS server

» Fairness measure: maximum per-flow
deviation with respect to the GPS service
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WF2Q

= No packet scheduler can avoid a minimum
deviation equal to one maximum packet size

= WF?Q guarantees the minimum deviation

= WF?Q internally simulates a GPS server by
tracking a function called system virtual time

= Timestamping arriving packets
= Choosing next packet to transmit
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System virtual time 1/2

» System virtual time function:




System virtual time 2/2

~ n=[ —dW

/
/——"/ Breakpoints
: occur only when
/ é(t) changes
W(D)

= Hereafter we will report W(t) instead of t on the x-axis

= Since W(t) is an increasing function of time, there
is a one-to-one correspondence between t and W(t)
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Summary
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Summary

= State of the Art:

= GPS emulation
= GPS simulation
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GPS emulation

= To the literature, all packet schedulers, apart
from WF2Q, exhibit O(N), or, worse yet, un-
bounded deviation with respect to the GPS
service

= One of them, called Worst-case Fair Weighted
Fair Queueing Plus (WF?Q+) has O(1) deviation
with respect to the minimum service
guaranteed by the GPS server ...

= ... but O(N) deviation when some flows are idle
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GPS simulation

* Provided that W(t) is known at any time instant,
compute V(t ) at a generic time instant t_

‘V(t)

/

W) WD
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Algorithms for simulating GPS

» Two algorithms in the past literature:

1) The classical algorithm [Parekh and
Gallager, 1992]

2) Another algorithm [Greenberg and Madras,
1992] recently re-discovered [Zhao and Xu,
2004]

= For describing both of them, we will use the
concept of state of the GPS server

|
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State of the GPS server

‘V(t)
V(L)
Vv (tx) """""""""""""""""""""""""""""" (I)(t; )
W(t)
W(t,) )'{V(t)
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Classical algorithm 1/2

» Update the state variables each time &(t)
changes

|
Vit
G \ ,
el
_:___...:/'/
/" ~
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Classical algorithm 2/2

» Let t be the smallest time instant such that &(t) does
not changein (¢, t 1...

new

J,4‘%’@)
Vit s T
OD(t; ) |
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W) Wi, w
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Greenberg et al. algorithm 1/2

= Variant

= Store the state in a base tuple

= Do not update the base tuple each
time &(t) changes

= Update it only on packet arrivals
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Greenberg algorithm 2/2
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Both algorithms are O(N)

= O(N) departures can occur in an arbitrarily
short time interval, e.g. minimum packet
transmission time

= Both algorithms make one step per event
(arrival/departure), hence they have O(N)
complexity per packet transmission time
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Summary
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Main idea 1/3

= The state changes O(N) times in an arbitrarily
short time interval...

= ... but a practical scheduler does not need to
know V(t _ ) so often

= We can use a solution similar to the Greenberg
and Madras algorithm previously shown

= Store the state in a base tuple

= Do not update the base tuple each time &(t)
changes, but only on packet arrivals

= When V(t _ ) is to be computed the base tuple
contains the state corresponding to t <t ...

|
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Main idea 2/3

» Reconstruct the evolution of V(t) fromt tot

through a iall ment
tree, called U

tree

= |n the Greenberg algorithm the events, stored
in two queues, had to be processed one after
the other, whereas L-GPS processes them in

groups by navigating the U, __

= L-GPS computes V(t _ ) in O(d) steps, where d is
the depth of the U

tree
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Main idea 3/3

= The idea behind the construction of the U, is

tree

pre-computing the expected evolution of V(t)

- GPS & WF2Q State of the Art

L-WF2Q 23



The expected evolution 1/3
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The expected evolution 2/3
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The expected evolution 3/3
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The shape data structure 1/2

= Pre-computing the expected evolution of V(t)
upon each packet arrival is straightforward

» L-GPS stores in the base tuple and the U, _,
information on the expected evolution of V(t)

= We call sh ta structure the union of the
base tuple and the U

tree
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The shape data structure 2/2
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Using aggregated information

» If the state in t, is known, and @(t) does not change
during (t,, t . ), the aggregated information in the node
allow the state in t__ to be computed at O(1) cost

AV V(L)
V(L) (1)
:: @(l{';) . T W( l’ma}:_)
W(t,) //
Wit ) EV}(’[W ) i' ‘»"{(tw_____}{] W (L)
R ; #
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Summary

= L-GPS: simulating GPS at O(logN) cost
= Main Algorithm
= Shape data structure
= Computing virtual time
= Updating the shape data structure
= Balanced trees
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Computing virtual time 1/4

Expected V(t)

» Defined t, as the smallest time instant such
that &(t) does not change in (¢t, t 1 ...

new

- GPS & WF2Q State of the Art

L-WF2Q 31



Computing virtual time 2/4

= L-GPS performs a binary search of the leaf
representing the time instant t,

and updates three temporary vari
each search step ...
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Computing virtual time 3/4
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Computing virtual time 4/4
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Summary

= L-GPS: simulating GPS at O(logN) cost

= Main Algorithm
= Computing virtual time
= Updating the shape data structure

= Balanced trees
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Updating the shape data structure

= |t is updated at each packet arrival
= J__ never contains more than N leaves

« U,___is balanced, its max depth is O(logN)

Nof,u pdgte

tree

tree

= The information stored in
each node depend only on )
its subtree

= Each node is updated at
O(1) cost

= The shape data structure is updated at O(logN)
cost on each packet arrival
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Balanced Trees 1/2

» The U, can be implemented by augmenting
existing balanced trees

= Patricia Trees

= O(logN) average depth with any practical
distribution of the values stored in the tree

= O(M) worst-case depth, where M is the
number of digits used to represent values

= Red-black Trees
= O(logN) worst-case depth
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Balanced Trees 2/2

= Patricia Trees provide a weaker theoretical
bound on the depth with respect to Red-black
trees ...

= ... but, in practice, Patricia Trees
= Have a simpler structure

= Do not need re-balancing after
insertions/extractions

= Allow entire subtrees to be removed at
O(1) cost during the computation of V(t)

= We tested the actual performance of
Patricia Trees through simulations
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L-WF-Q

= |L-WF2Q uses L-GPS to compute V(t) ...
= ... with an additional improvement on L-GPS

= WF2Q meets the Globally Bounded Timestamp
(GBT) property, which bounds the maximum va-
lue that the virtual time can assume at time t__

= As such, it allows us to know a priori if a certain
breakpoint will be met or not when V(t ) is

computed

» L-WF2Q filters the breakpoints to be inserted in
the U

tree
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Conclusions

= The upper bound complexity for simulating a GPS
server has been reduced from O(N) to O(logN)

= The upper bound complexity to provide the
minimum deviation from the GPS service has

been reduced from O(N) to O(logN)

= |t has been proven [Xu and Lipton, 2002]
that Q(logN) is the lower bound complexity

to provide O(1) deviation from the GPS

service
= L-WF2Q achieves the optimum complexity

= L-WF2Q provides an efficient implementation of
WF2Q



Any guestions ?



WF2Q+ unfairness/burstiness
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